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Abstract 

Hypertext cnvironmcnts such as the Web are rich with both 
word and link cues that can be exploited by autonomous 
ngents performing distributed tasks on behalf of the user. 
This paper characterizes such environments and identifies 
the fcaturcs that are most useful and readily available. We 
dcacribe the adaptive representation of an ecology of re- 
trieval agents who attempt to capture important features of 
their surroundings, and base their behaviors upon them. We 
PERCUSS how such a representation allows the agents to inter- 
act with the environments where they are situated. Agents 
cnn internalize words that are locally correlated with fitness, 
based on user feedback. They are shown to outperform non- 
ndaptivn search by an order of magnitude. Furthermore, 
cnch agent learns new strategies at local time and space 
scnlcs, while the population evolves at a global scale. 

1 Introduction 

Imngine that you just submitted a query to your favorite dig- 
ital library or search engine on the Web, and received a long 
list of “hits” aa a response. At this point, you are probably 
going to browse manually through some of the links, giving 
highor prcccdcncc to those that appear more promising and 
backtracking when you feel that a branch is exhausted, un- 
til you nre satisfied that further browsing will provide little 
further discovery of useful documents. 

In many situations like this, users invest a large amount 
of time in the manual portion of the search. Yet the behavior 
of tho browsing user in a case like this could be modeled with 
relative case by an agent employing a “best-first-search” 
strategy, given an adequate evaluation function to predict 
the relevance of a page from looking at just a small por- 
tion of text surrounding a link to that page. There is, then, 
room and need for intelligent, adaptive machine learning 
methods to complement current search engine technology 
by automnting such processes of personalized information 
discovery, 

In fact, the paradigm of autonomous agents is receiv- 
ing much attention because of the difficulty experienced by 
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users in coping with the information overload caused by the 
increasing amount of information available on-line. Agents, 
or semi-intelligent programs making automatic decisions on 
behalf of the user, are viewed by many as a way of decreas- 
ing the amount of human-computer interaction necessary for 
the information management task [15]. 

The Web possesses many of the features making it an 
ideal target for adaptive agents. Many different agents in 
a population can adapt to the local characteristics of the 
different places where each is situated within the large, het- 
erogeneous environment. Each agent individually, and the 
population as a whole, can adapt over time to the changes of 
the dynamic environment in which servers and documents 
are continuously being added, deleted, and moved. Finally, 
agents can execute in parallel on different server machines 
because the environment is distributed. 

Several machine learning techniques have been suggested 
to produce effective information agents, yielding for example 
agents that perform look-ahead searches and provide sugges- 
tions to the user on the basis of reinforcement learning [9]. 
Techniques such as weighted keyword vector representations 
and relevance feedback, in conjunction with genetic algo- 
rithms and/or paradigms inspired by natural or economic 
systems, have been applied to information retrieval and fil- 
tering [21, 18, 11. 

In these approaches, agents require some sort of supervi- 
sion in order to adapt to the preferences of the user and/or 
to the external environment. The user may supervise the 
agents, for example, by allowing them to look over his shoul- 
ders, or by providing them with relevance feedback. In 
other systems, agents are completely unsupervised but can- 
not learn or adapt. For example, in the Fiih Search algo- 
rithm [5] agents in a population of identical clones follow 
fixed, exhaustive search strategies. 

We propose that agents should be abIe to perform end 
adapt in a completely autonomous fashion in the absence 
of supervision from the user, while making use of the user’s 
feedback when this is available. In thii paper me discuss 
the use of algorithms based on adaptive, intelligent, au- 
tonomous, distributed populations of agents making local 
decisions as a way to automate the on-line information search 
and discovery process in the Web or similar environments. 
The ARACHNID system was built to test the suitability of 
this approach 1171. In a recent paper we analyzed the high- 
level behavior of the algorithm, and its interaction with an 
abstraction of the environment, from a theoretical perspec- 
tive [16]. Here me will focus on a representation of AHACH- 
IVID agents allowing for the exploitation of the wealth of 
statistical and topological cues present in distributed test 
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Figure 1: Link topology measures from two distributed text 
environments, the Web and Britannica Online. The R and 
G measures are based on retrieved sets by the Lycos and 
Rritannica search engines, respectively [6, 141. The lower 
bound is R = G. (Reprinted from [16].) 

environments. 

