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ABSTRACT 
This paper explores the use of hierarchical structure for 
classifying a large, heterogeneous collection of web 
content. The hierarchical structure is initially used to train 
different second-level classifiers. In the hierarchical case, a 
model is learned to distinguish a second-level category 
from other categories within the same top level. In the flat 
non-hierarchical case, a model distinguishes a second-level 
category from all other second-level categories. Scoring 
rules can further take advantage of the hierarchy by 
considering only second-level categories that exceed a 
threshold at the top level. 

We use support vector machine (SVM) classifiers, which 
have been shown to be efficient and effective for 
classification, but not previously explored in the context of 
hierarchical classification. We found small advantages in 
accuracy for hierarchical models over flat models. For the 
hierarchical approach, we found the same accuracy using a 
sequential Boolean decision rule and a multiplicative 
decision rule. Since the sequential approach is much more 
efficient, requiring only 14%-16% of the comparisons used 
in the other approaches, we find it to be a good choice for 
classifying text into large hierarchical structures. 

KEYWORDS 
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INTRODUCTION 
With the exponential growth of information on the internet 
and intranets, it is becoming increasingly difficult to find 
and organize relevant materials. More and more, simple text 
retrieval systems are being supplemented with structured 
organizations. Since the 19 th century, librarians have used 
classification systems like Dewey and Library of Congress 
subject headings to organize vast amounts of information. 
More recently, web directories such as Yahoo! and 
LookSmart have been used to classify web pages. 
Structured directories support browsing and search, but the 
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manual nature of the directory compiling process makes it 
difficult to keep pace with the ever increasing amount of 
information. Our work looks at the use of  automatic 
classification methods to supplement human effort in 
creating structured knowledge hierarchies. 

A wide range of statistical and machine learning techniques 
have been applied to text categorization, including 
multivariate regression models [8,22], nearest neighbor 
classifiers [26], probabilistic Bayesian models [13, 16], 
decision trees [16], neural networks [22, 25], symbolic rule 
learning [1, 4], and support vector machines [7,12]. These 
approaches all depend on having some initial labeled 
training data from which category models are learned. 
Once category models are trained, new items can be added 
with little or no additional human effort. 

Although many real world classification systems have 
complex hierarchical structure (e.g., MESH, U.S. Patents, 
Yahoo!, LookSmart), few learning methods capitalize on 
this structure. Most of the approaches mentioned above 
ignore hierarchical structure and treat each category or class 
separately, thus in effect "flattening" the class structure. A 
separate binary classifier is learned to distinguish each class 
from all other classes. The binary classifiers can be 
considered independently, so an item may fall into none, 
one, or more than one category. Or they can be considered 
as an m-ary problem, where the best matching category is 
chosen. Such simple approaches work rather well on small 
problems, but they are likely to be difficult to train when 
there are a large number of classes and a very large number 
of features. By utilizing known hierarchical structure, the 
classification problem can be decomposed into a set of 
smaller problems corresponding to hierarchical splits in the 
tree. Roughly speaking, one first learns to distinguish 
among classes at the top level, then lower level distinctions 
are learned only within the appropriate top level of the tree. 
Each of these sub-problems can be solved much more 
efficiently, and hopefully more accurately as well. 

The use of a hierarchical decomposition of a classification 
problem allows for efficiencies in both learning and 
representation. Each sub-problem is smaller than the 
original problem, and it is sometimes possible to use a 
much smaller set of features for each [13]. The hierarchical 
structure can also be used to set the negative set for 
discriminative training and at classification time to combine 
information from different levels. In addition, there is some 

256 



evidence that decomposing the problem can lead to more 
accurate specialized classifiers. Intuitively, many 
potentially good features are not useful discriminators in 
non-hierarchical representations. Imagine a hierarchy with 
two top-level categories ("Computers" and "Sports"), and 
three subcategories within each ("Computers/Hardware", 
"Computers/Software", "Computers/Chat", "Sports/Chat", 
"Sports/Soccer", Sports/Football"). In a non-hierarchical 
model, a word like "computer" is not very discriminating 
since it is associated with items in "Computers/Software", 
"Computers/Hardware", and "Computers/Chat". In a 
hierarchical model, the word "computer" would be very 
discriminating at the first level. At the second level more 
specialized words could be used as features within the top- 
level "Computer" category. And, the same features could 
be used at the second level for two different top-level 
classed (e.g., "chat" might be a useful feature for both the 
category "Sports/Chat", and "Computers/Chat"). Informal 
failure analyses of classification errors for non-hierarchical 
models support this intuition. Many of the classification 
errors are for related categories (e.g., a page about 
"Sports/Soccer" might be confused with "Sports/Football", 
thus category specific features should improve accuracy). 

