
Hierarchical Classification of Web Content

Susan Dumais
Microsoft Research
One Microsoft Way

Redmond, WA 99802 USA
sdumais @ microsoft.com

ABSTRACT
This paper explores the use of hierarchical structure for
classifying a large, heterogeneous collection of web
content. The hierarchical structure is initially used to train
different second-level classifiers. In the hierarchical case, a
model is learned to distinguish a second-level category
from other categories within the same top level. In the flat
non-hierarchical case, a model distinguishes a second-level
category from all other second-level categories. Scoring
rules can further take advantage of the hierarchy by
considering only second-level categories that exceed a
threshold at the top level.

We use support vector machine (SVM) classifiers, which
have been shown to be efficient and effective for
classification, but not previously explored in the context of
hierarchical classification. We found small advantages in
accuracy for hierarchical models over flat models. For the
hierarchical approach, we found the same accuracy using a
sequential Boolean decision rule and a multiplicative
decision rule. Since the sequential approach is much more
efficient, requiring only 14%-16% of the comparisons used
in the other approaches, we find it to be a good choice for
classifying text into large hierarchical structures.

KEYWORDS
Text classification, text categorization, classification,
support vector machines, machine learning, hierarchical
models, web hierarchies

INTRODUCTION
With the exponential growth of information on the internet
and intranets, it is becoming increasingly difficult to find
and organize relevant materials. More and more, simple text
retrieval systems are being supplemented with structured
organizations. Since the 19 th century, librarians have used
classification systems like Dewey and Library of Congress
subject headings to organize vast amounts of information.
More recently, web directories such as Yahoo! and
LookSmart have been used to classify web pages.
Structured directories support browsing and search, but the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copras are not made or distributed for profit or commercial advan-
tage and that copies bear thin notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistnbute to hsts, requires pnor specific permission and/or a fee.
SIGIR 2000 7/00 Athens, Greece
© 2000 ACM %58113-226-3/0010007. . .$5,00

l-lao Chert
Computer Science Division

University of California at Berkeley
Berkeley, CA 94720-1776 USA

hchen @ cs.berkeley.edu

manual nature of the directory compiling process makes it
difficult to keep pace with the ever increasing amount of
information. Our work looks at the use of automatic
classification methods to supplement human effort in
creating structured knowledge hierarchies.

A wide range of statistical and machine learning techniques
have been applied to text categorization, including
multivariate regression models [8,22], nearest neighbor
classifiers [26], probabilistic Bayesian models [13, 16],
decision trees [16], neural networks [22, 25], symbolic rule
learning [1, 4], and support vector machines [7,12]. These
approaches all depend on having some initial labeled
training data from which category models are learned.
Once category models are trained, new items can be added
with little or no additional human effort.

Although many real world classification systems have
complex hierarchical structure (e.g., MESH, U.S. Patents,
Yahoo!, LookSmart), few learning methods capitalize on
this structure. Most of the approaches mentioned above
ignore hierarchical structure and treat each category or class
separately, thus in effect "flattening" the class structure. A
separate binary classifier is learned to distinguish each class
from all other classes. The binary classifiers can be
considered independently, so an item may fall into none,
one, or more than one category. Or they can be considered
as an m-ary problem, where the best matching category is
chosen. Such simple approaches work rather well on small
problems, but they are likely to be difficult to train when
there are a large number of classes and a very large number
of features. By utilizing known hierarchical structure, the
classification problem can be decomposed into a set of
smaller problems corresponding to hierarchical splits in the
tree. Roughly speaking, one first learns to distinguish
among classes at the top level, then lower level distinctions
are learned only within the appropriate top level of the tree.
Each of these sub-problems can be solved much more
efficiently, and hopefully more accurately as well.

The use of a hierarchical decomposition of a classification
problem allows for efficiencies in both learning and
representation. Each sub-problem is smaller than the
original problem, and it is sometimes possible to use a
much smaller set of features for each [13]. The hierarchical
structure can also be used to set the negative set for
discriminative training and at classification time to combine
information from different levels. In addition, there is some

256

evidence that decomposing the problem can lead to more
accurate specialized classifiers. Intuitively, many
potentially good features are not useful discriminators in
non-hierarchical representations. Imagine a hierarchy with
two top-level categories ("Computers" and "Sports"), and
three subcategories within each ("Computers/Hardware",
"Computers/Software", "Computers/Chat", "Sports/Chat",
"Sports/Soccer", Sports/Football"). In a non-hierarchical
model, a word like "computer" is not very discriminating
since it is associated with items in "Computers/Software",
"Computers/Hardware", and "Computers/Chat". In a
hierarchical model, the word "computer" would be very
discriminating at the first level. At the second level more
specialized words could be used as features within the top-
level "Computer" category. And, the same features could
be used at the second level for two different top-level
classed (e.g., "chat" might be a useful feature for both the
category "Sports/Chat", and "Computers/Chat"). Informal
failure analyses of classification errors for non-hierarchical
models support this intuition. Many of the classification
errors are for related categories (e.g., a page about
"Sports/Soccer" might be confused with "Sports/Football",
thus category specific features should improve accuracy).

