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ABSTRACT
The contents of many valuable web-accessible databases are
only accessible through search interfaces and are hence in-
visible to traditional web “crawlers.” Recent studies have
estimated the size of this “hidden web” to be 500 billion
pages, while the size of the “crawlable” web is only an es-
timated two billion pages. Recently, commercial web sites
have started to manually organize web-accessible databases
into Yahoo!-like hierarchical classification schemes. In this
paper, we introduce a method for automating this classi-
fication process by using a small number of query probes.
To classify a database, our algorithm does not retrieve or in-
spect any documents or pages from the database, but rather
just exploits the number of matches that each query probe
generates at the database in question. We have conducted
an extensive experimental evaluation of our technique over
collections of real documents, including over one hundred
web-accessible databases. Our experiments show that our
system has low overhead and achieves high classification ac-
curacy across a variety of databases.

1. INTRODUCTION
As the World-Wide Web continues to grow at an expo-

nential rate, the problem of accurate information retrieval
in such an environment also continues to escalate. One es-
pecially important facet of this problem is the ability to
not only retrieve static documents that exist on the web,
but also effectively determine which searchable databases
are most likely to contain the relevant information that a
user is looking for. Indeed, a significant amount of informa-
tion on the web cannot be accessed directly through links,
but is available only as a response to a dynamically issued
query to the search interface of a database. The results page
for a query typically contains dynamically generated links to
these documents. Traditional search engines cannot handle
such interfaces and ignore the contents of these resources,
since they only take advantage of the static link structure
of the web to “crawl” and index web pages.

The magnitude of the importance of this problem is high-
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lighted in recent studies [6] that estimated that the amount
of information “hidden” behind such query interfaces out-
numbers the documents of the “ordinary” web by two orders
of magnitude. In particular, the study claims that the size
of the “hidden” web is 500 billion pages, compared to “only”
two billion pages of the ordinary web. Also the contents of
these databases are many times topically cohesive and of
higher quality than those of ordinary web pages.

Even sites that have some static links that are “crawlable”
by a search engine may have much more information avail-
able only through a query interface, as the following real
example illustrates.

Example 1.: Consider the PubMed medical database
from the National Library of Medicine, which stores medi-
cal bibliographic information and links to full-text journals
accessible through the web. The query interface is available
at http://www.ncbi.nlm.nih.gov/PubMed/. If we query
PubMed for documents with the keyword cancer, PubMed
returns 1,301,269 matches, corresponding to high-quality ci-
tations to medical articles. The abstracts and citations are
stored locally at the PubMed site and are not distributed
over the web. Unfortunately, the high-quality contents of
PubMed are not “crawlable” by traditional search engines.
A query1 on AltaVista2 that finds the pages in the PubMed
site with the keyword “cancer,” returns only 19,893 matches.
This number not only is much lower than the number of
PubMed matches reported above, but, additionally, the pa-
ges returned by AltaVista are links to other web pages on
the PubMed site, not to articles in the PubMed database.
2

For dynamic environments (e.g., sports), querying a text
database may be the only way to retrieve fresh articles that
are relevant, since such articles are often not indexed by a
search engine because they are too new, or because they
change too often.

In this paper we concentrate on searchable web databases
of text documents regardless of whether their contents are
crawlable or not. More specifically, for our purposes a sea-
rchable web database is a collection of text documents that
is searchable through a web-accessible search interface. The
documents in a searchable web database do not necessar-
ily reside on a single centralized site, but can be scattered
over several sites. Our focus is on text : 84% of all search-
able databases on the web are estimated to provide access
to text documents [6]. Other searchable sites offer access to

1
The query is cancer host:www.ncbi.nlm.nih.gov.

2
http://www.altavista.com
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other kinds of information (e.g., image databases and shop-
ping/auction sites). A discussion on these sites is out of the
scope of this paper.

In order to effectively guide users to the appropriate sea-
rchable web database, some web sites (described in more
detail below) have undertaken the arduous task of manually
classifying searchable web databases into a Yahoo!-like hier-
archical categorization scheme. While we believe this type of
categorization can be immensely helpful to web users trying
to find information relevant to a given topic, it is hampered
by the lack of scalability inherent in manual classification.

Consequently, in this paper we propose a method for the
automatic categorization of searchable web databases into
topic hierarchies using a combination of machine learning
and database querying techniques. Through the use of query
probing, we present a novel and efficient way to classify a
searchable database without having to retrieve any of the
actual documents in the database. We use machine learning
techniques to initially build a rule-based classifier that has
been trained to “classify” documents that may be hidden
behind searchable interfaces. Rather than actually using
this classifier to categorize individual documents, we trans-
form the rules of the classifier into a set of query probes
that can be sent to the search interface for various text
databases. Our algorithm can then simply use the counts
for the number of documents matching each query to make a
classification decision for the topic(s) of the entire database,
without having to analyze any of the actual documents in
the database. This makes our approach very efficient and
scalable.

By providing an efficient automatic means for the accurate
classification of searchable text databases into topic hierar-
chies, we hope to alleviate the scalability problems of manual
database classification, and make it easier for end-users to
find the relevant information they are seeking on the web.

The contributions presented in this paper are organized
as follows: In Section 2 we more formally define and pro-
vide various strategies for database classification. Section 3
presents the details of our query probing algorithm for data-
base classification. In Sections 4 and 5 we provide the exper-
imental setting and results, respectively, of our classification
method and compare it with two existing methods for au-
tomatic database classification. The method we present is
shown to be both more accurate as well as more efficient on
the database classification task. Finally, Section 6 describes
related work, and Section 7 provides conclusions and out-
lines future research directions.

2. TEXT-DATABASE CLASSIFICATION
As shown previously, the web hosts many collections of

documents whose contents are only accessible through a
search interface. In this section we discuss how we can orga-
nize the space of such searchable databases in a hierarchical
categorization scheme. We first define appropriate classifi-
cation schemes for such databases in Section 2.1, and then
present alternative methods for text database categorization
in Section 2.2.

2.1 Classification Schemes for Databases
Several commercial web directories have recently started

to manually classify searchable web databases, so that users
can browse these categories to find the databases of inter-
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Figure 1: Portion of the InvisibleWeb classification
scheme.

est. Examples of such directories include InvisibleWeb3 and
SearchEngineGuide4. Figure 1 shows a small fraction of In-
visibleWeb’s classification scheme.

Formally, we can define a hierarchical classification scheme
like the one used by InvisibleWeb as follows:

Definition 1.: A hierarchical classification scheme is a
rooted directed tree whose nodes correspond to (topic) cate-
gories and whose edges denote specialization. An edge from
category v to another category v′ indicates that v′ is a sub-
category of v. 2

Given a classification scheme, our goal is to automatically
populate it with searchable databases where we assign each
database to the “best” category or categories in the scheme.
For example, InvisibleWeb has manually assigned WNBA
to the “Basketball” category in its classification scheme. In
general we can define what category or categories are “best”
for a given database in several different ways, according to
the needs the classification will serve. We describe different
such approaches next.

