
Browsing Large Digital Library Collections
Using Classification ‘Hierarchies

S. Geffner D. Agrawal A. El Abbadi
Department of Computer Science

University of California
Santa Barbara, California 93106

(805) 893-4321

{sgeffner, agrawal, amr, smithtr}@cs.ucsb.edu

T. Smith

ABSTRACT
Summarization of intermediary query result sets plays an
important role when users browse through digital library
collections. Summarization enables users to quickly digest the
results of their queries, and provides users with important
information they can use to narrow their search interactively.
Techniques from the field of data analysis may be applied to the
problem of generating summaries of query results efficiently.
Such techniques should permit the incorporation of classification
hierarchies in order to provide powerful browsing environments
for digital library users.

Keywords
Aggregation, summarization, classification, digital libraries,
browsing, searching.

1. INTRODUCTION
Data browsing capabilities are essential in digital libraries. Many
users often have fuzzy or incomplete queries, which they wish to
refine iteratively once they see what a library actually contains. In
order to reline their search, these users need feedback about the
results of intermediate searches; this feedback should summarize
the results of the user’s query in an easily digestible form. We are
studying issues in data browsing in the context of the Alexandria
Digital Library (ADL) [16], which contains large collections of
maps, air photos, and other geospatially-referenced information.
Many of ADL’s users are so-called “naive” users, i.e., people who
are neither librarians, geographers nor database experts. These
users commonly wish to find a map of a certain geographic area at
a certain scale, and perhaps from a certain time period, e.g. “find
me a map of the City of Santa Barbara from the 1950’s”.

Users who query the collection face several obstacles. First, they
may not be aware of exactly what is contained in the collection.
Without guidance, they may issue many queries that return no
results. Second, and conversely, they may issue queries that return

Permission to make digital or hard copies of all or pan of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advant
-age and that copies bear this notice and the full citation on the first page,
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
CIKM ‘99 1 l/99 Kansas City, MO, USA
0 1999 ACM l-58113.146-1/9910010...$5.00

very large result sets. This is problematic because the results
returned by a query become increasingly unmanageable for a user
as the size of the result set grows. For example, suppose a user
makes a request for satellite photographs in a map library. A
query result set that contains a list of 50,000 photos would
probably not be very useful in narrowing the search further; the
result set is too large to be digested easily [2].

These problems in information discovery, to a large degree, result
from inadequacies in the query model supported by most database
indexes. In general, traditional index structures support a “one-
shot” query model: users submit a query to the index, and the
index returns a list of items in the database that fulfill the query.
For very large collections, this model is inherently unwieldy. The
large size of the collection forces users to form very precise
queries, or risk getting enormous result sets that are essentially
meaningless by virtue of their indigestibility. But forming very
precise queries on a collection, about which a user may know very
little, is likely to result in many queries that return empty result
sets. The one-shot query model is appropriate when queries are
issued by people who know the collection, its schema, its
vocabulary, and its contents intimately. It does not fit casual users,
who want to browse collections all over the world without having
to know the associated schemas, vocabularies, etc., of those
collections [5].

Many users also have an entirely different approach to
information discovery than the one-shot model supports: they
wish to develop their queries through browsing in an interactive
fashion, iteratively forming new queries as they see the results of
previous queries. Iterative queries, also called dynamic queries,
are a powerful tool for information browsing and discovery in
unfamiliar collections; by relining searches based on feedback
about previous, broader queries, users can quickly narrow down
their result set to items of interest, even in unfamiliar collections
[15]. The traditional query model, however, does not take into
account the notion that users may need several query/feedback
steps to iteratively create their desired query, and it does not
provide the user with the kinds of information that would be
useful in further refining their search. There are two deficiencies:
first, there is no facility for obtaining a “top-level” description of
all the items in the collection, i.e., to answer the question “what
kind of items does this collection contain?” Every query is issued
“blind”: the user never knows beforehand whether the collection
contains items that might match the query. Second, there is no
capability for providing high level summaries and feedback
regarding the results that are returned for arbitrary queries, which

195

Latitude

Longitude

oow

low

2ow

3ow

4ow

00 ION 20 N 3O N

2 5 6 3

8 2 9 2

3 4 1 8

5 4 6 3

1 I 5 I 3 I 2 I
Figure 1. A hypothetical data cube presenting the number of satellite photos in a collection which cover
given latitude,iongitude pairs. Data-are hypothetical.

would enable users to quickly digest large result sets to determine
if their query needs refinement.