Recently several researchers have investigated the use of
hierarchies for text classification, with promising results.
Our work differs from earlier work in a couple of important
respects. First, we test the approach on a large collection of
very heterogeneous web content, which we believe is
increasingly characteristic of information organization
problems. Second, we use a learning model, support vector
machine (SVM), that has not previously been explored in
the context of hierarchical classification. SVMs have been
found to be more accurate for text classification than
popular approaches like naive Bayes, neural nets, and
Rocchio [7, 12, 27]. We use a reduced-dimension binary-
feature version of the SVM model that is very efficient for
both initial learning and real-time classification, thus
making it applicable to large dynamic collections. We will
briefly review the earlier work and contrast it with ours.

RELATED WORK
Reuters
Much of the previous work on hierarchical methods for text
classification uses the Reuters-22173 or Reuters-21578
articles. This is a rather small and tidy collection, and this
alone is problematic for understanding how the approaches
generalize to larger more complex internet applications. In
addition, the Reuters articles are organized into 135 topical
categories with no hierarchical structure. To study
hierarchical models, researchers have added one level of
hierarchical structure manually. Kohler and Sahami [13]
generated a small hierarchical subset of Reuters-22173 by
identifying labels that tended to subsume other labels (e.g.,
corn and wheat are subsumed by grain). The largest of their
hierarchies consisted of 939 documents organized into 3
top-level and 6 second-level categories. They compared

naive Bayes, and two limited dependency Bayes net
classifiers on flat and hierarchical models. Test documents
were classified into the hierarchy by first filtering them
through the single best matching first level class and then
sending them to the appropriate second level. Note that
errors made at the first level are not recoverable, so the
system has to make k correct classification for a k-level
hierarchy. They found advantages for the hierarchical
models when a very small number of features (10) were
used per class. For larger numbers of features (which will
be required in many complex domains) no advantages for
the hierarchical models were found.

Weigend et al. [25] also used the Reuters-22173 collection.
An exploratory cluster analysis was first used to suggest an
implicit hierarchical structure, and this was then verified by
human assignments. They created 4 top-level categories
(agriculture, energy, foreign exchange, and metals) and a 5 th
miscellaneous category that was not used for evaluation.
The final evaluations were on 37 categories with at least 16
positive training examples. They used a probabilistic
approach that frames the learning problem as one of
function approximation for the posterior probability of the
topic vector given the input vector. They used a neural net
architecture and explored several input representations.
Information from each level of the hierarchy is combined in
a multiplicative fashion, so no hard decisions have to be
made except at the leaf nodes. They found a 5% advantage
in average precision for the hierarchical representation
when using words, but not when using latent semantic
indexing (LSI) features.

D'Alessio et al. [6] used the Reuters-21578 articles. The
hierarchy they use comes from Hayes and Weinstein's
original Reuters experiments [9]. It consists of 5 meta-
category codes (economic indicator, currency, corporate,
commodity, energy) that include all but three of the original
categories. For their experiments they only considered
articles that had a single category tag, and the 37 categories
with more than 20 positive training examples. Their model
requires hard assignment at each branch of the tree. The
hierarchical model showed 2-4% improvements in precision
and recall over the flat model, and modifications to the
hierarchy led to advantages of 2-9%.

Ng et al. [19] also used a hierarchical version of Reuters
that consisted of countries at the top level and two topical
levels below that, but they did not compare their
hierarchical model against a flat model. While all of this
work is encouraging, the Reuters collection is small and
very well organized compared with many realistic
applications.