2.2 Alternative Classification Strategies
We now turn to the central issue of how to automatically

assign databases to categories in a classification scheme, as-
suming complete knowledge of the contents of these data-
bases. Of course, in practice we will not have such complete
knowledge, so we will have to use the probing techniques
of Section 3 to approximate the “ideal” classification defini-
tions that we give next.

To assign a searchable web database to a category or set
of categories in a classification scheme, one possibility is to
manually inspect the contents of the database and make a
decision based on the results of this inspection. Inciden-
tally, this is the way in which commercial web directories
like InvisibleWeb operate. This approach might produce
good quality category assignments, but, of course, is expen-
sive (it includes human participation) and does not scale
well to the large number of searchable web databases.

Alternatively, we could follow a less manual approach and
determine the category of a searchable web database based
on the category of the documents it contains. We can for-
malize this approach as follows: Consider a web database
D and a number of categories C1, . . . , Cn. If we knew the
category Ci of each of the documents inside D, then we
could use this information to classify database D in at least
two different ways. A coverage-based classification will as-
sign D to all categories for which D has sufficiently many
documents. In contrast, a specificity-based classification will
assign D to the categories that cover a significant fraction
of D’s holdings.

3
http://www.invisibleweb.com

4
http://www.searchengineguide.com
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Example 2.: Consider topic category “Basketball.” CBS
SportsLine has a large number of articles about basketball
and covers not only women’s basketball but other basket-
ball leagues as well. It also covers other sports like football,
baseball, and hockey. On the other hand, WNBA only has
articles about women’s basketball. The way that we will
classify these sites depends on the use of our classification.
Users who prefer to see only articles relevant to basketball
might prefer a specificity-based classification and would like
to have the site WNBA classified into node “Basketball.”
However, these users would not want to have CBS Sport-
sLine in this node, since this site has a large number of
articles irrelevant to basketball. In contrast, other users
might prefer to have only databases with a broad and com-
prehensive coverage of basketball in the “Basketball” node.
Such users might prefer a coverage-based classification and
would like to find CBS SportsLine in the “Basketball” node,
which has a large number of articles about basketball, but
not WNBA with only a small fraction of the total number
of basketball documents. 2

More formally, we can use the number of documents fi

in category Ci that we find in database D to define the fol-
lowing two metrics, which we will use to specify the “ideal”
classification of D.

Definition 2.: Consider a web database D, a hierarchi-
cal classification scheme C, and a category Ci ∈ C. Then
the coverage of D for Ci, Coverage(D, Ci), is the number of
documents in D in category Ci, fi.

Coverage(D, Ci) = fi

If Ck is the parent of Ci in C, then the specificity of D for
Ci, Specificity(D, Ci), is the fraction of Ck documents in D
that are in category Ci. More formally, we have:

Specificity(D, Ci) =
fi

|Documents in D about Ck|
As a special case, Specificity(D, root) = 1. 2

Specificity(D, Ci) gives a measure of how “focused” the data-
base D is on a subcategory Ci of Ck. The value of Specificity
ranges between 0 and 1. Coverage(D, Ci) defines the “abso-
lute” amount of information that database D contains about
category Ci

5. For notational convenience we define:

Coverage(D)=〈Coverage(D, Ci1), . . . ,Coverage(D, Cim)〉
Specificity(D)=〈Specificity(D, Ci1), . . . ,Specificity(D, Cim)〉
when the set of categories {Ci1 , . . . , Cim} is clear from the

context.
Now, we can use the Specificity and Coverage values to

decide how to classify D into one or more categories in the
classification scheme. As described above, a specificity-based
classification would classify a database into a category when
a significant fraction of the documents it contains are of
this specific category. Alternatively, a coverage-based clas-
sification would classify a database into a category when
the database has a substantial number of documents in the
given category. In general, however, we are interested in

5
It would be possible to normalize Coverage values to be between 0

and 1 by dividing fi with the total number of documents in category
Ci across all databases. Although intuitively appealing (Coverage
would then measure the fraction of the universally available informa-
tion about Ci that is stored in D), this definition is “unstable” since
each insertion, deletion, or modification of a web database changes
the Coverage of the other available databases.

balancing both Specificity and Coverage through the intro-
duction of two associated thresholds, τs and τc, respectively,
as captured in the following definition.

Definition 3.: Consider a classification scheme C with
categories C1, . . . , Cn, and a searchable web database D.
The ideal classification of D in C is the set Ideal(D) of cat-
egories Ci that satisfy the following conditions:

• Specificity(D, Ci) ≥ τs.

• Specificity(D, Cj) ≥ τs for all ancestors Cj of Ci.

• Coverage(D, Ci) ≥ τc.

• Coverage(D, Cj) ≥ τc for all ancestors Cj of Ci.

• Coverage(D, Ck) < τc or Specificity(D, Ck) < τs for
all children Ck of Ci.

with 0 ≤ τs ≤ 1 and τc ≥ 1 given thresholds. 2

The ideal classification definition given above provides al-
ternative approaches for “populating” a hierarchical classi-
fication scheme with searchable web databases, depending
on the values of the thresholds τs and τc. A low value for
the specificity threshold τs will result in a coverage-based
classification of the databases. Similarly, a low value for the
coverage threshold τc will result in a specificity-based classi-
fication of the databases. The values of choice for τs and τc

are ultimately determined by the intended use and audience
of the classification scheme. Next, we introduce a technique
for automatically populating a classification scheme accord-
ing to the ideal classification of choice.

3. CLASSIFYING DATABASES THROUGH
PROBING

In the previous section we defined how to classify a data-
base based on the number of documents that it contains
in each category. Unfortunately, databases typically do not
export such category-frequency information. In this section
we describe how we can approximate this information for a
given database without accessing its contents. The whole
procedure is divided into two parts: First we train our sys-
tem for a given classification scheme and then we probe each
database with queries to decide the categories to which it
should be assigned. More specifically, we follow the algo-
rithm below:

1. Train a rule-based document classifier with a set of
preclassified documents (Section 3.1).

2. Transform classifier rules into queries (Section 3.2).

3. Adaptively issue queries to databases, extracting and
adjusting the number of matches for each query using
the classifier’s “confusion matrix” (Section 3.3).

4. Classify databases using the adjusted number of query
matches (Section 3.4).

3.1 Training a Document Classifier
Our database classification technique relies on a rule-based

document classifier to create the probing queries, so our first
step is to train such a classifier. We use supervised learning
to construct a rule-based classifier from a set of preclas-
sified documents. The resulting classifier is a set of logi-
cal rules whose antecedents are conjunctions of words, and
whose consequents are the category assignments for each
document. For example, the following rules are part of a
classifier for the three categories “Sports,” “Health,” and
“Computers”:
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IF ibm AND computer THEN Computers
IF jordan AND bulls THEN Sports
IF diabetes THEN Health
IF cancer AND lung THEN Health
IF intel THEN Computers

Such rules are used to classify previously unseen docu-
ments (i.e., documents not in the training set). For exam-
ple, the first rule would classify all documents containing
the words “ibm” and “computer” into the category “Com-
puters.”