These problems can be remedied by presenting the user with
summary information about any arbitrary query result set, i.e.,
aggregating the items in the result set in some manner. When the
result set is very large, users are better served when they are given
the results in summary form [15]. When a user searches for
satellite photos, a graphical summary showing the numbers of
photos found, organized by geographic region and date, might be
very helpful in further narrowing the search. Such a summary of
an entire collection would enable users to immediately ascertain
whether the collection has what they are looking for. Or,
summaries can show a user that the items they want are not in the
collection at all, e.g. “this collection only has maps from the
period 1900 to 1597”, when the user is looking for 18th Century
maps. Summarization capabilities are particularly helpful when a
user first encounters a collection, e.g. when searching for
interesting collections on the web.

In addition, when users start with broad or incompletely-specified
queries, summaries and feedback regarding query results can be
very useful in helping them narrow their query to manageable
result sizes. The presentation of such summaries at the broad-
query stage can prevent users from pursuing query directions that
will result in empty result sets [2]. Summaries and aggregations
can alert users to dimensions they may use to further refine their
queries, and can help users discover trends that occur when they
make modifications to their queries [151. Efficient summary
capabilities for arbitrary queries on large collections will be an
essential element in providing the interactive querying and data
browsing that users desire with very large collections, such as
those in digital libraries. Traditional database index structures are
not themselves designed to provide efficient aggregated
summaries of arbitrary queries. To produce such summaries, a
traditional index structure would have to retrieve all the items
matching a query and use them to generate the desired summary;
this can be very costly when query result sets are large.

The data cube [8], also known in the OLAF’ community as the
multidimensional database [1, 14, 31, is a tool for information
analysis which aggregates information contained in databases and
data warehouses. A data cube is constructed from a subset of
attributes in the database. Certain attributes are chosen to be
measure attributes, i.e., the attributes whose values are of interest.
Other attributes are selected as dimensions or functional

attributes. The measure attributes are aggregated according to the
dimensions. For example, consider a hypothetical database
containing information about a collection of satellite photos. One
may construct a data cube from the database with COUNT as a
measure attribute, and LATITUDE and LONGITUDE as
dimensions; such a data cube would provide aggregated total
counts of all photos covering a given location on the Earth (Figure
1). We will limit our discussion to two dimensions merely for
ease of presentation; in real-world applications there could be
many additional dimensions, such as scale, date of publication,
etc.

While use of the data cube has primarily been confined to data
analysis and data mining applications, we will present techniques
that permit the data cube to form the basis for efficient generation
of summaries of query result sets. We further offer a technique
for integrating classification hierarchies into the data cube
framework, to support essential browsing capabilities in digital
libraries.

Paper Organization The paper is organized as follows. We
discuss related work in Section 2. Section 3 describes a means by
which data cubes may be utilized to form the basis for efficient
generation of summaries of user query result sets. Section 4
addresses the need to incorporate classification hierarchies into a
browsing system, and presents a method of doing so within the
data cube framework. Section 5 considers the case when multiple
classification hierarchies are present for browsing. The paper is
concluded in Section 6.

2. RELATED WORK
Researchers have noted the utility of providing summaries of
query results. User studies involving systems that give visual
feedback of query results have been shown to assist users in
forming and refining their queries [2, 15, 181. Other such systems
[4, 9, 131 have incorporated the use of aggregations to enable
easier understanding of large query result sets. These systems are
typically designed to work on top of existing database
management systems (DBMS), and do not directly address the
question of efficiently supporting summaries of query results at
the system level.

Other work has examined ways to generate summaries efficiently.
Salzberg and Reuter [171 have proposed maintaining an auxiliary
index and storing frequently used aggregation values into it. The
method makes use of a multidimensional index, along with

196

Scales

1:5k-1:49k: 21,731 items

l:SOk-1:499k: 150,561 items

1:5OOk-1:999k: 304 items

1: 1 M+: 27 items

Your query found 201,623 maps summarized as follows:

Continents Dates

Africa: 0 items before 1900: 0 items

Antarctica: 0 items 1900-l 949: 32,157 items

Australia: 0 items 1950-1959: 29,533 items

Europe/Asia: 201,623 items 1960-1969: 44,740 items

North America: 0 items 1970-1979: 52,981 items

South America: 0 items 1980-1989: 37,002 items

Other: 0 items 1990+: 5,210 items

Would you like to:

1) Retrieve the selected records now, or

2) Refine your query further?