Recently several researchers have investigated the use of 
hierarchies for text classification, with promising results. 
Our work differs from earlier work in a couple of important 
respects. First, we test the approach on a large collection of 
very heterogeneous web content, which we believe is 
increasingly characteristic of information organization 
problems. Second, we use a learning model, support vector 
machine (SVM), that has not previously been explored in 
the context of hierarchical classification. SVMs have been 
found to be more accurate for text classification than 
popular approaches like naive Bayes, neural nets, and 
Rocchio [7, 12, 27]. We use a reduced-dimension binary- 
feature version of the SVM model that is very efficient for 
both initial learning and real-time classification, thus 
making it applicable to large dynamic collections. We will 
briefly review the earlier work and contrast it with ours. 

RELATED WORK 
Reuters 
Much of the previous work on hierarchical methods for text 
classification uses the Reuters-22173 or Reuters-21578 
articles. This is a rather small and tidy collection, and this 
alone is problematic for understanding how the approaches 
generalize to larger more complex internet applications. In 
addition, the Reuters articles are organized into 135 topical 
categories with no hierarchical structure. To study 
hierarchical models, researchers have added one level of 
hierarchical structure manually. Kohler and Sahami [13] 
generated a small hierarchical subset of Reuters-22173 by 
identifying labels that tended to subsume other labels (e.g., 
corn and wheat are subsumed by grain). The largest of their 
hierarchies consisted of 939 documents organized into 3 
top-level and 6 second-level categories. They compared 

naive Bayes, and two limited dependency Bayes net 
classifiers on flat and hierarchical models. Test documents 
were classified into the hierarchy by first filtering them 
through the single best matching first level class and then 
sending them to the appropriate second level. Note that 
errors made at the first level are not recoverable, so the 
system has to make k correct classification for a k-level 
hierarchy. They found advantages for the hierarchical 
models when a very small number of features (10) were 
used per class. For larger numbers of features (which will 
be required in many complex domains) no advantages for 
the hierarchical models were found. 

Weigend et al. [25] also used the Reuters-22173 collection. 
An exploratory cluster analysis was first used to suggest an 
implicit hierarchical structure, and this was then verified by 
human assignments. They created 4 top-level categories 
(agriculture, energy, foreign exchange, and metals) and a 5 th 
miscellaneous category that was not used for evaluation. 
The final evaluations were on 37 categories with at least 16 
positive training examples. They used a probabilistic 
approach that frames the learning problem as one of 
function approximation for the posterior probability of the 
topic vector given the input vector. They used a neural net 
architecture and explored several input representations. 
Information from each level of the hierarchy is combined in 
a multiplicative fashion, so no hard decisions have to be 
made except at the leaf nodes. They found a 5% advantage 
in average precision for the hierarchical representation 
when using words, but not when using latent semantic 
indexing (LSI) features. 

D'Alessio et al. [6] used the Reuters-21578 articles. The 
hierarchy they use comes from Hayes and Weinstein's 
original Reuters experiments [9]. It consists of 5 meta- 
category codes (economic indicator, currency, corporate, 
commodity, energy) that include all but three of the original 
categories. For their experiments they only considered 
articles that had a single category tag, and the 37 categories 
with more than 20 positive training examples. Their model 
requires hard assignment at each branch of the tree. The 
hierarchical model showed 2-4% improvements in precision 
and recall over the flat model, and modifications to the 
hierarchy led to advantages of 2-9%. 

Ng et al. [19] also used a hierarchical version of Reuters 
that consisted of countries at the top level and two topical 
levels below that, but they did not compare their 
hierarchical model against a flat model. While all of this 
work is encouraging, the Reuters collection is small and 
very well organized compared with many realistic 
applications. 