Definition 4.: A rule-based document classifier for a flat
set of categories C = {C1, . . . , Cn} consists of a set of rules
pk → Clk , k = 1, . . . , m, where pk is a conjunction of words
and Clk ∈ C. A document d matches a rule pk → Clk if
all the words in that rule’s antecedent, pk, appear in d. If
a document d matches multiple rules with different classifi-
cation decisions, the final classification decision depends on
the specific implementation of the rule-based classifier. 2

To define a document classifier over an entire hierarchical
classification scheme (Definition 1), we train one flat rule-
based document classifier for each internal node of the hi-
erarchy. To produce a rule-based document classifier with a
concise set of rules, we follow a sequence of steps, described
below.

The first step, which helps both efficiency and effective-
ness, is to eliminate from the training set all words that
appear very frequently in the training documents, as well
as very infrequently appearing words. This initial “feature
selection” step is based on Zipf’s law [32]. Very frequent
words are usually auxiliary words that bear no information
content (e.g., “am”, “and”, “so” in English). Infrequently
occurring words are not very helpful for classification either,
because they appear in so few documents that there are no
significant accuracy gains from including such terms in a
classifier.

The elimination of words dictated by Zipf’s law is a form
of feature selection. However, frequency information alone
is not, after some point, a good indicator to drive the feature
selection process further. Thus, we use an information the-
oretic feature selection algorithm that eliminates the terms
that have the least impact on the class distribution of docu-
ments [16, 15]. This step eliminates the features that either
do not have enough discriminating power (i.e., words that
are not strongly associated with one specific category) or
features that are redundant given the presence of another
feature. Using this algorithm we decrease the number of
features in a principled way and we can use a much smaller
subset of words to create the classifier, with minimal loss in
accuracy. Additionally, the remaining features are generally
more useful for classification purposes, so rules constructed
from these features will tend to be more meaningful for gen-
eral use.

After selecting the features (i.e., words) that we will use
for building the document classifier, we use RIPPER, a tool
built at AT&T Research Laboratories [4], to actually learn
the classifier rules. Once we have trained a document clas-
sifier, we could use it to classify all the documents in a
database of interest. We could then classify the database
itself according to the number of documents that it contains
in each category, as described in Section 2. Of course, this
requires having access to the whole contents of the database,
which is not a realistic requirement for web databases. We
relax this requirement next.

3.2 Defining Query Probes from a Document
Classifier

In this section we show how we can map the classification
rules of a document classifier into query probes that will help
us estimate the number of documents for each category of
interest in a searchable web database.

To simulate the behavior of a rule-based classifier over all
documents of a database, we map each rule pk → Clk of
the classifier into a boolean query qk that is the conjunction
of all words in pk. Thus, if we send the query probe qk to
the search interface of a database D, the query will match
exactly the f(qk) documents in the database D that would
have been classified by the associated rule into category Clk .
For example, we map the rule IF jordan AND bulls THEN

Sports into the boolean query jordan AND bulls. We ex-
pect this query to retrieve mostly documents in the “Sports”
category. Now, instead of retrieving the documents them-
selves, we just keep the number of matches reported for this
query (it is quite common for a database to start the re-
sults page with a line like “X documents found”), and use
this number as a measure of how many documents in the
database match the condition of this rule.

From the number of matches for each query probe, we
can construct a good approximation of the Coverage and
Specificity vectors for a database (Section 2). We can ap-
proximate the number of documents fj in Cj in D as the
total number of matches gj for the Cj query probes. The
result approximates the distribution of categories of the D
documents. Using this information we can approximate the
Coverage and Specificity vectors as follows:

Definition 5.: Consider a searchable web database D
and a rule-based classifier for a set of categories C. For each
query probe q derived from the classifier, database D returns
the number of matches f(q). Then the estimated coverage
of D for a category Ci ∈ C, ECoverage(D,Ci), is the total
number of matches for the Ci query probes.

ECoverage(D,Ci) =
X

q is a query probe for Ci

f(q)

The estimated specificity of D for Ci, ESpecificity(D,Ci), is

ESpecificity(D,Ci) =
ECoverage(D,Ci)P

q is a query probe for any Cj
f(q)

2

For notational convenience we define:
ECoverage(D) = 〈ECoverage(D, Ci1 ), . . . ,ECoverage(D, Cim )〉
ESpecificity(D) = 〈ESpecificity(D, Ci1 ), . . . ,ESpecificity(D, Cim )〉
when the set of categories {Ci1 , . . . , Cim} is clear from the
context.

Example 3.: Consider a small rule-based document clas-
sifier for categories C1=“Sports,” C2=“Computers,” and
C3=“Health” consisting of the five rules listed in Section 3.1.
Suppose that we want to classify the ACM Digital Library
database. We send the query ibm AND computer, which re-
sults in 6646 matching documents (Figure 2). The other
four queries return the matches described in the figure. Us-
ing these numbers we estimate that the ACM Digital Li-
brary has 0 documents about “Sports,” 6646+2380=9026
documents about “Computers,” and 18+34=52 documents
about “Health”. Thus, its ECoverage(ACM) vector for this
set of categories is (0, 9026, 52) and the ESpecificity(ACM)

vector is
�

0
0+9026+52

, 9026
0+9026+52

, 52
0+9026+52

�
. 2
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ACM
Digital Library34 matches

6646 matches

0 matches

18 matches

2380 matches

diabetes

intel

cancer AND lung

jordan AND bulls

ibm AND computer

Figure 2: Sending probes to the ACM Digital Li-
brary database with queries derived from a docu-
ment classifier.

3.3 Adjusting Probing Results
Our goal is to get the exact number of documents in each

category for a given database. Unfortunately, if we use clas-
sifiers to automate this process, then the final result may
not be perfect. Classifiers can misclassify documents into
incorrect categories, and may not classify some documents
at all if those documents do not match any rules. Thus, we
need to adjust our initial probing results to account for such
potential errors.

It is common practice in the machine learning community
to report the document classification results as a confusion
matrix [21]. We adapt this notion of a confusion matrix to
match our probing scenario:

Definition 6.: The normalized confusion matrix M =
(mij) of a set of query probes for categories C1, . . . , Cn is an
n×n matrix, where mij is the probability of a document in
category Cj being counted as a match by a query probe for
category Ci. Usually,

Pn
i=1 mij 6= 1 because there is a non-

zero probability that a document from Cj will not match
any query probe. 2

The algorithm to create the normalized confusion matrix
M is:

1. Generate the query probes from the classifier rules and
probe a database of unseen, preclassified documents
(i.e., the test set).

2. Create an auxiliary confusion matrix X = (xij) and
set xij equal to the number of documents from Cj

that were retrieved from probes of Ci.