MESH, U.S. patents
Some researchers have investigated text classification in
domains that have rich hierarchical taxonomies (e.g.,
MESH, IDC codes of diseases, U.S. patent codes). The size
and complexity of the medical and patent hierarchies are
like those used for web content. These hierarchies were

257

designed for controlled vocabulary tagging and they have
been extensively refined over the years. Ruiz and
Srinivasan [21] used a hierarchical mixture of experts to
classify abstracts within the MeSH sub-category Heart.
They learned classifiers at different levels of granularity,
with the top-level distinctions serving as "gates" to the
lower level "experts". They found small advantages for the
hierarchical approach compared with a flat approach.
Larkey [15] compared hierarchical and flat approaches for
classifying patents in the Speech Signal Processing sub-
category. She found no multilevel algorithms that
performed significantly better than a flat one which chooses
among all the speech classes.

Web
McCallum, et al. [17] describe some interesting
experiments on three hierarchical collections -- Usenet
news, the Science sub-category of Yahoo!, and company
web pages. The Yahoo! sub-collection is most closely
related to our experiments, although it is less diverse since
all items come from the same top-level category. They
used a probabilistic Bayesian framework (naYve Bayes), and
a technique called "shrinkage" to improve parameter
estimates for the probability of words given classes. The
idea is to smooth the parameter estimate of a node by
interpolation with all its parent nodes (given by the
hierarchical organization of classes). This is especially
useful for classes with small numbers of training examples.
For the Usenet collection, the best performance and largest
advantages of the hierarchical model over the flat model are
observed for large numbers of features (10,000). For the
Yahoo! sub-collection, accuracy is low and there is a much
smaller difference between two approaches

Mladenic and Grobelnik [18] examined issues of feature
selection for hierarchical classification of web content, but
they did not compare hierarchical models with flat non-
hierarchical models. Chakrabarti et al. [2] also
experimented with web content as well as patent and
Reuters data. They use hierarchical structure both to select
features and to combine class information from multiple
levels of the hierarchy. For the non-hierarchical case, they
use a simple vector method with term weighting and no
feature selection. They find no advantages for the
hierarchical approach in Reuters, a small advantage in the
patents collection, and did not test the difference for the
Yahoo! sub-collection. But, because they used different
representations, it is difficult to know whether differences
are due to the number of features, feature selection, or the
hierarchical classification algorithm.

Our work explores the use of hierarchies for classifying
very heterogeneous web content. We use SVMs, which
have been found to be efficient and effective for text
classification, but not previously explored in the context of
hierarchical classification. The efficiency of SVMs for
both initial learning and real-time classification make them
applicable to large dynamic collections like web content.

We use the hierarchical structure for two purposes. First,
we train second-level category models using different
contrast sets (either within the same top-level category in
the hierarchical case, or across all categories in the flat non-
hierarchical case). Second, we combine scores from the
top- and second-level models using different combination
rules, some requiring a threshold to be exceeded at the top
level before second level comparisons are made. The
sequential approach is especially efficient for large
problems, but how it compares in accuracy is not known.
All of our models allow for each test item to be assigned to
multiple categories.

WEB DATA SET AND APPLICATION
Application - Classifying web search results
We are interested in moving beyond today's ranked lists of
results by organizing web search results into hierarchical
categories. HCI researchers have shown usability
advantages of structuring content hierarchically [3, 10, 14].
For information as varied and voluminous as the web it is
necessary to create these structures automatically. Several
groups have explored methods for clustering search results.
Zamir and Etzioni [29] grouped web search results using
suffix tree clustering, and Hearst and Pedersen [11] used
Scatter/Gather to organize and browse search results.
While these methods show some promise, the
computational complexity of clustering algorithms limits
the number of documents that can be processed, and
generating names for the resulting categories is a challenge.

The basic idea behind our work is to use classification
techniques to automatically organize search results into
existing hierarchical structures. Classification models are
learned offline using a training set of human-labeled
documents and web categories. Classification offers two
advantages compared to clustering - run time classification
is very efficient, and manually generated category names
are easily understood. To support our goal of automatically
classifying web search results two constraints are important
in understanding the classification problems we studied.
First, we used just the short summaries returned from web
search engines since it takes too long to retrieve the full text
of pages in a networked environment. These automatically
generated summaries are much shorter than the texts used in
most classification experiments, and they are much noisier
than other document surrogates like abstracts that some
have worked with. Second, we focused on the top levels of
the hierarchy since we believe that many search results can
be usefully disambiguated at this level. We also developed
an interface that tightly couples search results and category
structure, and found large preference and performance
advantages for automatically classified search results (see
Chen and Dumais [3] for details). For the experiments
reported in this paper, we focused on the top two levels of
the hierarchy, and used short automatically generated
summaries of web pages.