MESH, U.S. patents 
Some researchers have investigated text classification in 
domains that have rich hierarchical taxonomies (e.g., 
MESH, IDC codes of diseases, U.S. patent codes). The size 
and complexity of the medical and patent hierarchies are 
like those used for web content. These hierarchies were 
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designed for controlled vocabulary tagging and they have 
been extensively refined over the years. Ruiz and 
Srinivasan [21] used a hierarchical mixture of experts to 
classify abstracts within the MeSH sub-category Heart. 
They learned classifiers at different levels of granularity, 
with the top-level distinctions serving as "gates" to the 
lower level "experts". They found small advantages for the 
hierarchical approach compared with a flat approach. 
Larkey [15] compared hierarchical and flat approaches for 
classifying patents in the Speech Signal Processing sub- 
category. She found no multilevel algorithms that 
performed significantly better than a flat one which chooses 
among all the speech classes. 

Web 
McCallum, et al. [17] describe some interesting 
experiments on three hierarchical collections -- Usenet 
news, the Science sub-category of Yahoo!, and company 
web pages. The Yahoo! sub-collection is most closely 
related to our experiments, although it is less diverse since 
all items come from the same top-level category. They 
used a probabilistic Bayesian framework (naYve Bayes), and 
a technique called "shrinkage" to improve parameter 
estimates for the probability of words given classes. The 
idea is to smooth the parameter estimate of a node by 
interpolation with all its parent nodes (given by the 
hierarchical organization of classes). This is especially 
useful for classes with small numbers of training examples. 
For the Usenet collection, the best performance and largest 
advantages of the hierarchical model over the flat model are 
observed for large numbers of features (10,000). For the 
Yahoo! sub-collection, accuracy is low and there is a much 
smaller difference between two approaches 

Mladenic and Grobelnik [18] examined issues of feature 
selection for hierarchical classification of web content, but 
they did not compare hierarchical models with flat non- 
hierarchical models. Chakrabarti et al. [2] also 
experimented with web content as well as patent and 
Reuters data. They use hierarchical structure both to select 
features and to combine class information from multiple 
levels of the hierarchy. For the non-hierarchical case, they 
use a simple vector method with term weighting and no 
feature selection. They find no advantages for the 
hierarchical approach in Reuters, a small advantage in the 
patents collection, and did not test the difference for the 
Yahoo! sub-collection. But, because they used different 
representations, it is difficult to know whether differences 
are due to the number of features, feature selection, or the 
hierarchical classification algorithm. 

Our work explores the use of hierarchies for classifying 
very heterogeneous web content. We use SVMs, which 
have been found to be efficient and effective for text 
classification, but not previously explored in the context of 
hierarchical classification. The efficiency of SVMs for 
both initial learning and real-time classification make them 
applicable to large dynamic collections like web content. 

We use the hierarchical structure for two purposes. First, 
we train second-level category models using different 
contrast sets (either within the same top-level category in 
the hierarchical case, or across all categories in the flat non- 
hierarchical case). Second, we combine scores from the 
top- and second-level models using different combination 
rules, some requiring a threshold to be exceeded at the top 
level before second level comparisons are made. The 
sequential approach is especially efficient for large 
problems, but how it compares in accuracy is not known. 
All of our models allow for each test item to be assigned to 
multiple categories. 

WEB DATA SET AND APPLICATION 
Application - Classifying web search results 
We are interested in moving beyond today's ranked lists of 
results by organizing web search results into hierarchical 
categories. HCI researchers have shown usability 
advantages of structuring content hierarchically [3, 10, 14]. 
For information as varied and voluminous as the web it is 
necessary to create these structures automatically. Several 
groups have explored methods for clustering search results. 
Zamir and Etzioni [29] grouped web search results using 
suffix tree clustering, and Hearst and Pedersen [11] used 
Scatter/Gather to organize and browse search results. 
While these methods show some promise, the 
computational complexity of clustering algorithms limits 
the number of documents that can be processed, and 
generating names for the resulting categories is a challenge. 

The basic idea behind our work is to use classification 
techniques to automatically organize search results into 
existing hierarchical structures. Classification models are 
learned offline using a training set of human-labeled 
documents and web categories. Classification offers two 
advantages compared to clustering - run time classification 
is very efficient, and manually generated category names 
are easily understood. To support our goal of automatically 
classifying web search results two constraints are important 
in understanding the classification problems we studied. 
First, we used just the short summaries returned from web 
search engines since it takes too long to retrieve the full text 
of pages in a networked environment. These automatically 
generated summaries are much shorter than the texts used in 
most classification experiments, and they are much noisier 
than other document surrogates like abstracts that some 
have worked with. Second, we focused on the top levels of 
the hierarchy since we believe that many search results can 
be usefully disambiguated at this level. We also developed 
an interface that tightly couples search results and category 
structure, and found large preference and performance 
advantages for automatically classified search results (see 
Chen and Dumais [3] for details). For the experiments 
reported in this paper, we focused on the top two levels of 
the hierarchy, and used short automatically generated 
summaries of web pages. 
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LookSmart Web Directory 
For our experiments, we used a large heterogeneous 
collection of pages from LookSmart's web directory [30]. 
At the time we conducted our experiments in May 1999, the 
collection consisted of 370597 unique pages that had been 
manually classified into a hierarchy of categories by trained 
professional web editors. There were a total of 17173 
categories organized into a 7-level hierarchy. We focused 
on the 13 top-level and 150 second-level categories. 