3. Normalize the columns of X by dividing column j with
the number of documents in the test set in category
Cj . The result is the normalized confusion matrix M .

Example 4.: Suppose that we have a document clas-
sifier for categories C1=“Sports,” C2=“Computers,” and
C3=“Health.” Consider 5100 unseen, pre-classified docu-
ments with 1000 documents about “Sports,” 2500 docu-
ments about “Computers,” and 1600 documents about “He-
alth.” After probing this set with the query probes gener-
ated from the classifier, we construct the following confusion
matrix:

M =

0B@ 600
1000

100
2500

200
1600

100
1000

2000
2500

150
1600

50
1000

200
2500

1000
1600

1CA =

0@ 0.60 0.04 0.125
0.10 0.80 0.09375
0.05 0.08 0.625

1A

Element m23 = 150
1600

indicates that 150 C3 documents mis-
takenly matched probes of C2 and that there are a total of
1600 documents in category C3. The diagonal of the matrix
gives the probability that documents that matched query
probes were assigned to the correct category. For example,
m11 = 600

1000
indicates that the probability that a C1 docu-

ment is correctly counted as a match for a query probe for
C1 is 0.6. 2

Interestingly, multiplying the confusion matrix with the
Coverage vector representing the correct number of docu-
ments for each category in the test set yields, by definition,
the ECoverage vector with the number of documents in each
category in the test set as matched by the query probes.

Example 4.: (cont.) The Coverage vector with the ac-
tual number of documents in the test set T for each category
is Coverage(T) = (1000, 2500, 1600). By multiplying M by
this vector we get the distribution of T documents in the
categories as estimated by the query probing results.0@ 0.60 0.04 0.125

0.10 0.80 0.09375
0.05 0.08 0.625

1A| {z }
M

×
0@ 1000

2500
1600

1A| {z }
Coverage(T)

=

0@ 900
2250
1250

1A| {z }
ECoverage(T)

2

Proposition 1.: The normalized confusion matrix M is
invertible when the document classifier used to generate M
classifies each document correctly with probability > 0.5. 2

Proof: From the assumption on the document classifier, it
follows that mii >

Pn
j=0,i6=j mij . Hence, M is a diagonally

dominant matrix with respect to columns. Then the Gersh-
gorin disk theorem [14] indicates that M is invertible. 2

We note that the condition that a classifier have better than
0.5 probability of correctly classifying each document is in
most cases true, but a full discussion of this point is beyond
the scope of this paper.

Proposition 1, together with the observation in Exam-
ple 4, suggests a way to adjust probing results to compen-
sate for classification errors. More specifically, for an unseen
database D that follows the data distribution in our training
collections it follows that:

M × Coverage(D) ∼= ECoverage(D)

Then, multiplying by M−1 we have:

Coverage(D) ∼= M−1 × ECoverage(D)

Hence, during the classification of a database D, we will
multiply M−1 by the probing results summarized in vec-
tor ECoverage(D) to obtain a better approximation of the
actual Coverage(D) vector. We will refer to this adjust-
ment technique as Confusion Matrix Adjustment or CMA
for short.

3.4 Using Probing Results for Classification
So far we have seen how to accurately approximate the

document category distribution in a database. We now de-
scribe a probing strategy to classify a database using these
results.

We classify databases in a top-to-bottom way. Each data-
base is first classified by the root-level classifier and is then
recursively “pushed down” to the lower level classifiers. A
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database D is pushed down to the category Cj when both
ESpecificity(D,Cj) and ECoverage(D,Cj) are no less than
both threshold τes (for specificity) and τec (for coverage),
respectively. These thresholds will typically be equal to the
τs and τc thresholds used for the Ideal classification. The
final set of categories in which we classify D is the approxi-
mate classification of D in C.

Definition 7.: Consider a classification scheme C with
categories C1, . . . , Cn and a searchable web database D. If
ESpecificity(D) and ECoverage(D) are the approximations
of the ideal Specificity(D) and Coverage(D) vectors, respec-
tively, the approximate classification of D in C, Approxi-
mate(D), consists of each category Ci such that:

• ESpecificity(D, Ci) ≥ τes.

• ESpecificity(D, Cj) ≥ τes for all ancestors Cj of Ci.

• ECoverage(D, Ci) ≥ τec.

• ECoverage(D, Cj) ≥ τec for all ancestors Cj of Ci.

• ECoverage(D, Ck) < τec or ESpecificity(D, Ck) < τes

for all children Ck of Ci.

with 0 ≤ τes ≤ 1 and τec ≥ 1 given thresholds. 2

The algorithm that computes this set is in Figure 3. To
classify a database D in a hierarchical classification scheme,
we call Classify(“root”, D).

Classify(Category C, Database D) {
Result = ∅
if (C is a leaf node)

then return C
Probe database D with the query probes derived

from the classifier for the subcategories of C
Calculate ECoverage from the number

of matches for the probes.
ECoverage(D) = M−1×ECoverage(D) // CMA
Calculate the ESpecificity vector for C
for all subcategories Ci of C

if (ESpecificity(D, Ci) ≥ τes AND
ECoverage(D, Ci) ≥ τec)
then Result = Result ∪ Classify(Ci, D)

if (Result == ∅)
then return C // D was not “pushed” down
else return Result

}
Figure 3: Algorithm for classifying a database D into
the category subtree rooted at category C.

Example 5.: Figure 4 shows how we categorized the
ACM Digital Library database. Each node is annotated with
the ECoverage and ESpecificity estimates determined from
query probes. The subset of the hierarchy that we explored
with these probes depends on the τes and τec thresholds of
choice, which for this case were τes = 0.5 and τec = 100.
For example, the subtree rooted at node “Science” was not
explored, because the ESpecificity of this node, 0.042, is less
than τes. Intuitively, although we estimated that around 430
documents in the collection are generally about “Science,”
this was not the focus of the database and hence the low ES-
pecificity value. In contrast, the “Computers” subtree was
further explored because of its high ECoverage (9919) and
ESpecificity (0.95), but not beyond its children, since their
ESpecificity values are less than τes. Hence the database is
classified in Approximate={“Computers”}. 2

C/C++ Java Visual BasicPerl

Arts
(0,0)

Sports
(22, 0.008)

Science
(430, 0.042)

Health
(0,0)

Programming
(1042, 0.18)

Hardware
(2709, 0.465)

Software
(2060, 0.355)

Computers
(9919, 0.95)

Root

Figure 4: Classifying the ACM Digital Library
database.

4. EXPERIMENTAL SETTING
We now describe the data (Section 4.1), techniques we

compare (Section 4.2), and metrics (Section 4.3) of our ex-
perimental evaluation.

4.1 Data Collections
To evaluate our classification techniques, we first define a

comprehensive classification scheme (Section 2.1) and then
build text classifiers using a set of preclassified documents.
We also specify the databases over which we tuned and
tested our probing techniques.