2 Text as environment 

The agent paradigm can be reduced to a very simple algo- 
rithm in which the agent repeatedly receives input encoding 
state features and produces output encoding actions. What 
fcaturcs arc chosen to encode state and how the function 
mapping input to output is computed are the representa- 
tion “details” by which any two agents will differ. 

Distributed environments lend themselves to the agent 
parndigm, Examples of state are a machine, file system, or 
picco of data. Actions can entail reading a file, migrating 
n process, or issuing a request. In a distributed hypertext 
cnvlronmcnt, a state is a document and its features are the 
words that make up the document. The action performed by 
nn agent is the traversal of a link to access a new document 
from the same or a different server. Let us now consider 
both resources - word features and link structure - more 
closeIy, 

Words are the principal asset in text collections, and 
virtually all information retrieval systems take advantage of 
words to describe and characterize documents, query, and 
concepts such as “relevance” or L’aboutness.” Distributed in- 
formation environments - from small hypertext collections 
such as a user manual, to larger corpora such as a CD-ROM 
encyclopedia, and to immense networked environments such 
ns the Web - are normally made of documents containing 
text, and therefore statistical features such as word frequen- 
cies remain central. Two documents are %imilar” if they 
arc about similar topics, and therefore would appear close 
to each other in a space whose topoIogy is based on word 
fontures. This metric can be called word topology and is 
tho reason why documents are usually represented as word 
vectors in information retrieval. 

WC want to argue that the structure imposed by infor- 
mation providers upon the organization of documents can 
give agents another useful resource. Links are manually in- 
serted, positioned, and described by authors within docu- 
mcnts. This superimposes a structure upon the collection 
ol documents, for the very purpose of guiding the browsing 

user - or agent. We have conjectured that even in unstruc- 
tured information spaces, authors effectively cluster docu- 
ments about related topics by letting them point to each 
other [16]. To see this, call R the conditional probability 
that a document is relevant with respect to a query, given 
that it is pointed by a link from another document that is 
relevant with respect to the same query. And call G the 
generality of the query, i.e., the fraction of documents that 
are relevant. Then if R > G, it is more likely to hit a rele- 
vant document from another relevant document than from 
any random document. Hence the clustering property, that 
we call link topology. Figure 1 illustrates our finding that 
link topology is a real, measurable asset. 

Note that the information encoded by the word and link 
topologies are quite distinct, and arguably complimentary. 
Links, constructed manually to point from one page to an- 
other, reflect an author’s attempts to relate her writings to 
others’. Word topology is an epiphenomenal consequence 
of word vocabulary choices made by many authors, across 
many pages. The entire field of tiee text information re- 
trieval is based on the statistical patterns reliably present in 
such vocabulary usage. By making our agents perceptually 
sensitive to word topology features and capable of acting by 
traversing lii topology, we expect to find interesting re- 
lationships between the purposeful, manual linkage of Web 
authors and the words they use. 

This paper is an attempt to begin to address some of the 
hard questions that arise when one considers statistical and 
structural features of distributed text environments. How 
can agents best take advantage of both word and link topolo- 
gies? What representations would best enable agents to in- 
ternalize features correlated with their task performance? 
How to generalize good strategies across users, informa- 
tion providers, networks, and time? How do word and link 
topologies constrain each other’s cues from an agent’s adap- 
tation perspective? For example, if the user wants infor- 
mation about sports, agents browsing through pages about 
‘rock climbing” and ‘rock music” should attribute different 
weights to the word “rock.” Where an agent is situated in 
the environment provides it with context within which to 
analyze word meanings - a structured, situated approach 
to poliiemy. Conversely, the words that surround links in 
a document provide an agent with valuable information to 
evaluate links and thus guide its path decisions - a statis- 
tical approach to action selection. 