Training/Test Selection 
We selected a random 16% sample of the pages for our 
experiments. We picked this sampling proportion to ensure 
that even the smallest second-level categories would have 
some examples in our training set. We used 50078 pages 
for training, and 10024 for testing. Table 1 shows the 
number of pages in each top level category. Top level 
categories had between 578 and 11163 training examples, 
and second-level categories had between 3 and 3141 
training examples. The wide range in number of pages in 
each category reflects the distribution in the LookSmart 
directory. Pages could be classified into more than one 
category. On average, pages were classified into 1.20 
second-level categories and 1.07 first-level categories. 

Automotive 4 9 8 2 ~  
Business & Finance 31599[ 35081 703 
Computers & Internet 46000[ 5718[ 1126 
Entertainment&Media 88697[ 11163[ 2159 
Health & Fitness 253801 3500[ 722 
Hobbies & Interests 22959] 32271 682 
Home&Family 114841 1373[ 2813 
People & Chat 35157[ 3309[ 682 
Reference & Education 580021 55741 1175 
Shoppinl~ & Services 19667[ 21221 423 
Society & Politics 38968[ 48551 946 
Sports & Recreation 235591 3081 [ 6413 
Travel & Vacations 436851 5409[ 1091 

Total Unique 370597 50078 10024 

Table 1- Training and Test Samples by Category 

Pre-processing 
A pre-processing module extracted plain text from each 
web page. In addition, the rifle, description and keywords 
fields from the META tag, and the ALT field from the IMG 
tag were also extracted if they existed because they provide 
useful descriptions of the web page. If a web page 
contained frames, text from each frame was extracted. 

Since we were interested in classifying web search results, 
we needed to work with just short summary descriptions of 
web pages. We automatically generated summaries of each 
page and used this for evaluating our classification 
algorithms. Our summaries consisted of the rifle, the 
keywords, and either the description tag if it existed or the 
first 40 words of the body otherwise. 

We did minimal additional processing on the text. We 
translated upper to lower case, used white space and 
punctuation to separate words, and used a small stop list to 
omit the most common words. No morphological or 
syntactic analyses were used. 

After preprocessing, a binary vector was created for each 
page indicating whether each term appeared in the page 
summary or not. For each category 1000 terms were 
selected based on the mutual information between the term 
and category (details below). Unlike many text retrieval 
applications, term frequency and document length are not 
taken into account in this representation, because earlier 
experiments showed good performance with the binary 
representation for SVMs [7], and this representation 
improves efficiency. 

TEXT CLASSIFICATION USING SVMs 
Text classification involves a training phase and a testing 
phase. During the training phase, a large set of web pages 
with known category labels are used to train a classifier. 
An initial model is built using a subset of the labeled data, 
and a holdout set is used to identify optimal model 
parameters. During the testing or operational phase, the 
learned classifier is used to classify new web pages. 

A support vector machine (SVM) algorithm was used as the 
classifier, because it has been shown in previous work to be 
both very fast and effective for text classification problems 
[7, 12, 27]. Vapnik introduced SVMs in his work on 
structural risk minimization [23, 24], and there has been a 
recent surge of interest in SVM classifiers in the learning 
community. In its simplest form, a linear SVM is a 
hyperplane that separates a set of positive examples from a 
set of negative examples with maximum margin. The 
margin is the distance from the hyperplane to the nearest of 
the positive and negative examples. 

Figure 1 shows an example of a simple two-dimensional 
problem that is linearly separable. 

'k 

• • • Positive 
" ~  f l  • Examples 

• " ~  Maximize distances 
• • ~ n e a r e s t  points 

Negative Examples 

Space of possible inputs 

Figure 1 - Graphical Representation of a Linear SVM 

In the linearly separable case maximizing the margin can be 
expressed as an optimization problem: 

minimize 111~112 subject to y, ( ~ .  ~, - b)  >_ 1, Vi 
2 " "  
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where xi is the ith training example and Yi is the correct 
output of the SVM for the ith training example. 