Rather than defining our own classification scheme arbi-
trarily from scratch we instead rely on that of existing di-
rectories. More specifically, for our experiments we picked
the five largest top-level categories from Yahoo!, which were
also present in InvisibleWeb. These categories are “Arts,”
“Computers,” “Health,” “Science,” and “Sports.” We then
expanded these categories up to two more levels by selecting
the four largest Yahoo! subcategories also listed in Invisi-
bleWeb. (InvisibleWeb largely agrees with Yahoo! on the
top-level categories in their classification scheme.) The re-
sulting three-level classification scheme consists of 72 cate-
gories, 54 of which are leaf nodes in the hierarchy. A small
fraction of the classification scheme was shown in Figure 4.

To train a document classifier over our hierarchical clas-
sification scheme we used postings from newsgroups that
we judged relevant to our various leaf-level categories. For
example, the newsgroups comp.lang.c and comp.lang.c++

were considered relevant to category “C/C++.” We col-
lected 500,000 articles from April through May 2000. 54,000
of these articles, 1000 per leaf category, were used to train
RIPPER to produce a rule-based document classifier, and
27,000 articles were set aside as a test collection for the clas-
sifier (500 articles per leaf category). We used the remaining
419,000 articles to build controlled databases as we report
below.

To evaluate database classification strategies we use two
kinds of databases: “Controlled” databases that we assem-
bled locally and that allowed us to perform a variety of so-
phisticated studies, and real “Web” databases:

Controlled Database Set: We assembled 500 databases
using 419,000 newsgroup articles not used in the classifier
training. As before, we assume that each article is labeled
with one category from our classification scheme, accord-
ing to the newsgroup where it originated. Thus, an article
from newsgroups comp.lang.c or comp.lang.c++ will be re-
garded as relevant to category “C/C++,” since these news-
groups were assigned to category “C/C++.” The size of the
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500 Controlled databases that we created ranged from 25 to
25,000 documents. Out of the 500 databases, 350 are “ho-
mogeneous,” with documents from a single category, while
the remaining 150 are “heterogeneous,” with a variety of cat-
egory mixes. We define a database as “homogeneous” when
it has articles from only one node, regardless of whether this
node is a leaf node or not. If it is not a leaf node, then it has
equal number of articles from each leaf node in its subtree.
The “heterogeneous” databases, on the other hand, have
documents from different categories that reside in the same
level in the hierarchy (not necessarily siblings), with differ-
ent mixture percentages. We believe that these databases
model real-world searchable web databases, with a variety
of sizes and foci. These databases were indexed and queried
by a SMART-based program [25] supporting both boolean
and vector-space retrieval models.

Web Database Set: We also evaluate our techniques
on real web-accessible databases over which we do not have
any control. We picked the first five databases listed in
the InvisibleWeb directory under each node in our classi-
fication scheme (recall that our classification scheme is a
portion of InvisibleWeb). This resulted in 130 real web
databases. (Some of the lower level nodes in the classifi-
cation scheme have fewer than five databases assigned to
them.) 12 databases out of the 130 have articles that were
“newsgroup style” discussions similar to the databases in
the Controlled set, while the other 118 databases have arti-
cles of various styles, ranging from research papers to film
reviews. For each database in the Web set, we constructed
a simple wrapper to send a query and get back the num-
ber of matches for each query, which is the only information
that our database classification procedure requires. Table 1
shows a sample of five databases from the Web set.

4.2 Techniques for Comparison
We tested variations of our probing technique, which we

refer to as “Probe and Count,” against two alternative stra-
tegies. The first one is an adaptation of the technique de-
scribed in [2], which we refer to as “Document Sampling.”
The second one is a method described in [29] that was specif-
ically designed for database classification. We will refer to
this method as “Title-based Querying.” The methods are
described in detail below.

Probe and Count (PnC): This is our technique, de-
scribed in Section 3, which uses a document classifier for
each internal node of our hierarchical classification scheme.
Several parameters and options are involved in the training
of the document classifiers. For feature selection, we start
by eliminating from consideration any word in a list of 400
very frequent words (e.g., “a”, “the”) from the SMART [25]
information retrieval system. We then further eliminate all
infrequent words that appeared in fewer than three docu-
ments. We treated the root node of the classification scheme
as a special case, since it covers a much broader spectrum
of documents. For this node, we only eliminated words that
appeared in fewer than five documents. Also, we consid-
ered applying the information theoretic feature selection al-
gorithm from [16, 15]. We studied the performance of our
system without this feature selection step (FS=off ) or with
this step, in which we kept only the top 10% most discrim-
inating words (FS=on). The main parameters that can be
varied in our database classification technique are thresholds
τec (for coverage) and τes (for specificity). Different values
for these thresholds result in different approximations Ap-

proximate(D) of the ideal classification Ideal(D).
Document Sampling (DS): Callan et al. [2] use query

probing to automatically construct a “language model” of a
text database (i.e., to extract the vocabulary and associated
word-frequency statistics). Queries are sent to the database
to retrieve a representative random document sample. The
documents retrieved are analyzed to extract the words that
appear in them. Although this technique was not designed
for database classification, we decided to adapt it to our task
as follows:

1. Pick a random word from a dictionary and send a one-
word query to the database in question.

2. Retrieve the top-N documents returned by the data-
base for the query.

3. Extract the words from each document and update the
list and frequency of the words accordingly.

4. If a termination condition is met, go to Step 5; else go
to Step 1.

5. Use a modification of the algorithm in Figure 3 that
“probes” the sample document collection rather than
the database itself.

For Step 1, we use a random word from the approximately
100,000 words in our newsgroup collection. For Step 2, we
use N = 4, which is the value that Callan et al. recommend
in [2]. Finally, we use the termination condition in Step
4 also as described in [2]: the algorithm terminates when
the vocabulary and frequency statistics associated with the
sample document collection converge to a reasonably stable
state (see [2] for details). At this point, the adapted tech-
nique can proceed almost identically as in Section 3.4 by
probing the locally stored document sample rather than the
original database. A crucial difference between the Docu-
ment Sampling technique and our Probe and Count tech-
nique is that we only use the number of matches reported
by each database, while the Document Sampling technique
requires retrieving and analyzing the actual documents from
the database for the key Step 4 termination condition test.

Title-based Querying (TQ): Wang et al. [29] present
three different techniques for the classification of searchable
web databases. For our experimental evaluation we picked
the method they deemed best. Their technique creates one
long query for each category using the title of the category
itself (e.g., “Baseball”) augmented by the titles of all of its
subcategories. For example, the query for category “Base-
ball” is “baseball mlb teams minor leagues stadiums statis-
tics college university...” The query for each category is
sent to the database in question, the top ranked results are
retrieved, and the average similarity [25] of these documents
and the query defines the similarity of the database with the
category. The database is then classified into the categories
that are most similar with it. The details of the algorithm
are described below.

1. For each category Ci:

(a) Create an associated “concept query,” which is
simply the title of the category augmented with
the titles of its subcategories.

(b) Send the “concept query” to the database in ques-
tion.