258

LookSmart Web Directory
For our experiments, we used a large heterogeneous
collection of pages from LookSmart's web directory [30].
At the time we conducted our experiments in May 1999, the
collection consisted of 370597 unique pages that had been
manually classified into a hierarchy of categories by trained
professional web editors. There were a total of 17173
categories organized into a 7-level hierarchy. We focused
on the 13 top-level and 150 second-level categories.

Training/Test Selection
We selected a random 16% sample of the pages for our
experiments. We picked this sampling proportion to ensure
that even the smallest second-level categories would have
some examples in our training set. We used 50078 pages
for training, and 10024 for testing. Table 1 shows the
number of pages in each top level category. Top level
categories had between 578 and 11163 training examples,
and second-level categories had between 3 and 3141
training examples. The wide range in number of pages in
each category reflects the distribution in the LookSmart
directory. Pages could be classified into more than one
category. On average, pages were classified into 1.20
second-level categories and 1.07 first-level categories.

Automotive 4 9 8 2 ~
Business & Finance 31599[35081 703
Computers & Internet 46000[5718[1126
Entertainment&Media 88697[11163[2159
Health & Fitness 253801 3500[722
Hobbies & Interests 22959] 32271 682
Home&Family 114841 1373[2813
People & Chat 35157[3309[682
Reference & Education 580021 55741 1175
Shoppinl~ & Services 19667[21221 423
Society & Politics 38968[48551 946
Sports & Recreation 235591 3081 [6413
Travel & Vacations 436851 5409[1091

Total Unique 370597 50078 10024

Table 1- Training and Test Samples by Category

Pre-processing
A pre-processing module extracted plain text from each
web page. In addition, the rifle, description and keywords
fields from the META tag, and the ALT field from the IMG
tag were also extracted if they existed because they provide
useful descriptions of the web page. If a web page
contained frames, text from each frame was extracted.

Since we were interested in classifying web search results,
we needed to work with just short summary descriptions of
web pages. We automatically generated summaries of each
page and used this for evaluating our classification
algorithms. Our summaries consisted of the rifle, the
keywords, and either the description tag if it existed or the
first 40 words of the body otherwise.

We did minimal additional processing on the text. We
translated upper to lower case, used white space and
punctuation to separate words, and used a small stop list to
omit the most common words. No morphological or
syntactic analyses were used.

After preprocessing, a binary vector was created for each
page indicating whether each term appeared in the page
summary or not. For each category 1000 terms were
selected based on the mutual information between the term
and category (details below). Unlike many text retrieval
applications, term frequency and document length are not
taken into account in this representation, because earlier
experiments showed good performance with the binary
representation for SVMs [7], and this representation
improves efficiency.

TEXT CLASSIFICATION USING SVMs
Text classification involves a training phase and a testing
phase. During the training phase, a large set of web pages
with known category labels are used to train a classifier.
An initial model is built using a subset of the labeled data,
and a holdout set is used to identify optimal model
parameters. During the testing or operational phase, the
learned classifier is used to classify new web pages.

A support vector machine (SVM) algorithm was used as the
classifier, because it has been shown in previous work to be
both very fast and effective for text classification problems
[7, 12, 27]. Vapnik introduced SVMs in his work on
structural risk minimization [23, 24], and there has been a
recent surge of interest in SVM classifiers in the learning
community. In its simplest form, a linear SVM is a
hyperplane that separates a set of positive examples from a
set of negative examples with maximum margin. The
margin is the distance from the hyperplane to the nearest of
the positive and negative examples.

Figure 1 shows an example of a simple two-dimensional
problem that is linearly separable.

'k

• • • Positive
" ~ f l • Examples

• " ~ Maximize distances
• • ~ n e a r e s t points

Negative Examples

Space of possible inputs

Figure 1 - Graphical Representation of a Linear SVM

In the linearly separable case maximizing the margin can be
expressed as an optimization problem:

minimize 111~112 subject to y, (~ . ~, - b) >_ 1, Vi
2 " "

259

where xi is the ith training example and Yi is the correct
output of the SVM for the ith training example.

In cases where points are not linearly separable, slack
variables are introduced that permit, but penalize, points
that fall on the wrong side of the decision boundary. For
problems that are not linearly separable, kernel methods can
be used to transform the input space so that some non-linear
problems can be learned. We used the simplest linear form
of the SVM because it provided good classification
accuracy, and is fast to learn and apply.