In cases where points are not linearly separable, slack 
variables are introduced that permit, but penalize, points 
that fall on the wrong side of the decision boundary. For 
problems that are not linearly separable, kernel methods can 
be used to transform the input space so that some non-linear 
problems can be learned. We used the simplest linear form 
of the SVM because it provided good classification 
accuracy, and is fast to learn and apply. 

Platt [20] developed a very efficient method for learning the 
SVM weights. His sequential minimal optimization (SMO) 
algorithm breaks the large quadratic programming (QP) 
problem down into a series of small QP problems that can 
be solved analytically. Additional efficiencies can be 
realized because the training sets used for text classification 
are sparse and binary. Thus the SMO algorithm is nicely 
applicable for large feature and training sets. 

Once the weights are learned, new items are classified by 

computing ~ . . ~ ,  where w is the vector of learned weights, 

and .x is the input vector for a new document. With the 
binary representation we use, this amounts to taking the 
sum of the weights for features present in a document and 
this is very efficient. 

After training the SVM, we fit a sigmoid to the output of 
the SVM using regularized maximum likelihood fitting, so 
that the SVM produces posterior probabilities that are 
directly comparable across categories. 

Feature Selection 
For reasons of both efficiency and efficacy, feature 
selection is often used when applying machine learning 
methods to text categorization. We reduce the feature 
space by eliminating words that appear in only a single 
document (hapax legomena), then selecting the 1000 words 
with highest mutual information with each category. Yang 
and Pedersen [28] compared a number of methods for 
feature selection. We used a mutual information measure 
(Cover and Thomas [5]) that is similar to their information 
gain measure. The mutual information MI(F, C) between a 
feature, F, and a category, C, is defined as: 

Mi(F,C)=e~i}c~{~}p(F,C)log P(F,C) 
P(F)P(C) 

We compute the mutual information between every pair of 
features and categories. 

For the non-hierarchical case, we select the 1000 features 
with the largest MI for each of the 150 categories (vs. all 
the other categories). For the hierarchical case, we select 
1000 features with the largest MI for each of the 13 top- 
level categories, and also select the 1000 features for each 
of the 150 second-level categories (vs. the categories that 
share the same top-level category). We did not rigorously 
explore the optimum number of features for this problem, 

but these numbers provided good results on a training 
validation set so they were used for testing. In all cases, the 
selected features are used as input to the SVM algorithm 
that learns the optimum weights for the features, ~ .  

SVM Parameters 
In addition to varying the number of features, SVM 
performance is governed by two parameters, C (the penalty 
imposed on training examples that fall on the wrong side of 
the decision boundary), and p (the decision threshold). The 
default C parameter value (0.01) was used. 

The decision threshold, p, can be set to control precision 
and recall for different tasks. Increasing p, results in fewer 
test items meeting the criterion, and this usually increases 
precision but decreases recall. Conversely, decreasing p 
typically decreases precision but increases recall. We chose 
p so as to optimize performance on the F! measure on a 
training validation set. For the flat non-hierarchical models, 
p=0.5. For the hierarchical models, p=0.2 for the 
multiplicative decision rule, and p1=0.2 (first level) and 
p2=0.5 (second level) for the Boolean decision rule. 