3 ARACHNID 

ARACHNID’ is a system for online, distributed informa- 
tion search. It is based on the simple algorithm sketched in 
Figure 2. The heuristic behavior by which an agent chooses 
what links to follow, while navigating from document to doc- 
ument, depends on the particular agent representation that 
one may pick. Representation is central to the specification 
of any ARACHNID implementation, and affects all parts of 
the algorithm. 

A crucial part of ARACHNID is the use of relevance 
feedback. The user may assess the relevance of (some of) the 
documents visited up to a certain point by the algorithm. 
Such relevance assessments take place off-line, but they can 
alter the behaviors of agents on-line. 

‘The acronym, due to Dave Demers, stands for -Adaptive Re- 
trieval Agents Choosing Heuristic Neighborhoods for Information Dis- 
covery.” For up-to-date information on the status of the project, visit 
the ARACHNID website at http://uvv.cs.ucsd.edu/‘fil/a&snto 
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0, initialize population of ngonta, each with onorgy 3 
whllo thoro nro nllvo ogonte: 

1, pick random ogont a 
2, pick link to follow from document uhere a is situated 
3, fetch now document D, 
4. a,, + Ea - c(D,) -I- B(D,) 
6, mark II,, no visited 
0, optionally lcorn by reinforcement 
7. If (I3a > c) 

a’ + mutatc(clone(a)) 
&) I&:,, 4- LLh/2 

olsa If (B < 0) 
&e(a) 

0, procwo optional rolcvonco feedback from user 

Figure 2: Pseudo-code for the ARACHNID algorithm. 

3,l Algorithmic details 

The user initially provides a list of keywords and a lit of 
starting points, in the form of a bookmark file2 In step 
(0), the population is initialized by pre-fetching the start- 
ing documents, Each agent is “positioned” at one of these 
document and given a random behavior (depending on the 
roprcsontation) and an initial reservoir of “energy”. 

In step (2), each agent ‘%cnses” its local neighborhood 
by annlyaing the text of the document where it is currently 
sjtuntcd, This way, the relevance of all neighboring docu- 
ments --those pointed to by the hyperlinks in the current 
documcnt- is estimated. Based on these link relevance es- 
timates, an agent “moves” by choosing and following one of 
the links from the current document. 

In step (4), the agent’s energy is updated. Energy is 
needed in order to survive and move, i.e., continue to visit 
documents on behalf of the user. There is only one energy 
“source” in the system: agents are rewarded with energy 
if the visited documents appear to be relevant. The E(D) 
function is used by an agent to evaluate the relevance of 
documents. If a document had previously been visited and 
nsscsscd by the user, the user’s assessment is used; if the 
document had not been visited before, its relevance must be 
cstimntcd. Hcncc the need to mark visited documents (step 
w 

In practice, the marking mechanism is implemented via 
a cache, which also speeds up the process by avoiding dupli- 
cato transfers of documents. Caching documents is a form 
of communications, and one might observe that communica- 
tion is a bottleneck for the performance of distributed algo- 
rithms, Bowever, since network communication is by far the 
most oxponsive resource for the algorithm, the performance 
improvement warranted by the use of a cache should out- 
weigh any degradation due to its constraints. The effects of 
cache size are not considered in the experiments described 
In this paper; the cache is large enough to contain all the 
visited documents. 

Thoro is also only one energy “sink” in the system: agents 
ara charged energy costs for the use of network resources in- 
curred by transferring documents. The cost function c(D) 
should depend on used resources, for example transfer la- 
toncy or document size. For simplicity we assume a con- 
stant cost for accessing the network, and a smaller constant 
cost for accessing the cache - so that chronic latecomers 
nre discouraged. 

Instantaneous changes of energy can be used, in step 
(O), as reward/penalty signals. This way, agents can adapt 
during their lifetime by reinforcement learning. While this 

aTl~le list could ho obtained, for cxnmplc, by consulting a search 
or1glno. 

adaptive process is subject to the noise of short-term fluc- 
tuations in energy, it allows an agent to modify its behavior 
based on prior experience, by learning to predict the best 
links to follow. Thii form of adaptation is appropriate to 
detect environmental cues and regularities at small space 
and time scales. 