Platt [20] developed a very efficient method for learning the
SVM weights. His sequential minimal optimization (SMO)
algorithm breaks the large quadratic programming (QP)
problem down into a series of small QP problems that can
be solved analytically. Additional efficiencies can be
realized because the training sets used for text classification
are sparse and binary. Thus the SMO algorithm is nicely
applicable for large feature and training sets.

Once the weights are learned, new items are classified by

computing ~ . . ~ , where w is the vector of learned weights,

and .x is the input vector for a new document. With the
binary representation we use, this amounts to taking the
sum of the weights for features present in a document and
this is very efficient.

After training the SVM, we fit a sigmoid to the output of
the SVM using regularized maximum likelihood fitting, so
that the SVM produces posterior probabilities that are
directly comparable across categories.

Feature Selection
For reasons of both efficiency and efficacy, feature
selection is often used when applying machine learning
methods to text categorization. We reduce the feature
space by eliminating words that appear in only a single
document (hapax legomena), then selecting the 1000 words
with highest mutual information with each category. Yang
and Pedersen [28] compared a number of methods for
feature selection. We used a mutual information measure
(Cover and Thomas [5]) that is similar to their information
gain measure. The mutual information MI(F, C) between a
feature, F, and a category, C, is defined as:

Mi(F,C)=e~i}c~{~}p(F,C)log P(F,C)
P(F)P(C)

We compute the mutual information between every pair of
features and categories.

For the non-hierarchical case, we select the 1000 features
with the largest MI for each of the 150 categories (vs. all
the other categories). For the hierarchical case, we select
1000 features with the largest MI for each of the 13 top-
level categories, and also select the 1000 features for each
of the 150 second-level categories (vs. the categories that
share the same top-level category). We did not rigorously
explore the optimum number of features for this problem,

but these numbers provided good results on a training
validation set so they were used for testing. In all cases, the
selected features are used as input to the SVM algorithm
that learns the optimum weights for the features, ~ .

SVM Parameters
In addition to varying the number of features, SVM
performance is governed by two parameters, C (the penalty
imposed on training examples that fall on the wrong side of
the decision boundary), and p (the decision threshold). The
default C parameter value (0.01) was used.

The decision threshold, p, can be set to control precision
and recall for different tasks. Increasing p, results in fewer
test items meeting the criterion, and this usually increases
precision but decreases recall. Conversely, decreasing p
typically decreases precision but increases recall. We chose
p so as to optimize performance on the F! measure on a
training validation set. For the flat non-hierarchical models,
p=0.5. For the hierarchical models, p=0.2 for the
multiplicative decision rule, and p1=0.2 (first level) and
p2=0.5 (second level) for the Boolean decision rule.

RESULTS
As just described decision thresholds were established on a
training validation set. For each category, if a test item
exceeds the decision threshold, it is judged to be in the
category. A test item can be in zero, one, or more than one
categories. From this we compute precision (P) and recall
(R). These are micro-averaged to weight the contribution
of each category by the number of test examples in it. We
used the F measure to summarize the effects of both
precision and recall. With equal weights assigned to
precision and recall, F1 = 2*P*R/(P+R).
For each test example, we compute the probability of it
being in each of the 13 top-level categories and each of the
150 second-level categories. Recall that for the non-
hierarchical case, models were learned (and features
chosen) to distinguish each category from all other
categories, and that for the hierarchical case, models were
learned (and features chosen) to distinguish each category
from only those categories within the same top-level
category. We explored two general ways to combine
probabilities from the first and second level for the
hierarchical approach. In one case we first set a threshold
at the top level and only match second-level categories that
pass this test - that is we compute a Boolean function
P(L1)&&P(L2). In order to be correctly classified, a test
instance must satisfy both constraints. This method is quite
efficient, since large numbers of second level categories do
not need to be tested. In the other case, we compute
P(L1)*P(L2). This approach allows matches even though
the scores at one level fall below threshold. Although the
non-hierarchical models are not trained to use top-level
information, we can compute the same probabilities for this
case as well.

260

Learned Features
There are many differences in the learned features for the
hierarchical and non-hierarchical models. For example, the
feature "sports" is useful in distinguishing the top-level
category Sports & Recreation from the other top-level
categories. The feature "sports" is also useful for
distinguishing between some second-level categories -- it
has a high weight for News & Magazines (under Society &
Politics), SportingGoods (under Shopping & Services), and
Collecting (under Hobbies & Interests). But, the feature
"sports" is not selected for any categories using the flat
non-hierarchical approach. It is difficult to study this
systematically, but the different learning approaches are
serving an important role in feature selection and weighting.