RESULTS 
As just described decision thresholds were established on a 
training validation set. For each category, if a test item 
exceeds the decision threshold, it is judged to be in the 
category. A test item can be in zero, one, or more than one 
categories. From this we compute precision (P) and recall 
(R). These are micro-averaged to weight the contribution 
of each category by the number of test examples in it. We 
used the F measure to summarize the effects of both 
precision and recall. With equal weights assigned to 
precision and recall, F1 = 2*P*R/(P+R). 
For each test example, we compute the probability of it 
being in each of the 13 top-level categories and each of the 
150 second-level categories. Recall that for the non- 
hierarchical case, models were learned (and features 
chosen) to distinguish each category from all other 
categories, and that for the hierarchical case, models were 
learned (and features chosen) to distinguish each category 
from only those categories within the same top-level 
category. We explored two general ways to combine 
probabilities from the first and second level for the 
hierarchical approach. In one case we first set a threshold 
at the top level and only match second-level categories that 
pass this test - that is we compute a Boolean function 
P(L1)&&P(L2). In order to be correctly classified, a test 
instance must satisfy both constraints. This method is quite 
efficient, since large numbers of second level categories do 
not need to be tested. In the other case, we compute 
P(L1)*P(L2). This approach allows matches even though 
the scores at one level fall below threshold. Although the 
non-hierarchical models are not trained to use top-level 
information, we can compute the same probabilities for this 
case as well. 
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Learned Features 
There are many differences in the learned features for the 
hierarchical and non-hierarchical models. For example, the 
feature "sports" is useful in distinguishing the top-level 
category Sports & Recreation from the other top-level 
categories. The feature "sports" is also useful for 
distinguishing between some second-level categories -- it 
has a high weight for News & Magazines (under Society & 
Politics), SportingGoods (under Shopping & Services), and 
Collecting (under Hobbies & Interests). But, the feature 
"sports" is not selected for any categories using the flat 
non-hierarchical approach. It is difficult to study this 
systematically, but the different learning approaches are 
serving an important role in feature selection and weighting. 

F, Accuracy 
Top Level 
The overall F1 value for the 13 top-level categories is .572. 
Classifying short summaries of very heterogeneous web 
pages is a difficult task, so we did not expect to have 
exceptionally high accuracy. Performance on the original 
training set is only .649, so this is a difficult learning task 
and generalization to the test set is quite reasonable. This 
level of accuracy is sufficient to support some web search 
tasks [3], and could also be used as an aid to human 
indexers. In addition, we know that we can improve the 
absolute level of performance by 15%-20% using the full 
text of pages, and by optimizing the C parameter. What is 
of more interest to us here is the comparative performance 
of hierarchical and non-hierarchical approaches. 

Second Level, Non-Hierarchical (Baseline) 
The overall F1 value for the 150 second-level categories, 
treated as a flat non-hierarchical problem, is .476. There is 
a drop in performance in going from 13 to 150 categories. 
Performance for the 150 categories is better than the .364 
value reported by McCallum et al. [17], but it is difficult to 
compare precisely because they use average precision not 
FI, the categories themselves are different, and they use the 
full text of pages. The .476 non-hierarchal value will serve 
as the baseline for looking at the use of  hierarchical models. 

Performance varies widely across categories. The five 
categories with highest and lowest Fx scores (based on at 
least 30 test instances) are shown in Table 2. 

The most difficult categories to learn models for are those 
based, at least in part, on non-content distinctions. It might 
be useful to learn models for genre (e.g., for kids, 
magazines, web) in addition to our current use of content- 
based models. 

Second Level, Hierarchical 
As described above, we examined both a multiplicative 
scoring function, P(L1)*P(L2), and a Boolean scoring 
function, P(L1)&&P(L2). The former allows for matches 
that fall below individual thresholds, and the latter requires 
that the threshold be exceeded at every level. Both scoring 
rules allow items to be classified into multiple classes. 

Best  F1 

The overall Fl value for the P(L1)*P(L2) scoring function 
is .495, at the threshold of p=0.20 established on the 
validation set. This represents a 4% improvement over the 
baseline fiat models, and is statistically significant using a 
sign test, p<.01. The overall Fl value for the 
P(L1)&&P(L2) scoring function is .497, at the thresholds of 
p1=0.20 and p2=0.50 established on the validation set. This 
again is a small improvement over the non-hierarchical 
model, and is significantly different than the baseline using 
a sign test, p<0.01. Somewhat surprisingly, there is no 
difference between the sequential Boolean rule and the 
multiplicative scoring rule. The added efficiencies that can 
be obtained with the hierarchical model and the Boolean 
rule make it a good overall choice, as we discuss in more 
detail below. 

An upper bound on the performance of these hierarchical 
models can be obtained by assuming that the top-level 
classification is correct (i.e., P(L1)=I). In this case, 
performance is quite good with an F1 value of .711, so there 
is considerable room for improvement. 

0.841 
0.797 
0.781 
0.750 
0.741 

Worst  F1 

:Health & Fitness~Drugs & Medicines 
Home & Family~Real Estate 
:Reference & Education/K-12 Education 
Sports & Recreation/Fishing 
Reference & Education/Higher & Cont. Ed. 