In step (7), an agent may be killed or be selected for 
reproduction. In the latter case offspring are mutated, pro- 
viding the variation necessary for adapting agents by way of 
evolution. Since selection is based on the energy that has 
been accumulated over a long time (with respect to a sin- 
gle life cycle), evolution averages out short-term and short- 
range noise and can thus produce agent behaviors better 
adapted over larger space and time scales. Notice that, since 
the threshold E is a constant, the decision whether an agent 
should reproduce is independent of other agents, and there- 
fore ARACBMD minimizes communication among agent 
processes - a necessity for distributed algorithms. 

Finally, in step (S), the user provides the system with 
relevance feedback. This process is optional and can take 
place off-line, without any direct interaction with the agents. 
The user may assess any visited document D as relevant 
or non-relevant, with feedback 4(D) = fl. All the words 
in the document are also assessed by updating a “feedback 
list” of encountered words. Each word in this list, k, is 
associated with an integer count wh that is initialized with 
0 and updated each time any document is assessed by the 
user: Vk E D 

wk + 
1 

b&f1 if+(D)=+1 
Wk-1 ifd(D)=-1 

The word feedback list is maintained to keep a global profile 
of which words are relevant to the user. 

The output of the algorithm is a flux of links to docu- 
ment, ranked according to some relevance estimate -module 
relevance assessments by the user. 

3.2 Architecture 

Another view of the ARACHNID system is offered in Fig- 
ure 3, illustrating the architecture of the system. The Web 
interface is based on the libuuwperl library [12]. The pro- 
totype is written in C and Per1 and runs on UNIX and Mac- 
intosh platforms. Agents obey Internet etiquette by com- 
plying with the proposed standard for robot exclusion [lo]. 
Agents also employ standard information retrieval tools such 
as a filter for noise words and a stemmer based on Porter’s 
algorithm [S]. Finally, agents store an efficient representa- 
tion of visited documents in a shared cache on the client 
machine. Each document is represented by a list of links 
and stemmed keywords. If the cache reaches its size limit, 
the LRU (least recently used) replacement strategy is used. 

Figure 3 highlights the central dependence of the ARACH- 
NID system on agent representation. In the remainder of the 
paper we will describe, analyze, and validate one representa- 
tion of ARACHNID agents. A representation consists of the 
genotype, which determines the behavior of an agent, and 
is passed on to offspring at reproduction; and of the actual 
mechanisms by which the genotype is used for implementing 
behaviors. 

3.3 Agent representation 

The first component of an agent’s genotype consists of two 
parameters ,0,-f E ZR+. Roughly, the former represents the 
degree to which an agent trusts the descriptions that a page 
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Figure 3: Architecture of the ARACHNID agent population. 

contains about its outgoing links, and the latter represents 
the degree to which an agent trusts the user’s relevance as- 
sessments, p and 7 are initialized with uniform random dis- 
trlbutions in intervals delimited by 0 and constants Pmaz, 
-fmnm, rcspcctivcly. 

For the reasons outlined in Section 2, each agent’s geno- 
type also contains a list of keywords, initialized with the 
query terms. And since feed-forward neural nets are a gen- 
eral, versatile model of adaptive functions, we use them as 
a standard computation device. Therefore genotypes also 
comprise a vector or real-valued weights, initialized ran- 
domly with uniform distribution in a small interval centered 
nround 0. The neural net has an input for each keyword in 
its genotype; it uses the hyperbolic tangent as its squashing 
function, with input and activation values in [-1,-l-l], and 
a single real-valued output also in [-1,-l-l]. The keywords 
rcprcscnt an agent’s opinion of what terms best discriminate 
documents relevant to the user from the rest. The weights 
rcprescnt the interactions of such terms with respect to rel- 
evance, 

Let us now describe how the different parts of the sys- 
tcm are implemented, based on the above representation. 
In step (2) of the algorithm, an agent performs action selec- 
tion by first computing the relevance estimates for each link 
from the current document. This is done by feeding into the 
agent’s neural net activity corresponding to the small set 
of (gcnctically specified) keywords to which it is sensitive. 