F, Accuracy
Top Level
The overall F1 value for the 13 top-level categories is .572.
Classifying short summaries of very heterogeneous web
pages is a difficult task, so we did not expect to have
exceptionally high accuracy. Performance on the original
training set is only .649, so this is a difficult learning task
and generalization to the test set is quite reasonable. This
level of accuracy is sufficient to support some web search
tasks [3], and could also be used as an aid to human
indexers. In addition, we know that we can improve the
absolute level of performance by 15%-20% using the full
text of pages, and by optimizing the C parameter. What is
of more interest to us here is the comparative performance
of hierarchical and non-hierarchical approaches.

Second Level, Non-Hierarchical (Baseline)
The overall F1 value for the 150 second-level categories,
treated as a flat non-hierarchical problem, is .476. There is
a drop in performance in going from 13 to 150 categories.
Performance for the 150 categories is better than the .364
value reported by McCallum et al. [17], but it is difficult to
compare precisely because they use average precision not
FI, the categories themselves are different, and they use the
full text of pages. The .476 non-hierarchal value will serve
as the baseline for looking at the use of hierarchical models.

Performance varies widely across categories. The five
categories with highest and lowest Fx scores (based on at
least 30 test instances) are shown in Table 2.

The most difficult categories to learn models for are those
based, at least in part, on non-content distinctions. It might
be useful to learn models for genre (e.g., for kids,
magazines, web) in addition to our current use of content-
based models.

Second Level, Hierarchical
As described above, we examined both a multiplicative
scoring function, P(L1)*P(L2), and a Boolean scoring
function, P(L1)&&P(L2). The former allows for matches
that fall below individual thresholds, and the latter requires
that the threshold be exceeded at every level. Both scoring
rules allow items to be classified into multiple classes.

Best F1

The overall Fl value for the P(L1)*P(L2) scoring function
is .495, at the threshold of p=0.20 established on the
validation set. This represents a 4% improvement over the
baseline fiat models, and is statistically significant using a
sign test, p<.01. The overall Fl value for the
P(L1)&&P(L2) scoring function is .497, at the thresholds of
p1=0.20 and p2=0.50 established on the validation set. This
again is a small improvement over the non-hierarchical
model, and is significantly different than the baseline using
a sign test, p<0.01. Somewhat surprisingly, there is no
difference between the sequential Boolean rule and the
multiplicative scoring rule. The added efficiencies that can
be obtained with the hierarchical model and the Boolean
rule make it a good overall choice, as we discuss in more
detail below.

An upper bound on the performance of these hierarchical
models can be obtained by assuming that the top-level
classification is correct (i.e., P(L1)=I). In this case,
performance is quite good with an F1 value of .711, so there
is considerable room for improvement.

0.841
0.797
0.781
0.750
0.741

Worst F1

:Health & Fitness~Drugs & Medicines
Home & Family~Real Estate
:Reference & Education/K-12 Education
Sports & Recreation/Fishing
Reference & Education/Higher & Cont. Ed.

0.034 Society & Politics~World Cultures
0.088 Home & Family~For Kids
0.122 Computers & lnternet/News & Magazines
0.131 Computers & Internet/Internet & the Web
0.133 Business & Finance/Business Professions

Table 2 - Best and worst F1 score by category

Efficiency
Offline training
As noted earlier, linear SVM models can be learned quite
efficiently with Platt's SMO algorithm. The total training
time for all the models described in the paper was only
about 30 minutes. Training time for all the non-hierarchical
models on 50078 examples in each of 150 categories was
729 CPU seconds. Training time for all 150 hierarchical
second-level models was 128 CPU seconds. Training is
faster here because the negative set is smaller, including
only items in the same top-level category. Training time for
the 13 top-level categories was 1258 CPU seconds. All
times were computed on a standard 266MHz Pentium II PC
running Windows NT.

Online evaluation
At run time we need to take the dot product of the learned
weight vector for each category and the feature vector for
the test item. The cost of this operation depends on the
number of features and the number of categories.