(c) Retrieve the top-N documents returned by the
database for this query.

(d) Calculate the similarity of these N documents
with the query. The average similarity will be
the similarity of the database with category Ci.
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URL Brief Description InvisibleWeb Category
http://www.cancerbacup.org.uk/search.shtml CancerBACUP Cancer
http://search.java.sun.com Java@Sun Java
http://hopkins-aids.edu/index search.html John Hopkins AIDS service AIDS
http://www.agiweb.org/htdig/search.html American Geological Inst. Earth Science
http://mathCentral.uregina.ca/QQ/QQsearch.html MathCentral Mathematics

Table 1: Some of the real web databases in the Web set.

2. Rank the categories in order of decreasing similarity
with the database.

3. Assign the database to the top-K categories of the
hierarchy.

To create the concept queries of Step 1, we augmented our
hierarchy with an extra level of “titles,” as described in [29].
For Step 1(c) we used the value N = 10, as recommended
by the authors. We used the cosine similarity function with
tf.idf weighting [24]. Unfortunately, the value of K for Step
3 is left as an open parameter in [29]. We decided to fa-
vor this technique in our experiments by “revealing” to it
the correct number of categories into which each database
should be classified. Of course this information would not
be available in a real setting, and was not provided to our
Probe and Count or the Document Sampling techniques.

4.3 Evaluation Metrics
To quantify the accuracy of category frequency estimates

for database D we measure the absolute error (i.e., Manhat-
tan distance) between the approximation vectors ECover-
age(D) and ESpecificity(D), and the correct vectors Cover-
age(D) and Specificity(D). These metrics are especially re-
vealing during tuning (Section 5.1). The error metric alone,
however, cannot give an accurate picture of the system’s
performance, since the main objective of our system is to
classify databases correctly and not to estimate the Speci-
ficity and Coverage vectors, which are only auxiliary for this
task.

We evaluate classification algorithms by comparing the
approximate classification Approximate(D) that they pro-
duce against the ideal classification Ideal(D). We could just
report the fraction of the categories in Approximate(D) that
are correct (i.e., that also appear in Ideal(D)). However, this
would not capture the nuances of hierarchical classification.
For example, we may have classified a database in category
“Sports,” while it is a database about “Basketball.” The
metric above would consider this classification as absolutely
wrong, which is not appropriate since, after all, “Basket-
ball” is a subcategory of “Sports.” With this in mind, we
adapt the precision and recall metrics from information re-
trieval [3]. We first introduce an auxiliary definition. Given
a set of categories N , we “expand” it by including all the
subcategories of the categories in N . Thus Expanded(N) =
{c ∈ C|c ∈ N or c is in a subtree of some n ∈ N}. Now,
we can define precision and recall as follows.

Definition 8.: Consider a database D classified into the
set of categories Ideal(D), and an approximation of Ideal(D)
given in Approximate(D). Let Correct = Expanded(Ideal(D))
and Classified = Expanded(Approximate(D)). Then the pre-
cision and recall of the approximate classification of D are:

precision =
|Correct ∩ Classified|

|Classified|
recall =

|Correct ∩ Classified|
|Correct|

2

To condense precision and recall into one number, we use
the F1-measure metric [28],

F1 =
2× precision× recall

precision + recall

which is only high when both precision and recall are high,
and is low for design options that trivially obtain high pre-
cision by sacrificing recall or vice versa.

Example 6.: Consider the classification scheme in Fig-
ure 4. Suppose that the ideal classification for a database
D is Ideal(D)={“Programming”}. Then, the Correct set of
categories include “Programming” and all its subcategories,
namely “C/C++,” “Perl,” “Java,” and “Visual Basic.” If
we approximate Ideal(D) as Approximate(D)={“Java”} us-
ing the algorithm in Figure 3, then we do not manage to cap-
ture all categories in Correct. In fact we miss four out of five
such categories and hence recall=0.2 for this database and
approximation. However, the only category in our approx-
imation, “Java,” is a correct one, and hence precision=1.
The F1-measure summarizes recall and precision in one num-
ber, F1 = 2×1×0.2

1+0.2
= 0.33. 2

An important property of classification strategies over the
web is scalability. We measure the efficiency of the var-
ious techniques that we compare by modelling their cost.
More specifically, the main cost we quantify is the number
of “interactions” required with the database to be classified,
where each interaction is either a query submission (needed
for all three techniques) or the retrieval of a database docu-
ment (needed only for Document Sampling and Title-based
Querying). Of course, we could include other costs in the
comparison (namely, the cost of parsing the results and pro-
cessing them), but we believe that they would not affect
our conclusions, since these costs are CPU-based and small
compared to the cost of interacting with the databases over
the Internet.

5. EXPERIMENTAL RESULTS
We now report experimental results that we used to tune

our system (Section 5.1) and to compare the different clas-
sification alternatives both for the Controlled database set
(Section 5.2) and for the Web database set (Section 5.3).

5.1 Tuning the Probe and Count Technique
Our Probe and Count technique has some open param-

eters that we tuned experimentally by using a set of 100
Controlled databases (Section 4.1). These databases will
not participate in any of the subsequent experiments.

Effect of Confusion Matrix Adjustment (CMA):
The first parameter we examined was whether the confu-
sion matrix adjustment of the probing results was helpful or
not. The absolute error associated with the ECoverage and
ESpecificity approximations was consistently smaller when
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Figure 5: The average F1-measure of the three
techniques (a) for varying specificity threshold τs

(τc = 8), and (b) for varying coverage threshold τc

(τs = 0.3).

we used CMA, confirming our motivation behind the intro-
duction of CMA. (Due to lack of space we do not report this
plot.) Consequently, we fix this parameter and use confusion
matrix adjustment for all the remaining experiments.

Effect of Feature Selection: As we described in Sec-
tion 4.2, we can apply an information theoretic feature se-
lection step before training a document classifier. We ran
our Probe and Count techniques with (FS=on) and with-
out (FS=off ) this feature selection step. The estimates of
both the Coverage and Specificity vectors that we computed
with FS=on were consistently more accurate than those for
FS=off. More specifically, the ECoverage estimates with
FS=on were between 15% and 20% better, while the ES-
pecificity estimates with FS=on were around 10% better.
(Again, due to space restrictions we do not include more
detailed results.) Intuitively, our information theoretic fea-
ture selection step results in robust classifiers that use fewer
“noisy” terms for classification. Consequently, we fix this
parameter and use FS=on for all the remaining experiments.

We now turn to reporting the results of the experimental
comparison of Probe and Count, Document Sampling, and
Title-based Querying over the 400 unseen databases in the
Controlled set and the 130 databases in the Web set.