0.034 Society & Politics~World Cultures 
0.088 Home & Family~For Kids 
0.122 Computers & lnternet/News & Magazines 
0.131 Computers & Internet/Internet & the Web 
0.133 Business & Finance/Business Professions 

Table  2 - Best and worst  F1 score by category 

Efficiency 
Offline training 
As noted earlier, linear SVM models can be learned quite 
efficiently with Platt's SMO algorithm. The total training 
time for all the models described in the paper was only 
about 30 minutes. Training time for all the non-hierarchical 
models on 50078 examples in each of 150 categories was 
729 CPU seconds. Training time for all 150 hierarchical 
second-level models was 128 CPU seconds. Training is 
faster here because the negative set is smaller, including 
only items in the same top-level category. Training time for 
the 13 top-level categories was 1258 CPU seconds. All 
times were computed on a standard 266MHz Pentium II PC 
running Windows NT. 

Online evaluation 
At run time we need to take the dot product of the learned 
weight vector for each category and the feature vector for 
the test item. The cost of this operation depends on the 
number of features and the number of categories. 
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Efficiency can be improved if some category comparisons 
can be omitted without hurting accuracy. As we have seen 
above, the Boolean decision function accomplishes this 
with no decrease in classification accuracy. For the non- 
hierarchical model, each test instance must be compared 
with all 150 second-level categories. For the hierarchical 
model with the multiplicative scoring rule, each test 
instance must be compared to all 13 first-level categories 
and all 150 second-level categories. For the Boolean 
scoring rule, each test instance must be compared to all 13 
first-level categories but only to second-level categories 
that pass the first-level criterion. For the top-level 
threshold value of p=0.20, only 7.4% of the second-level 
categories need to be examined. Top-level comparisons are 
still required for the Boolean decision rule, so overall 
14.8% of the comparisons used for the multiplicative rule 
and 16.1% of the comparisons used for the non-hierarchical 
model are required, both representing a considerable 
savings at evaluation time. 

CONCLUSION 
The research described in this paper explores the use of 
hierarchical structure for classifying a large, heterogeneous 
collection of web content to support classification of search 
results. We used SVMs, which have been found to be an 
efficient and effective learning method for text 
classification, but not previously explored for hierarchical 
problems. We use the hierarchical structure for two 
purposes. First, we train second-level category models 
using different contrast sets (either within the same top- 
level category in the hierarchical case, or across all 
categories in the non-hierarchical case). Second, we 
combine scores from the top- and second-level models 
using different combination rules, some requiring a 
threshold to be exceeded at the top level before 
comparisons at the second level are made. 

We found small advantages in the F~ accuracy score for the 
hierarchical models, compared with a baseline fiat non- 
hierarchical model. We found no difference between a 
multiplicative scoring function and a sequential Boolean 
function for combining scores from the two levels of the 
hierarchy. Since the sequential Boolean approach is much 
more efficient, requiring only 14%-16% of the number of  
comparisons, we find it to be a good choice. 

There are a number of  interesting directions for future 
research. We should be able to obtain further advantages in 
efficiency in the hierarchical approach by reducing the 
number of  features needed to discriminate between 
categories within the same top-level category. Koller and 
Sahami [13] have shown that one can dramatically reduce 
the number of features for simple Reuters categories 
without decreasing accuracy too much, and this is definitely 
worth trying with our content and learning algorithm. 
There are some preliminary indications that this will work 
in our application. The SVM model assigns a weight of 0 
to features that are not predictive (and could thus be 

omitted). We find a larger number of  features with 0 
weights in the hierarchical case (137 per 1000) than the 
non-hierarchical case (85 per 1000). There are also many 
near-zero weights that contribute little to the overall score. 
Varying the number of features for further efficiency gains 
seems promising to try with our content and learning model. 

The sequential decision model provides large efficiency 
gains, so it will be important to see how it generalizes to 
more than two levels, where error cascading may be more 
of an issue. There are at least two ways to address the 
problem. One involves improved classifiers and methods 
for setting appropriate decisions thresholds at multiple 
levels. Another approach is through the use of interactive 
interfaces so that people are involved in making some of the 
critical decisions. This is a rich space for further 
exploration. 

Our research adds to a growing body of work exploring 
how hierarchical structures can be used to improve the 
efficiency and efficacy of text classification. We worked 
with a large, heterogeneous collection of web content -- a 
scenario that is increasingly characteristic of the 
information management tasks that individuals and 
organizations face. And, we successfully extended SVM 
models to an application that takes advantage of 
hierarchical structure, for both category learning and run 
time efficiencies. 
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