261

Efficiency can be improved if some category comparisons
can be omitted without hurting accuracy. As we have seen
above, the Boolean decision function accomplishes this
with no decrease in classification accuracy. For the non-
hierarchical model, each test instance must be compared
with all 150 second-level categories. For the hierarchical
model with the multiplicative scoring rule, each test
instance must be compared to all 13 first-level categories
and all 150 second-level categories. For the Boolean
scoring rule, each test instance must be compared to all 13
first-level categories but only to second-level categories
that pass the first-level criterion. For the top-level
threshold value of p=0.20, only 7.4% of the second-level
categories need to be examined. Top-level comparisons are
still required for the Boolean decision rule, so overall
14.8% of the comparisons used for the multiplicative rule
and 16.1% of the comparisons used for the non-hierarchical
model are required, both representing a considerable
savings at evaluation time.

CONCLUSION
The research described in this paper explores the use of
hierarchical structure for classifying a large, heterogeneous
collection of web content to support classification of search
results. We used SVMs, which have been found to be an
efficient and effective learning method for text
classification, but not previously explored for hierarchical
problems. We use the hierarchical structure for two
purposes. First, we train second-level category models
using different contrast sets (either within the same top-
level category in the hierarchical case, or across all
categories in the non-hierarchical case). Second, we
combine scores from the top- and second-level models
using different combination rules, some requiring a
threshold to be exceeded at the top level before
comparisons at the second level are made.

We found small advantages in the F~ accuracy score for the
hierarchical models, compared with a baseline fiat non-
hierarchical model. We found no difference between a
multiplicative scoring function and a sequential Boolean
function for combining scores from the two levels of the
hierarchy. Since the sequential Boolean approach is much
more efficient, requiring only 14%-16% of the number of
comparisons, we find it to be a good choice.

There are a number of interesting directions for future
research. We should be able to obtain further advantages in
efficiency in the hierarchical approach by reducing the
number of features needed to discriminate between
categories within the same top-level category. Koller and
Sahami [13] have shown that one can dramatically reduce
the number of features for simple Reuters categories
without decreasing accuracy too much, and this is definitely
worth trying with our content and learning algorithm.
There are some preliminary indications that this will work
in our application. The SVM model assigns a weight of 0
to features that are not predictive (and could thus be

omitted). We find a larger number of features with 0
weights in the hierarchical case (137 per 1000) than the
non-hierarchical case (85 per 1000). There are also many
near-zero weights that contribute little to the overall score.
Varying the number of features for further efficiency gains
seems promising to try with our content and learning model.

The sequential decision model provides large efficiency
gains, so it will be important to see how it generalizes to
more than two levels, where error cascading may be more
of an issue. There are at least two ways to address the
problem. One involves improved classifiers and methods
for setting appropriate decisions thresholds at multiple
levels. Another approach is through the use of interactive
interfaces so that people are involved in making some of the
critical decisions. This is a rich space for further
exploration.

Our research adds to a growing body of work exploring
how hierarchical structures can be used to improve the
efficiency and efficacy of text classification. We worked
with a large, heterogeneous collection of web content -- a
scenario that is increasingly characteristic of the
information management tasks that individuals and
organizations face. And, we successfully extended SVM
models to an application that takes advantage of
hierarchical structure, for both category learning and run
time efficiencies.

ACKNOWLEDGMENTS
We are grateful to John Platt for help with the Support
Vector Machine code, and to four anonymous reviewers for
their comments.

REFERENCES
1. Apte, C., Damerau, F. and Weiss, S. Automated

learning of decision rules for text categorization. ACM
Transactions on Information Systems, 12(3), 233-251,
1994.

2. Chakrabarti, S., Dom, B., Agrawal, R. and Raghavan, P.
Scalable feature selection, classification and signature
generation for organizing large text databases into
hierarchical topic taxonomies. The VLDB Journal 7,
163-178, 1998.

3. Chen, H. and Dumais, S. Bringing order to the web:
Automatically categorizing search results. Proceedings
of the ACM SIGCHI Conference on Human Factors in
Computing Systems (CHI'O0), 145-152, 2000.

Cohen, W.W. and Singer, Y. Context-sensitive learning
methods for text categorization Proceedings of the 19th
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval
(SIGIR'96), 307-315, 1996.

Cover, T. and Thomas, J. Elements of Information
Theory. Wiley, 1991.

D'Alessio, S., Murray, M., Schiaffino, R. and
Kershenbaum, A. Category levels in hierarchical text

4.

,

6.

262

categorization. Proceedings of EMNLP-3, 3rd
Conference on Empirical Methods in Natural Language
Processing, 1998.

7. Dumais, S. T., Platt, J., Heckerman, D. and Sahami, M.
Inductive learning algorithms and representations for
text categorization. Proceedings of the Seventh
International Conference on Information and
Knowledge Management (CIKM'98), 148-155, 1998.