Figure 4: How an agent estimates each link from the current 
document. For each link in the document, each input of the 
neural net is computed by counting the document words 
matching the keyword corresponding to that input, with 
weights that decay with distance from the link. 

Each input unit of the neural net receives a weighted count 
of the frequency with which the keyword occurs in the vicin- 
ity of the link to be traversed. In the experiments reported 
here, we use a distance weighting function which is biased 
towards keyword occurrences most close to the link in ques- 
tion. More specifically, for link I, the neural net receives, for 
each keyword k input: 

ink,1 = c 1 
i &st(ki, l) 

where k; is the i-th occurrence of k in Da and dist(ki,l) is 
a simple count of other, intervening links. The neural net- 
work then sums activity across all of its inputs, and produces 
output )CI. The process is illustrated in Figure 4. Then, the 
agent uses a stochastic selector to pick a link with probabil- 
ity distribution: 

Pr[Z] = 
@h 

c ,’ ED, e3+ 

After a link has been chosen and the corresponding new 
document has been visited, in step (4) of the algorithm the 
agent has to determine the corresponding energy gain and 
loss; both depend on whether or not the document had been 
visited previously. If the document is in the cache, and the 
user has assessed the relevance of the current document as 
(p(Da), then agent o receives energy 

E(Da E cache) = 7&(W 

If the user provided the system with relevance assess- 
ments, the word feedback list represents a profile of his in- 
terests that is both more current and more accurate than 
the original query; otherwise, the list simply reduces to the 
original query. This list is used to estimate the relevance 
of previously unvisited document, so that the corresponding 
energy intake can be computed: 

E(D, $ cache) = tanh c freq(k, Da) - Ik 
&Da 

where freq(k, Da) is the frequency of term k in document 
D, and Ik is the weight of term k based on relevance feed- 
back. The latter is an extension of the TF . IDF (term 
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frequency-inverse document frequency) weighting scheme: 

wham (7); is the fraction of cache documents containing k. 
Such a weighting formula differs from more traditional TF - 
IDP schemes [22] in at least two respects. First, it is not 
almcd at weighting terms based on how well they describe 
documents, but rather on how well they correlate with rel- 
ovnncc, Therefore it employs algebraic term frequencies to 
account for negative contributions from documents that con- 
tnin the term but are anti-correlated with relevance. Second, 
it is computed online and therefore uses document frequen- 
cies based on the contents of the cache rather than the entire 
collcctlon. The hyperbolic tangent is used to normalize en- 
ergy intakes into the appropriate range [-1, -l-l] -the same 
mngc OR the corresponding neural nets prediction. 

In stop (6) of the algorithm, the agent can compare the 
rclovanco (assessed or estimated) of the current document 
with the estimate of the link that led to it. By using the 
conncctionist version of Q-learning (131, the neural net can 
be adjusted to improve the accuracy of the link estimator. 
After agent a visits document D,, E(Da) is used as rein- 
forcement signal. The neural net’s weights are updated by 
back-propagation of error, using teaching input: 

where 1~ is a discount factor. In the current ARACHNID 
lmplcmentation, learned weight changes are “Lamarkian” 
in that they are inherited by offspring at reproduction [3]. 

At reproduction (step (7) of the algorithm), the offspring 
clanc is mutated to provide the evolutionary process with 
the necessary power of exploration. If a’ is an offspring of 
a: 

Pal t- q&x(1 - fi;p),Pa(l -I- @)I 
7d 1- U[%(l - u.-,),min{-/,(l -I- ~7),clmoz1] 

whcrc 0 < KP, K., < 1 are parameters. While /3’s can grow 
without bound, the 7 distribution is clipped to 7maz to dis- 
courage “stationary” behaviors. Weights are mutated by 
adding random noise: 

The word vector is mutated by replacing the least useful 
(discriminating) term argminkeal(141) with one expected 
to better describe the current document to the user, i.e., a 
term making the current document more similar to those 
asscsscd by the user. In order to keep any single keyword 
to take over the whole genotype, mutation is a stochastic 
process; a new term is selected with probability distribution 

where D is the document of birth. Learning will take care 
of ndjusting the neural net weights to the new keyword. 