Enter choice: _

Figure 2. Sample interface showing a summary of the query results returned by a query for “items in Europe”.
Data are hypothetical

supporting data structures to increase the efficiency of
synchronizing the auxiliary index with the main index. However,
the authors note that updates are very expensive in their model,
requiring 2” updates to the auxiliary index for each update to the
main index, where n is the number of dimensions, and they
propose that such an index only be built when the data are not
likely to change. This model is not appropriate for a library, since
library collections are updated frequently. Johnson and Shasha
have proposed hierarchically split cube forests to address the
problem of obtaining summaries efficiently [12]. The approach
results in efficient retrieval of summaries; however, the model
requires space that grows exponentially as the number of
dimensions increases and as the number of unique values in any
dimension increases. The space requirements would not be
scalable to a large library collection. We have proposed the Smart
Index[S], which incorporates summary information into the nodes
of a standard index tree, such as a b-tree. While this method is
successful in providing summaries of arbitrary user queries, in
general its query performance is related to the area enclosed by
the user’s query. Since many exploratory queries begin as large-
area queries, it would be preferable to find a method that is
insensitive to the query area.

In the area of data cubes, Ho et. al. have presented a method of
calculating range sums in the data cube in constant time which we
call the prefix sum method [111. The relative prefix sum method
[7] improves upon the Ho et. al. results by lowering the cost of
updates to the structures; the dynamic data cube [6] further
improves upon these methods by providing balanced query and
update performance, and also gracefully handles sparse data cubes
and data cubes that grow dynamically. These techniques may be
applied when the measure attribute involves sum, count, average,
rolling sum, rolling average, and other useful aggregates.

3. BROWSING IN NUMERIC DOMAINi
We envision browsing as an interactive process wherein a user
begins with a broad query. At each step in the query process, the
system provides feedback regarding the results of the query, at
which point the user may modify their query further. Consider the
following examples, for which we have constructed a hypothetical
database that contains latitude, longitude, scale and date of
publication information for the Alexandria Digital Library’s
collection of maps.

A user is looking for a map of Europe for a study he is planning
on weather patterns. He begins by forming a query specifying the
latitude and longitude boundaries of Europe, and submits the
query to the DBMS. A traditional index would return a list of
items falling within the specified coordinates; for ADL this would
return approximately 200,000 items. This is a case when a list of
items matching a query is indigestible for a user. A traditional
system would not provide any information as to how the query
might be modified so as to narrow the large result set; no
summary information is available about the items in the query
result set. A browsing system, however, would at this stage return
only a summary of the items in the result set, which would be
presented to the user via a suitable interface (Figure 2). The user
would then be asked to either accept the query “as is”, in which
case the actual records would be retrieved, or to modify the query.
This process of query, receive feedback is repeated until the user
is satisfied that the query results are approximately what the user
is looking for, and are also manageable in size. In this scenario,
the user sees immediately that 200,000 items is too many for him,
so he modilies his query to include scale information in the range
l:lM+. The summary information acts as a guide to these
modifications, letting him know which ranges are populated [IS].
Since the summary shows that there are no maps in this collection
having dates before 1900, the user knows not to search in that
range. Similarly, ranges that are highly populated may indicate

197

areas in which the collection is particularly strong, such as maps
of Europe from the 1970’s.

Another user wishes to find maps of the town of Isis Vista from
the 1930’s. She forms a query using the latitude and longitude of
Isla Vista and the date range 1930-1939, and submits the query to
the DBMS. She receives a summary of the results of her query in
the same form as Figure 2. Noticing from the summary of her
query results that the collection does not have any maps of Isla
Vista that fulfill her query, she decides to drop the date
requirement and see what the collection contains for lsla Vista in
general. She resubmits her query without the date information.
The summary she receives shows that the collection has maps of
Isla Vista, but mostly from the 1940’s through the 1970’s. She
decides that maps from the 1940’s will be sufficient, and modifies
her query accordingly. The summary information enabled her to
see how her query might be modified so that the system could
return items of interest to her.