5.2 Results over the Controlled Databases
Accuracy for Different τs and τc Thresholds: As ex-

plained in Section 2.2, Definition 3, the ideal classification of
a database depends on two parameters: τs (for specificity)
and τc (for coverage). The values of these parameters are an
“editorial decision” and depend on whether we decide that
our classification scheme is specificity- or coverage-oriented,
as discussed previously. To classify a database, both the
Probe and Count and Document Sampling techniques need
analogous thresholds τes and τec. We ran experiments over
the Controlled databases for different combinations of the
τs and τc thresholds, which result in different ideal classi-
fications for the databases. Intuitively, for low specificity
threshold τs the Ideal classification will have the databases
assigned mostly to leaf nodes, while a high specificity thresh-
old might lead to databases being classified at more general
nodes. Similarly, low coverage thresholds τc produce Ideal
classifications where the databases are mostly assigned to
the leaves, while higher values of τc tend to produce classi-
fications with the databases assigned to higher level nodes.

For Probe and Count and Document Sampling we set

τes = τs and τec = τc. Title-based Querying does not use any
such threshold, but instead needs to decide how many cate-
gories K to assign a given database (Section 4.2). Although
of course the value of K would be unknown to a classifica-
tion technique (unlike the values for thresholds τs and τc),
we reveal K to this technique, as discussed in Section 4.2.

Figure 5(a) shows the average value of the F1-measure for
varying τs and for τc = 8, over the 400 unseen databases in
the Controlled set. The results were similar for other values
of τc as well. Probe and Count performs the best for a wide
range of τs values. The only case in which it is outperformed
by Title-based Querying is when τs = 1. For this setting even
very small estimation errors for Probe and Count and Docu-
ment Sampling result in errors in the database classification
(e.g., even if Probe and Count estimates 0.9997 specificity
for one category it will not classify the database into that
category, due to its “low specificity”). Unlike Document
Sampling, Probe and Count (except for τs = 1 and τs = 0)
and Title-based Querying have almost constant performance
for different values of τs. Document Sampling is consistently
worse than Probe and Count, showing that sampling using
random queries is inferior than using a focused, carefully
chosen set of queries learned from training examples.

Figure 5(b) shows the average value of the F1-measure
for varying τc and for τs = 0.3. The results were similar
for other values of τs as well. Again, Probe and Count out-
performs the other alternatives and, except for low cover-
age thresholds (τc ≤ 16), Title-based Querying outperforms
Document Sampling. It is interesting to see that the per-
formance of Title-based Querying improves as the coverage
threshold τc increases, which might indicate that this scheme
is better suited for coverage-based classification schemes.

Effect of Depth of Hierarchy in Accuracy: An inter-
esting question is whether classification performance is af-
fected by the depth of the classification hierarchy. We tested
the different methods against “adjusted” versions of our hi-
erarchy of Section 4.1. Specifically, we first used our original
classification scheme with three levels (level=3 ). Then we
eliminated all the categories of the third level to create a
shallower classification scheme (level=2 ). We repeated this
process again, until our classification schemes consisted of
one single node (level=0 ). Of course, the performance of all
the methods at this point was perfect. In Figure 6 we com-
pare the performance of the three methods for τs = 0.3 and
τc = 8 (the trends were the same for other threshold com-
binations as well). Probe and Count performs better than
the other techniques for different depths, with only a smooth
degradation in performance for increasing depth, which sug-
gests that our approach can scale to a large number of cate-
gories. On the other hand, Document Sampling outperforms
Title-based Querying but for both techniques the difference
in performance with Probe and Count increases for hierar-
chies of larger depth.

Efficiency of the Classification Methods: As we dis-
cussed in Section 4.3, we compare the number of queries
sent to a database during classification and the number of
documents retrieved, since the other costs involved are com-
parable for the three methods. The Title-based Querying
technique has a constant cost for each classification: it sends
one query for each category in the classification scheme and
retrieves 10 documents from the database. Thus, this tech-
nique sends 72 queries and retrieves 720 documents for our
72-node classification scheme. Our Probe and Count tech-
nique sends a variable number of queries to the database
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Figure 6: The average F1-measure for hierarchies of
different depths (τs = 0.3, τc = 8).
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Figure 7: The average number of “interactions”
with the databases (a) as a function of threshold
τes (τec = 8), and (b) as a function of threshold τec

(τes = 0.3).

being classified. The exact number depends on how many
times the database will be “pushed” down a subcategory
(Figure 3). Our technique does not retrieve any documents
from the database. Finally, the Document Sampling method
sends queries to the database and retrieves four documents
for each query until the termination condition is met. We
list in Figure 7(a) the average number of “interactions”
for varying values of specificity threshold τes and τec =
8. Figure 7(b) shows the average number of “interactions”
for varying coverage threshold τec and τes = 0.3. Docu-
ment Sampling is consistently the most expensive method,
while Title-based Querying performs fewer “interactions”
than Probe and Count for low values for specificity thresh-
old τes and τec, when Probe and Count tends to push down
databases more easily, which in turn translates into more
query probes.

In summary, Probe and Count is by far the most accurate
method. Furthermore, its cost is lowest for most combina-
tions of the τes and τec thresholds and only slightly higher
than the cost of Title-based Querying, a significantly less ac-
curate technique, for the remaining combinations. Finally,
the Probe and Count query probes are short, consisting on
average of only 1.5 words, with a maximum of four words.
In contrast, the average Title-based Querying query probe
consisted of 18 words, with a maximum of 348 words.

5.3 Results over the Web Databases
The experiments over the Web databases involved only
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Figure 8: Average F1-measure values for different
combinations of τes and τec.

the Probe and Count technique. The main reason for this
was the prohibitive cost of running such experiments for
the Document Sampling and the Title-based Querying tech-
niques, which would have required constructing “wrappers”
for each of the 130 databases in the Web set. Such wrap-
pers would have to extract all necessary document pointers
from result pages from each query probe returned by the
database, so defining them involves non-trivial human effort.
In contrast, the “wrappers” needed by the Probe and Count
technique are significantly simpler, which is a major advan-
tage of our approach. As we will discuss in Section 7, the
Probe and Count wrappers only need to extract the number
of matches from each results page, a task that could be au-
tomated since the patterns used by search engines to report
the number of matches for queries are quite uniform.

For the experiments over the Controlled set, the classifi-
cation thresholds τs and τc of choice were known. In con-
trast, for the databases in the Web set we are assuming that
their Ideal classification is whatever categories were chosen
(manually) by the InvisibleWeb directory (Section 4.1). This
classification of course does not use the τs and τc thresholds
in Definition 3, so we cannot use these parameters as in
the Controlled case. However, we assume that InvisibleWeb
(and any consistent categorization effort) implicitly uses the
notion of specificity and coverage thresholds for their clas-
sification decisions. Hence we try and learn such thresholds
from a fraction of the databases in the Web set, use these
values as the τes and τec thresholds for Probe and Count,
and validate the performance of our technique over the re-
maining databases in the Web set.