4 Evaluation 

Evaluation of a system like ARACHNID is complex and 
must be carried out at different levels. At a high level, 
wo must be confident that the system performs significantly 
bettor than simpler strategies against which it can be com- 
pnrcd. For the online information discovery task, the Web 
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Figure 5: Search length of ARACHNID and BFS for queries 
at different depths in the “Human Society” Propaedia cato 
gory of Encyclopaedia Britannica. Error bars are standard 
errors of means over same-depth queries. 

generally lacks the relevant sets that are necessary to mea- 
sure recall (the fraction of relevant documents that have 
been visited) and precision (the fraction of visited docu- 
ments that are relevant). 

We have therefore selected a subset of the Web as an 
information environment, the corpus of the Encyclopee&c 
Britannica [S]. The advantage is that we can make use of 
readily available relevant sets of articles associated with a 
large number of queries. Articles are in fact organized as the 
leaves of a hierarchical topical tree, called Propae&o, which 
is manually built and updated by skilled human editors. 
Therefore we can use the category title of any Propaedia 
node as a query, and the articles associated with the sub- 
tree rooted at that node as the relevant sets. In additions, 
each article also has hyperlinks to one or more Propaedia 
categories and possibly to other, semantically related arti- 
cles, forming a graph. In the following evaluation exper- 
iments we limit the search to a subtree of the Propaedia 
with approximately 700 nodes, and the associated graph of 
approximately 11,000 articles. 

4.1 Macro analysis 

In the first experiment we measure one version of seer-cm 
length, a criterion combining recall and precision, defined 
es the number of non-relevant documents visited until the 
first relevant document is found [4]. This measure provides 
us with a Macro” analysis because the collective behavior 
of the agent population is observed as a whole, and aver- 
aged across a large number of queries. The search length of 
ARACHNID is compared with that of a simple non-adaptive 
algorithm, namely BFS (breadth-first-search). ARACHNID 
uses reinforcement learning, but for a fair comparison no 
user feedback is provided. The results are shown in Figure 
5: the improvement of ARACHNID over BFS is as large as 
one order of magnitude. 

At a lower level, we considered the ARACHNID ecol- 
ogy’s behavior in response to a single query. This way we 
analyzed the contributions of different parts of the system, 
namely reinforcement learning and relevance feedback. It 
was shown elsewhere [IS] that Q-learning alone can signifi- 
cantly accelerate the discovery of relevant documents, short- 
ening search length by a factor of 10 and improving precision 
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COURT 0.034 
SYSTEM 0.023 
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ADHINISTR 0.017 
TH 0.016 
OFFICk 0.015 
CABINET 0.015 
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*.. 
STRUCTUR* 
1NSTITUT.k 
,.. 
BRANCH * 
.** 

0.011 

0.009 

0.007 
0.007 

0.006 

Table 1: The top portion of the word feedback list after 
3G0 document visits. The original query terms appear with 
stars. 

nccordingiy, Likewise, the use of positive relevance assess- 
monts alone was shown to improve performance after the 
system locates the first relevant documents. Finally, the 
synergy between learning and user feedback results in the 
greatest improvement (an observed 4-fold increase in recall) 
because relevance feedback can take advantage of the earlier 
discoveries elicited by learning. 

The population-wide word feedback list illustrates the 
information that is made available at a global, collective 
level by relevance feedback. Consider for example the follow- 
ing query: “Political institutions: The structure, branches, 
and offices of government.” After the noise words have 
been removed and the remaining words have been stemmed, 
the query is reduced to POLIT INSTITUT STRUCTUR BRANCH 
OPFIC GOVERN. This is all the initial population knows about 
what the user is interested in. But after some of the visited 
documents are assessed by the user, her preferences become 
bettor defined. Consider the situation after 350 document 
have been visited by a number of different agents, assum- 
ing that all of the relevant documents have received positive 
feedback every 50 pages visited. For the above query, the 
word feedback list would look like Table 1. This list captures 
an image of what word features are best correlated with rel- 
cvance, The term COURT, for example, appears to have the 
highest correlation with relevance even though it was not 
part of the query, while GOVERN, sharing second place with 
SYSTEM and PARTI, is the best among the original query 
terms, Bther query words appear less useful in determining 
whether a document is relevant. 