Summaries take many forms. When a user is searching for maps,
suitable summaries might include the number of maps matching
the query, perhaps along with breakdowns showing how many
maps fall into various categories, date ranges, etc. The nature of
summaries depends upon the utility of the summaries to the user
population. This paper is concerned with summaries that are
numeric in nature. It is assumed that the user’s query will take the
form of ranges along several dimensions, e.g. a range of dates of
publication, a range of latitudes and longitudes covered by the
map, etc. The area enclosed by a query is defined to be the area of
the multidimensional bounding box formed by these ranges. A
method is required that will efficiently generate summary
information for the result sets of user queries, and do so in a
manner that is incensitive to the size of the area enclosed by the
query.
When the summaries are numeric, their generation is related to the
notion of range sum queries in data cubes. Range sum queries
aggregate the measure attribute in the data cube within the range
of the query. Queries of this form are currently used in data
analysis environments for finding trends and discovering
relationships between attributes in the database; however. we may
adapt them to our browsing requirements. Returning to our data
cube example, a typical range sum query would calculate the
number of satellite photos in the collection which cover a given
region on the planet (Figure 3). In the figure, the values in the
shaded region are aggregated (in this case, summed) to produce
the summary corresponding to the area of the user’s range query.

Since range sum queries calculate summaries for arbitrary range
queries, they may be employed to provide the summarization

capabilities necessary for browsing. The sum of the cells in the
shaded region provides the summary we desire: the number of
photos falling within the range of the user’s query. However, we
would not use the naive approach of actually summing the cells in
the range of the query; in the worst case. this would involve
summing every cell in the data cube, and thus would not be an
efficient approach. There are currently several efficient methods
which calculate range sum queries in data cubes, as briefly noted
in Section 2. While a detailed description of the workings of
these methods falls outside the scope of this paper, two of the
methods, the prefix sum method [1 I] and the relative prefix sum
method [7], efficiently calculate these range sums in constant time
by precomputing various sums of the data cube. The dynamic
data cube method [6] goes a step further by providing both
efficient queries and updates on the data cube, and allows for
dynamic growth of the data. The size of the shaded region, i.e.
the area enclosed by the query. has no impact on the query
performance of these methods; thus, these methods are suited for
browsing environments, where it is expected that the area
enclosed by user queries will vary greatly.

A data cube would be constructed for the dimensions of interest in
the collection and stored using one of these methods. Each cell ot
the data cube would contain appropriate summary information for
the items in the collection. While the figures show only one
summary value per data cube cell. in general the summaries
contained in each cell can be comprised of many values. For
example, as in Figure 2, the summary stored in each cell might
consist of an array of integers that count the number of library
items falling into different continents, decades, and scales. A
summary of the results of any query could then be calculated very
efficiently using the range sum techniques.

4. CLASSIFCATION HIERARCHIES
The range sum methods discussed in Section 2 may be used to
obtain the summaries we need. as long as the domains of the
dimensions are numeric. However, digital libraries also utilize
domains that are non-numeric, such as classification hierarchies.
Support for browsing utilizing classification hierarchies is an
important tool for users of digital libraries; and. in fact, is a
general functionality that is useful in many database applications.
In this section we argue for the importance of includme
classification hierarchies in the browsing environment. M’r
provide a mechanism for incorporating classification hierarchies
into data cube techniques to support the summarization
capabilities required for browsing.

1 Latitude I

1
__---

Longitude 00 1oN 20 N / I 30 N 4 /
I

Figure 3. A range sum query over a data cube.

198

4.1 The Importance of Classification
Hierarchies in Browsing
Classification hierarchies provide an organization to data that is
uniquely suited to digital library browsing because they organize
collections from a user’s point of view. In contrast, there are some
algorithmic methods that may be used to discover arbitrary
associations and relationships in data. For example, Gibson et. al.
[101 have sought to discover associations between categorical data
items in a database. The method seeks to cluster related items, so
that relationships between the data items will be come apparent,
However, this method, and other methods that seek to find
associations between data in the database (e.g., see the work done
by H. Chen et. al.), may not be appropriate for data browsing
environments in digital libraries. This is due to the fact that,
while such methods are designed to discover arbitrary associations
between the data items in the database, the exact nature of the
relationships they reveal may not always be obvious. Gibson et.
al. show that, in a database of automobile sales information, such
methods may reveal that there is a relationship between the sales
patterns of automobiles built by the manufacturers “Toyota” and
“Honda. ” However, the exact nature of the relationship is not
necessarily discovered by the methods; the methods reveal only
that the sales figures for automobiles built by these manufacturers
appear to be related in some way. Perhaps the association is due
to the fact that these companies are both based in Japan and are
subject to the same factors that influence overseas shipping, or
perhaps they both are subject to the same seasonal patterns of car
purchasing.