8. Fuhr, N., Hartmanna, S., Lustig, G., Schwantner, M.,
and Tzeras, K. Air/X - A rule-based multi-stage
indexing system for lage subject fields. Proceedings of
RIAO'91,606-623, 1991.

9. Hayes, P.J. and Weinstein, S .P . CONSTRUE: A
System for Content-Based Indexing of a Database of
News Stories. Second Annual Conference on
Innovative Applications of Artificial Intelligence, 1990.

10.Hearst, M., and Karadi, C. Searching and browsing text
collections with large category hierarchies. Proceedings
of the ACM SIGCHI Conference on Human Factors in
Computing Systems (CHI'97), Conference Companion,
1997.

11.Hearst, M. and Pedersen, J. Reexamining the cluster
hypothesis: Scatter/Gather on retrieval results.
Proceedings of 19 th Annual International ACM/SIGIR
Conference on Research and Development in
Information Retrieval (SIGIR'96), 1996.

12.Joachims, T. Text categorization with support vector
machines: Learning with many relevant features.
Proceedings of European Conference on Machine
Learning (ECML '98), 1998

13.Koller, D. and Sahami, M. 1997. Hierarchically
classifying documents using very few words.
Proceedings of the Fourteenth International Conference
on Machine Learning (ICML'97), 170-178, 1997.

14.Landauer, T., Egan, D., Remde, J., Lesk, M.,
Lochbaum, C., and Ketchum, D. Enhancing the
usability of text through computer delivery and
formative evaluation: The SuperBook project. Hypertext
- A Psychological Perspective. Ellis Horwood, 1993.

15.Larkey, L. Some issues in the automatic classification
of U.S. patents. In Working Notes for the AAAI-98
Workshop on Learning for Text Categorization, 1998.

16.Lewis, D.D. and Ringuette, M.. A comparison of two
learning algorithms for text categorization. Third
Annual Symposium on Document Analysis and
Information Retrieval (SDAIR'94), 81-93, 1994.

17.McCallum, A., Rosenfeld, R., Mitchell, T. and Ng, A.
Improving text classification by shrinkage in a hierarchy
of classes. Proceedings of the Fifteenth International
Conference on Machine Learning, (ICML-98), 359-367,
1998.

18.Mladenic, D. and Grobelnik, M. Feature selection for
classification based on text hierarchy. Proceedings of
the Workshop on Learning from Text and the Web,
1998.

19.Ng, H.T., Goh, W.B. and Low, K.L, Proceedings of
20 th Annual International ACM SIG1R Conference on
Research and Development in Information Retrieval
(SIGIR'97), 67-73, 1997.

20.Platt, J. Fast training of support vector machines using
sequential minimal optimization. In Advances in Kernel
Methods -Support Vector Learning. B. Schtilkopf, C.
Burges, and A. Smola, eds., MIT Press, 1999.

21.Ruiz, M.E. and Srinivasan, P. Hierarchical neural
networks for text categorization. Proceedings of the
22nd International A CM SIGIR Conference on
Research and Development in Information Retrieval
(SIGIR'99), 281-282, 1999.

22. Schiitze, H., Hull, D. and Pedersen, J.O. A comparison
of classifiers and document representations for the
routing problem. Proceedings of the 18th Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR'95), 229-
237, 1995.

23. Vapnik, V., Estimation of Dependencies Based on Data
[in Russian], Nauka, Moscow, 1979. (English
translation: Springer Verlag, 1982.)

24.Vapnik, V., The Nature of Statistical Learning Theory,
Springer-Verlag, 1995.

25.Weigend, A.S., Wiener, E.D. and Pedersen, J.O.
Exploiting hierarchy in text categorization. Information
Retrieval, 1(3), 193-216, 1999.

26.Yang, Y. Expert network: Effective and efficient
learning from human decisions in text categorization
and retrieval. Proceedings of the 17th Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR'94), 13-
22, 1994.

27.Yang, Y. and Lui, Y. A re-examination of text
categorization methods. Proceedings of the 22nd
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval
(SIGIR'99), 42-49, 1999.

28.Yang, Y. and Pedersen, J.O. A comparative study on
feature selection in text categorization. Proceedings of
the Fourteenth International Conference on Machine
Learning (ICML'97), 412-420, 1997.

29. ~mir, O. and Etzioni, O. Web document clustering: A
feasibility demonstration. Proceedings of the 21 ̀ t
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval
(SIGIR'98), 46-54, 1998.

30. http://www.looksmart.com

263