4.2 Micro analysis 

A different type of evaluation can be obtained by a “micro” 
analysis of individual agents trying to answer the same user 
query, but at different times and situated in different areas 
of the information environment. Let us consider the same 
query as in the example above. A typical agent in the initial 
population (shown in Figure 6) has a word vector which 
coincides with the user query; its initial weights are random. 
After learning, the weights reflect the relative importance of 

(polit3-3.65 W.W- 

(=)-0.27 WO- \ 
\ 

(structur)--0.23 
(branch)-0 

(0.19)- 

(0.02)- +;gGzJ 

(offic-)--0.l3 (0.09)- / 

y-o.19 (0.19)- / 
aovern 

Figure 6: An agent from the initial population. The neu- 
ral nets in this case are simple perceptrons, without hidden 
units. The numbers shown are the connection weights and 
output bias after learning (numbers in parentheses are be- 
fore learning). 

the query terms; based on environmental cues perceived by 
this agent during its life, POLIT and BRANCH are perceived as 
the most and the least relevant terms, respectively. 

Two agents born after 350 document have been visited 
and assessed, shown in Figures 7 and 8 respectively, have 
internalized some of the global environmental cues (cf. Ta- 
ble 1) into their internal representations. Query words that 
are not very useful (e.g., INSTITUI and BRANCH) have dis- 
appeared from the keyword vectors through evolution, their 
places being taken by words that better correlate with user 
preferences (e.g., SYSTEH and PARTI). 

Not all agents living at one time, however, are alike. 
They can differ substantially in their perceptions of what 
features are relevant to the user, based on where they are 
situated and on their evolutionary and life histories. This is 
a crucial consequence of our representation model, reflect- 
ing the fact that context refines the meaning of words and 
phrases [23]. For example, agents A and B have internalized 
some common features (SYSTEX, GOVERN) and some individ- 
ual ones (e.g., POLIT vs. OFFICI). Their differences point to 
the role played by the documents visited by their ancestors, 
as well as those in which they are born, in shaping their rep- 
resentations. Agent A (Figure 7), situated on a page about 
“colonialism,” will be looking for terms such as POLIT and 
TH that best discriminate between that document and oth- 
ers. Agent B (Figure 8) will focus more on the word OFFICI , 
better describing the “chancellor” document which gave rise 
to its birth. 

We conclude this analysis by noting that even features 
shared by agents may be quantitatively different. For exam- 
ple, both agents have GOVFRN in their genotypes; but while 
agent A attributes weight 0.19 to thii term, the feature is 
duplicated in agent B and the combined weight is slightly 
larger (0.21). 3 

5 Conclusion 

In this paper we have discussed how to represent agents that 
are to perform autonomous information tasks in distributed 
text environments. We have shown that a population of 
agents who both learn and evolve can adapt to a large, dis- 

3The negative weight is due to a mutation: learning mill eventually 
change its sign and further increase the combined weight. 
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Figure 7: Agents A, born after 368 documents have been vis- 
ited, In this and the following figure, the weights shown are 
thosn inhoritcd at birth (plus mutations) and the keyword 
with emphasis is the result of a new mutation - in this case, 
Tff in a term usually associated with historical events. On 
tha left, part of the document where agent A was born, with 
keyword hits in bold. 01997 Encyclopaedia Britannica, Inc. 

Figure 8: Agents B, born after 372 documents have been 
visited, and its birth document. Note that the new keyword, 
OFFICI, is distinct from the query word OFFIC (cf. Table 
l), 01997 Encyclopaedis Britannica, Inc. 

tributed, heterogeneous, and dynamic environment at dif- 
ferent time and space scales. We have also argued that such 
agents need to be able to internalize the salient features of 
their local environments, by detecting the clues that best 
correlate with their fitness. 