Even when the exact nature of the discovered relationships is
known, these relationships may not be the ones that users would
choose to browse over. The relationships these methods discover
are derived from the data items in the database; one could say that
they present the database from the data’s point of view. Thus the
relationships that are revealed are ones that are interesting from
the data’s point of view; for example, that “Toyota” and “Honda”
are related. While data analysts are eager to discover such
relationships, users who are browsing may be baffled when data is
organized in this manner. When the database is structured from
the data’s point of view, it may not be clear to the user how the
data is organized, why certain items are grouped together, and
where a desired item may fall within that structure. Users desire
the data to be structured in a way that makes sense from the user’s
point of view. The purpose of the browsing environment, after
all, is to present the data in a structured way that facilitates the
user’s discovery of desired information. When the very structure
of the information is not clear, the browsing process is derailed.
After a user has found an item of interest, it may then be useful to
ask the system to display related items; however, the user still has
to be able to find that first item. Methods that discover arbitrary
relationships in the database are not likely to be suitable for the
primary browsing environment.

Figure 4. A simple classification hierarchy.

Classification hierarchies, on the other hand, are particularly
suited to browsing. Classification hierarchies, such as the Library
of Congress Subject Headings (LCSH), organize information in a
manner that is hierarchical, consistent, user-understandable, and
eminently navigable. Classification hierarchies allow users to
begin at a high-level category, such as “Physiology,” and proceed
to narrow their search, to “Physiology:Human,” for example.
Indeed, libraries already organize their holdings using
classification hierarchies, and users are familiar with the notion of
using these hierarchies to refine their query.

Existing range sum methods in data cubes may be used to support
browsing in numeric domains. A new method is desired that
would allow classification hierarchies to be incorporated into the
browsing environment. We offer a solution which permits the
incorporation of classification hierarchies into the range sum
techniques described, thus creating a powerful, unified
environment for database browsing.

4.2 Data Cube Based Aggregation of
Classification Hierarchies
Figure 4 shows an example of a simple classification hierarchy
presented as a tree. A user may “browse” such a classification
tree, using an appropriate interface, by beginning at the root.
Shneiderman et. al., for example, have proposed a number of
interesting interface techniques for navigating hierarchical
structures. The user would refine their search by choosing a node
to visit. The user may continue to ascend or descend the various
nodes of the tree, until the user is satisfied that their position in
the classification tree is consistent with the intent of their query.
While the tree in the figure is balanced, this is not required.

We have envisioned browsing as an iterative process, wherein the
user forms a broad query encompassing the general area of
interest, and refines (narrows or broadens) the range of the query
depending on the intent of the query and the results of previous
queries. Our goal in earlier work was to generate summary
information quickly for the result set of an arbitrary user query to
enable the iterative browsing process. As we have argued, such
summary information is useful in assisting the user to make
decisions regarding the refinement of their search. In the case of
classification trees, this means presenting summary information
for each node visited: this information summarizes the data items
that fall under the node.

Our previous methods support efficient summary generation for
arbitrary range queries over numeric domains. The classification
tree is not a numeric domain, and does not obey the same
properties as a numeric domain; as a result, it is not immediately
apparent how range searching relates to such a tree. In the figure,
we observe that the nodes Head and Hand are both children of the
node Human, but have no natural ordering between them.
Furthermore, the nodes Head and Leaf also have no ordering
between them. The notion of “range searching” is clearly not
generally applicable to such a tree. For example, it would not
make sense to speak of a query having the range (Head..Leaf);

199

since there is no ordering between the nodes Head and Hand, it is
not clear whether or not such a range includes the node Hand.
Furthermore, from a semantic point of view, the range query
(Head..Leaf) is nonsensical.

We observe, however, that it does make sense to say that a query
has a range (Human); and clearly the node Human may be seen as
enclosing the nodes Head and Hand. Thus, each individual node
of the classification tree can be seen as itself representing a range,
i.e., the range that encloses all nodes of its subtree. When a range
is defined in this manner, we do not encounter the problems
inherent in ranges such as (Head..Leaf). Since all children of a
node are included in the node’s range, the lack of ordering
between siblings is not an issue; atso, the semantics of this
definition of range are consistent with the expectations of users.
A user whose query is, “show me what this database contains
regarding Physiology:Human,” would expect to retrieve
information regarding all nodes in the subtree rooted at the node
Human in the tree.