Accuracy for Different τs and τc Thresholds: For the
Web set, the Ideal classification for each database is taken
from InvisibleWeb. To find the τs and τc that are “implic-
itly used” by human experts at InvisibleWeb we have split
the Web set in three disjoint sets W1, W2, and W3. We
first use the union of W1 and W2 to learn these values of
τs and τc by exhaustively exploring a number of combina-
tions and picking the τes and τec value pair that yielded the
best F1-measure (Figure 8). As we can see, the best values
corresponded to τes = 0.3 and τec = 16, with F1 = 0.77.
To validate the robustness of the conclusion, we tested the
performance of Probe and Count over the third subset of the
Web set, W3: for these values of τes and τec the F1-measure
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Training
Subset

Learned
τs,τc

F1-measure
over Train-
ing Subset

Test
Subset

F1-measure
over Test
Subset

W1 ∪W2 0.3, 16 0.77 W3 0.79
W1 ∪W3 0.3, 8 0.78 W2 0.75
W2 ∪W3 0.3, 8 0.77 W1 0.77

Table 2: Results of three-fold cross-validation over
the Web databases.
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Figure 9: Average number of query probes for the
Web databases as a function of τes and τec.

over the unseen W3 set was 0.79, very close to the one over
training sets W1, W2. Hence, the training to find the τs and
τc values was successful, since the pair of thresholds that
we found performs equally well for the InvisibleWeb catego-
rization of unseen web databases. We performed three-fold
cross-validation [21] for this threshold learning by training
on W2 and W3 and testing on W1, and finally learning on
W1 and W3 and testing on W2. Table 2 summarizes the re-
sults. The results were consistent, confirming the fact that
the values of τes = 0.3 and τec ≈ 8 are not overfitting the
databases in our Web set.

Effect of Depth of Hierarchy in Accuracy: We also
tested our method for hierarchical classification schemes of
various depths using τes = 0.3 and τec = 8. The F1-measure
was 1, 0.89, 0.8, and 0.75 for hierarchies of depth zero, one,
two, and three respectively. We can see that F1-measure
drops smoothly as the hierarchy depth increases, which leads
us to believe that our method can scale to even larger clas-
sification schemes without significant penalties in accuracy.

Efficiency of the Classification Method: The cost of
the classification for the different combinations of the thresh-
olds is depicted in Figure 9. As the thresholds increase, the
number of queries sent decreases, as expected, since it is
more difficult to “push” a database down a subcategory and
trigger another probing phase. The cost is generally low:
only a few hundred queries suffice on average to classify a
database with high accuracy. Specifically, for the best set-
ting of thresholds (τs = 0.3 and τc = 8), the Probe and
Count method sends on average only 185 query probes to
each database in the Web set. As we mentioned, the average
query probe consists of only 1.5 words.

6. RELATED WORK
While work in text database classification is relatively

new, there has been substantial on-going research in text
document classification. Such research includes the applica-
tion of a number of learning algorithms to categorizing text
documents. In addition to the rule-based classifiers based

on RIPPER used in our work, other methods for learning
classification rules based on text documents have been ex-
plored [1]. Furthermore, many other formalisms for doc-
ument classifiers have been the subject of previous work,
including the Rocchio algorithm based on the vector space
model for document retrieval [23], linear classification al-
gorithms [17], Bayesian networks [18], and, most recently,
support vector machines [13], to name just a few. More-
over, extensive comparative studies among text classifiers
have also been performed [26, 7, 31], reflecting the relative
strengths and weaknesses of these various methods.

Orthogonally, a large body of work has been devoted to
the interaction with searchable databases, mainly in the
form of metasearchers [9, 19, 30]. A metasearcher receives
a query from a user, selects the best databases to which to
send the query, translates the query in a proper form for each
search interface, and merges the results from the different
sources.

Query probing has been used in this context mainly for
the problem of database selection. Specifically, Callan et
al. [2] probe text databases with random queries to deter-
mine an approximation of their vocabulary and associated
statistics (“language model”). (We adapted this technique
for the task of database classification to define the Docu-
ment Sampling technique of Section 4.2.) Craswell et al.
[5] compared the performance of different database selec-
tion algorithms in the presence of such “language models.”
Hawking and Thistlewaite [11] used query probing to per-
form database selection by ranking databases by similarity
to a given query. Their algorithm assumed that the query
interface can handle normal queries and query probes dif-
ferently and that the cost to handle query probes is smaller
than that for normal queries. Recently, Etzioni and Sug-
iura [27] used query probing for query expansion to route
web queries to the appropriate search engines.

Query probing has also been used for other tasks. Meng
et al. [20] used guided query probing to determine sources
of heterogeneity in the algorithms used to index and search
locally at each text database. Query probing has been used
by Etzioni et al. [22] to automatically understand query
forms and extract information from web databases to build
a comparative shopping agent. In [10] query probing was
employed to determine the use of different languages on the
web.

For the task of database classification, Gauch et al. [8]
manually construct query probes to facilitate the classifica-
tion of text databases. In [12] we presented preliminary work
on database classification through query probes, on which
this paper builds. Weng et al. [29] presented the Title-based
Querying technique that we described in Section 4.2. Our
experimental evaluation showed that our technique signif-
icantly outperforms theirs, both in terms of efficiency and
effectiveness. Our technique also outperforms our adapta-
tion of the random document sampling technique in [2].

7. CONCLUSIONS AND FUTURE WORK
We have presented a novel and efficient method for the hi-

erarchical classification of text databases on the web. After
providing a more formal description of this task, we pre-
sented a scalable algorithm for the automatic classification
of such databases into a topic hierarchy. This algorithm
employs a number of steps, including the learning of a rule-
based classifier that is used as the foundation for generat-
ing query probes, a method for adjusting the result counts
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returned by the queried database, and finally a decision cri-
terion for making classification assignments based on this
adjusted count information. Our technique does not require
retrieving any documents from the database. Experimental
results show that the method proposed here is both more
accurate and efficient than existing methods for database
classification.

While in our work we focus on rule-based approaches, we
note that other learning algorithms are directly applicable
in our approach. A full discussion of such transformations
is beyond the scope of this paper. We simply point out that
the database classification scheme we present is not bound
to a single learning method, and may be improved by simul-
taneous advances from the realm of document classification.

A further step that would completely automate the classi-
fication process is to eliminate the need for a human to con-
struct the simple wrapper for each database to classify. This
step can be eliminated by automatically learning how to
parse the pages with query results. Perkowitz et al. [22] have
studied how to automatically characterize and understand
web forms, and we plan to apply some of these results to
automate the interaction with search interfaces. Our tech-
nique is particularly well suited for this automation, since it
needs only very simple information from result pages (i.e.,
the number of matches for a query). Furthermore, the pat-
terns used to report the number of matches for queries by
the search engines and tools that are popular on the web
are quite similar. For example, one representative pattern is
the appearance of the word “of” before reporting the actual
number of matches for a query (e.g., “30 out of 1024 matches
displayed”). 76 out of the 130 web databases in the Web set
use this pattern to report the number of matches, and of
course there are other common patterns as well. Based on
this anecdotal information, it seems realistic to envision a
completely automatic classification system.
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