We have described how agents in the ABACHNID sys- 
tem are able to achieve such goals by exploiting both statisti- 
cal word regularities of test environments and the link struc- 
ture of networked environments. For applications where 
both topologies are availabIe, such as onbne information 
discovery on the Web, the ARACHNID approach seems 
promising. 

Macro analysis results provide us with encouraging sup- 
port for the approach: the ARACHNID population can lo- 
cate relevant documents in a large distributed corpora 10 
times faster than a non-adaptive BFS algorithm, using the 
same resources. Also, individual learning can interact with 
user relevance feedback, when this is available, to create a 
synergy that further boosts system performance. 

A micro analysis enabled us to determine that single 
agents can in fact internalize important local features of 
the environment into their internal representation, while the 
collective ecology captures a more global snapshot of what 
features best discriminate between what is relevant to the 
user and what is not. Agent behaviors evoIve with time, 
change over an agent’s lifetime, and are different from agent 
to agent depending on what parts of the environment each 
has experienced. 

We have argued that distributed agents are well suited 
to perform tasks in distributed environments. The current 
ARACHNID implementation is client-based, but the agents 
that we envision are mobile agents that execute on the CPUs 
of servers. It is not just information that must travel, as 
in current client-server protocols, but agent code as well. 
This way agents can use their intelligence to select the in- 
formation to be sent back to the user’s machine, improv- 
ing network bandwidth. Secure languages and protocols are 
needed before information providers will welcome trusted 
autonomous agents to their servers; agent research is pro- 
viding systems technology with the thrust that may enable 
such mobile agents developments feasible very soon [19]. 

Many diierent models of interaction among agents are 
also worth exploration. For example, research is under way 
into the issues of agents learning from other agents, agent 
collaboration, and agent communication languages. The 
first form of direct agent interaction that we are going to ad- 
dress is rccombirmtion. This is a natural part of the genetic 
algorithm that is used to model the evolution of AHACH- 
NID populations. An agent at reproduction can crossover 
its internal representation with that of a nearby agent, per- 
haps one situated on the same server. The two can exchange 
their internal representations, internalizing esperiences that 
are novr relevant to each other because of their proximity. 

Because we have been, in our early experiments, most 
interested in the behavior of agents on a carefully controlled 
and structured corpus (Encyclopedia Britannica), the full 
diversity we can reasonably expect from our agents as they 
interact with the real Web cannot be demonstrated. We 
have shown at least some divergence in the features that 
alloy one agent to be successful within one topical area 
of the Encyclopedia and another, but the real purpose of 
open-ended evolutionary methods Iike those we propose is to 
adapt to the much wider variation found in Web media. We 
expect there to be roles for many different types of agents, 
sensitive to widely varying user demands, and effective at 
searching disparate corpora. 
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In fact, WC anticipate enough varieties of %xpertise” 
within agents that an entire marketplace will form for their 
various skills, The collaborative, social sharing of search 
expcrtisc adapted on behalf of one user, then exploited by 
another, has been considered by others [2, 20, 71. The ex- 
tremely simple form of our agents (viz., small neural net- 
works) allows their expertise to be exchanged in a particu- 
larly straight-forward fashion: If I like what your agent is 
doing for you, and you allow it, I can simply clone a new 
copy of this agent for my own use. As soon as I have in- 
teracted with my copy of this agent, it will quickly come to 
take on fcaturcs of my idiosyncratic preferences. 

Rut progress towards a true economic marketplace for 
the exchange of information-seeking expertise almost cer- 
tninly will require the integration of a middlemanrole. Rather 
than seeking, digesting and evaluating “raw” information re- 
sources directly, such middleman information brokers must 
be made especially sensitive to the value added by the agent’s 
processing. How much more will a user pay for the results 
of their agent’s searches than they would for a simple list of 
all documents visited? Assessing the actual economic value 
of Lhis service can be compared to moderated news groups 
and various “clipping services,,, where a person manually 
porforms a very similar function. This type of editorial fo- 
cusing is the ultimate goal of our information-seeking agents, 
but comparison against the currently available alternatives 
(c,&, the Computists’ Communique newsletter [ll] shows 
just how far we have to go. 
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