When range is defined in this manner, we may employ a
straightforward process to map nodes in a classification tree to an
integer domain so that the methods of previous sections can be
utilized. The mapping must obey two properties:

1) The range assigned to a node must always enclose the range of
all nodes in its subtree.

2) The roots of two subtrees that are disjoint must have ranges
that are disjoint.

We present a brief algorithm for numbering nodes in a tree such
that the resulting node ranges obey these properties. Leaves in the
tree are given the singleton range, e.g. (]..I). Each leaf is
assigned a unique range that proceeds incrementally from the left-
most child to the right-most child. Each parent node encompasses
the range that is a union of all ranges of its children. Since the
children are numbered sequentially, the range of the parent will be
continuous. Furthermore, the ranges of siblings will be disjoint.

Figure 5 shows the classification tree as numbered by the
algorithm. The leaves are assigned unique, incrementing, disjoint
singleton ranges from left to right. Note that the relative numbers
assigned to siblings have no importance. For example, node Hand
was arbitrarily assigned the range (1.. I), while Head was assigned
(2..2); the assignments for these nodes could just as well have
been reversed, since there is no inherent ordering between these
nodes. Similarly, the subtree rooted at node Plant could have
been numbered before the subtree rooted at Human. The relative
numbering of siblings is not important because, as already
discussed in the context of the range (HeadLeaf), range queries
are only defined when the range of a single node is specified. It

Figure 5. Classification hierarchy with node ranges.

makes semantic sense to query over the “range” of Physiology, but
not over the range (Hand..Leaf). Since a parent always encloses
the range of all its children, either ali children of a node will be
included in the resulting answer, or none will; therefore, the
relative numbering of siblings is unimportant. Of course, a user
may still form a query that is a union of disjoint ranges, e.g. “Find
Physiology:Human OR Physiology:Plant:Leaf.” Since the ranges
of these nodes are disjoint, such a query would be answered by
summing the results of the two disjoint queries
Physiology:Human and Physiology:Plant:Leaf. This is consistent
with typical database querying models.

On a system level, this method of constructing node ranges
permits a classification tree to be used as a dimension of the data
cube. The cIassification tree is numbered as described. Each leaf
of the resulting tree has a singleton range. Summary information
for each leaf is then placed in the data cube cell corresponding to
the range of the leaf. The user navigates the classification tree via
an appropriate user interface; the user need never be aware that
nodes of the classification tree are assigned ranges “behind the
scenes.” When the user visits a node, the system takes the range
of the node and uses it in conjunction with the data cube methods
described earlier to generate summary information for the user’s
query. Since the range of a parent node encloses the ranges of all
nodes in the parent’s subtree, the summary so generated will
accurately reflect all items in the database that belong within the
node’s classification.

4.3 Browsing with Multiple Classifications
There are many useful classification hierarchies for describing
collections. For example, a set of library books may be classified
using LCSH. If some books are in the computer science domain,
they may also be classified using ACM. Each classification
hierarchy approaches a collection from a unique viewpoint. It
may be beneficial for users to have several, or many, classification
hierarchies at their disposal when they are browsing.

To support browsing with multiple active classifications, each
classification hierarchy may be placed in its own dimension in the
data cube. The data cube may contain many dimensions; using
the techniques described here, each dimension may be comprised
of a numerical domain, such as date of publication, or of a
classification-based domain. Each of these dimensions is a
component of a user’s browse query. Using an appropriate user
interface, a user may modify the range of any or all of the
dimensions in the process of narrowing down their search. When
a user has not specified a range in a given dimension, the entire
range of the dimension is assumed; since the range sum methods
provide performance that is independent of the area enclosed by
the query bounding box, there is no performance penalty for the
large query areas thus formed. Thus, the techniques we have
described permit browsing while simultaneously modifying query
ranges along many dimensions, thus creating a powerful browsing
environment.

200

5. CONCLUSION
The data cube has been proposed for analytical processing
environments. The powerful techniques that have been developed
in this area are also useful in other domains. We have shown that
data cubes can be used in a library context as a means of
efficiently generating summaries of the results of user queries;
such summaries can be very helpful during interactive searches of
library collections, We have presented a means by which
classification-based information can be incorporated into the data
cube. The combination of the techniques we have presented allow
a user to interactively modify a query through browsing, utilizing
many different dimensions simultaneously; the dimensions can be
a mix of numeric domains and classification hierarchies. Several
classification hierarchies can be active for the same data, and
users can interactively browse through the data using the different
viewpoints provided by each hierarchy. At each step of the query
process, the user is presented with summary information regarding
their query results as an aid to further query refinement. The
methods we have presented provide system-level support for the
powerful database browsing environment we have envisioned.
We are currently in development of a system which utilizes these
techniques to provide a browsing environment for digital libraries.

6. ACKNOWLEDGEMENTS
Portions of this research have been supported by NSF under
grant number IRI94-1133.

I.
[II

PI

[31

[41

[51

RX

t71

REFERENCES
R. Agrawal, A. Gupta, S. Sarawagi. Modeling
multidimensional databases. In Proc. of the 13th Int’l
Conference on Data Engineering, Birmingham, U.K.,
April 1997.

C. Ahlberg, C. Williamson, B. Shneiderman. Dynamic
Queries for Information Exploration: An
Implementation and Evaluation. In Proc. CHI’92:
Human Factors in Computer Systems, 1992.

E. F. Codd. Providing OLAP (on-line analytical
processing) to user-analysts: an IT mandate. Technical
report, E.F. Codd and Associates, 1993.

K. Doan, C. Plaisant, B. Shneiderman, T. Bruns. Query
Previews for Networked Information Systems: A Case
Study with NASA Environmental Data. SIGMOD
Record, 26(1):75-8 1, March 1997.

S. Geffner, A. El Abbadi, D. Agrawal, T. Smith, M.
Larsgaard. Smart indexes for efficient browsing of
library collections. In Proc. of IEEE Advances in
Digital Libraries Conference, pages 107-l 16, Santa
Barbara, California, April 1998.

S. Geffner, D. Agrawal, A. El Abbadi. The Dynamic
Data Cube. Submitted for publication.

S. Geffner, D. Agrawal, A. El Abbadi, T. Smith.
Relative Prefix Sums: An Efficient Approach for

[81

r91

Querying Dynamic OLAP Data Cubes. To appear in
Proc. of the 15th International Conference on Data
Engineering, Sydney, Australia, March 1999.

J. Gray, A. Bosworth, A. Layman, H. Pirahesh. Data
Cube: A relational aggregation operator generalizing
group-by, cross-tabs and sub-totals. In Proc. of the 12th
Int’l Conference on Data Engineering, pages 152-159,
1996.

J. Goldstein, S. Roth Using Aggregation and Dynamic
Queries for Exploring Large Data Sets. In Proceedings
Computer Human Interaction ‘94, 1994.

[lo] D. Gibson, J. Kleinberg, P. Raghavan. Clustering
Categorical Data: An Approach Based on Dynamical
Systems. In Proceedings of the 24th International
Conference on Very Large Databases, 1998. D.
Gibson, J. Kleinberg, P. Raghavan. Clustering
Categorical Data: An Approach Based on Dynamical
Systems. In Proceedings of the 24th International
Conference on Very Large Databases, 1998.

[l l] C. Ho, R. Agrawal, N. Megiddo, R. Srikant. Range
Queries in OLAP Data Cubes. In Proc. of the ACM
SIGMOD Conference on the Management of Data,
pages 73-88, 1997.

[12]T. Johnson, D. Shasha. Hierarchically Split Cube
Forests for Decision Support: description and tuned
design. New York University Department of Computer
Science, Technical Report TR1996-727, November,
1996.

[13]M. Livny, R. Ramakrishnan, K. Beyer, G. Chen, D.
Donjerkovic, S. Lawande, J. Myllymaki, K. Wenger.
DEVise: Integrated Querying and Visual Exploration
of Large Datasets. SIGMOD Record, 26(2):301-12,
June 1997.

[14]The OLAP Council. MD-API the OLAP Application
Program Interface Version 5.0 Specification,
September 1996.

[15] B. Shneiderman. Dynamic Queries for Visual
Information Seeking. IEEE Software, 11(6):70-77,
November 1994.

[16]T.R. Smith, J. Frew. The Alexandria Digital Library.
Communications of the ACM 38(4):61-62, April 1995.

[17]B. Salzberg, A. Reuter. Indexing for Aggregation. In
High Performance Transaction Systems (HPTS)
Workshop, 1995.

[18]C. Williamson, B. Shneiderman. The Dynamic
HomeFinder: Evaluating Dynamic Queries in a Real
Estate Information Exploration System. In Proc. 15th
Annual International SIGIR ‘92, 1992.

201

