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Abstract

Hypertext environments such as the Web are rich with both
word and link cues that can be exploited by autonomous
agents performing distributed tasks on behalf of the user.
This paper characterizes such environments and identifies
the features that are most useful and readily available. We
deseribe the adaptive representation of an ecology of re-
trieval agents who attempt to capture important features of
thelr surroundings, and base their behaviors upon them. We
diseuss how such a representation allows the agents to inter-
act with the environments where they are situated. Agents
can internalize words that are locally correlated with fitness,
based on user feedback, They are shown to outperform non-
adaptive search by an order of magnitude. Furthermore,
each agenf learns new strategies at local time and space
scales, while the population evolves at a global scale.

1 Introduction

Imagine that you just submitted a query to your favorite dig-
ital library or search engine on the Web, and received a long
list of “hits” as a response. At this point, you are probably
going to browse manually through some of the links, giving
higher precedence to those that appear more promising and
hacktracking when you feel that a branch is exhausted, un-
til you are gatisfied that further browsing will provide little
further discovery of useful documents.

In many situations like this, users invest a large amount
of time in the manual portion of the search. Yet the behavior
of the browsing user in a case like this could be modeled with
relative case by an agent employing a “best-first-search”
strategy, given an adequate evaluation function to predict
the relevance of a page from looking at just a small por-
tion of text surrounding a link to that page. There is, then,
room and need for intelligent, adaptive machine learning
methods to complement current search engine technology
by antomating such processes of personalized information
discovery,

In fact, the paradigm of autonomous agents is receiv-
ing much attention because of the difficulty experienced by
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users in coping with the information overload caused by the
increasing amount of information available on-line. Agents,
or semi-intelligent programs making automatic decisions on
behalf of the user, are viewed by many as a way of decreas-
ing the amount of human-computer interaction necessary for
the information management task [15].

The Web possesses many of the features making it an
ideal target for adaptive agents. Many different agents in
a population can adapt to the local characteristics of the
different places where each is situated within the large, het-
erogeneous environment. Each agent individually, and the
population as a whole, can adapt over time to the changes of
the dynamic environment in which servers and documents
are continuously being added, deleted, and moved. Finally,
agents can execute in parallel on different server machines
because the environment is distributed.

Several machine learning techniques have been suggested
to produce effective information agents, yielding for example
agents that perform look-ahead searches and provide sugges-
tions to the user on the basis of reinforcement learning [9].
Techniques such as weighted keyword vector representations
and relevance feedback, in conjunction with genetic algo-
rithms and/or paradigms inspired by natural or economic
systems, have been applied to information retrieval and fil-
tering [21, 18, 1].

In these approaches, agents require some sort of supervi-
sion in order to adapt to the preferences of the user and/or
to the external environment. The user may supervise the
agents, for example, by allowing them to look over his shoul-
ders, or by providing them with relevance feedback. In
other systems, agents are completely unsupervised but can-
not learn or adapt. For example, in the Fish Search algo-
rithm {5] agents in a population of identical clones follow
fixed, exhaustive search strategies.

‘We propose that agents should be able to perform and
adapt in a completely autonomous fashion in the absence
of supervision from the user, while making use of the user’s
feedback when this is available. In this paper we discuss
the use of algorithms based on adaptive, intelligent, au-
tonomous, distributed populations of agents making local
decisions as a way to automate the on-line information search
and discovery process in the Web or similar environments.
The ARACHNID system was built to test the suitability of
this approach [17]. In a recent paper we analyzed the high-
level behavior of the algorithm, and its interaction with an
abstraction of the environment, from a theoretical perspec-
tive [16]. Here we will focus on a representation of ARACH-
NID agents allowing for the exploitation of the wealth of
statistical and topological cues present in distributed text
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Pigure 1; Link topology measures from two distributed text
environments, the Web and Britannica Online. The R and
(7 measures are based on retrieved sets by the Lycos and
Britannica search engines, respectively [6, 14]. The lower
hound is R = G, (Reprinted from [16].)

environments,

2 Text as environment

The agent paradigm can be reduced to a very simple algo-
rithm in which the agent repeatedly receives input encoding
state features and produces output encoding actions. What
features are chosen to encode state and how the function
mapping input to output is computed are the representa-
tion “details” by which any two agents will differ.

Distributed environments lend themselves to the agent
paradigm, Examples of state are a machine, file system, or
piece of data. Actions can entail reading a file, migrating
A process, or issuing a request. In a distributed hypertext
environment, a state is a document and its features are the
words that make up the document. The action performed by
an agent is the traversal of a link to access a new document
from the same or a different server. Let us now consider
hoth resources — word features and link structure — more
closely,

Words are the principal asset in text collections, and
virtually all information retrieval systems take advantage of
words to describe and characterize documents, query, and
concepts such as “relevance” or “aboutness.” Distributed in-
formation environments — from small hypertext collections
such as a user manual, to larger corpora such as a CD-ROM
encyclopedia, and to immense networked environments such
as the Web ~— are normally made of documents containing
text, and therefore statistical features such as word frequen-
cies remain central. Two documents are “similar” if they
are about similar topics, and therefore would appear close
to each other in a space whose topology is based on word
features, This metric can be called word topology and is
the reason why documents are usually represented as word
veetors in information retrieval,

We want to argue that the structure imposed by infor-
mation providers upon the organization of documents can
give agents another useful resource, Links are manually in-
serted, positioned, and described by authors within docu-
ments. This superimposes a structure upon the collection
of documents, for the very purpose of guiding the browsing
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user — or agent. We have conjectured that even in unstruc-
tured information spaces, authors effectively cluster docu-
ments about related topics by letting them point to each
other [16]. To see this, call R the conditional probability
that a document is relevant with respect to a query, given
that it is pointed by a link from another document that is
relevant with respect to the same query. And call G the
generality of the query, i.e., the fraction of documents that
are relevant. Then if R > G, it is more likely to hit a rele-
vant document from another relevant document than from
any random document. Hence the clustering property, that
we call link fopology. Figure 1 illustrates our finding that
link topology is a real, measurable asset.

Note that the information encoded by the word and link
topologies are quite distinct, and arguably complimentary.
Links, constructed manually to point from one page to an-
other, reflect an author’s attempts to relate her writings to
others’. Word topology is an epiphenomenal consequence
of word vocabulary choices made by many authors, across
many pages. The entire field of free text information re-
trieval is based on the statistical patterns reliably present in
such vocabulary usage. By making our agents perceptually
sensitive to word topology features and capable of acting by
traversing link topology, we expect to find interesting re-
lationships between the purposeful, manual linkage of Web
authors and the words they use.

This paper is an attempt to begin to address some of the
hard questions that arise when one considers statistical and
structural features of distributed text environments. How
can agents best take advantage of both word and link topolo-
gies? What representations would best enable agents to in-
ternalize features correlated with their task performance?
How to generalize good strategies across users, informa-
tion providers, networks, and time? How do word and link
topologies constrain each other’s cues from an agent’s adap-
tation perspective? For example, if the user wants infor-
mation about sports, agents browsing through pages about
“rock climbing” and “rock music” should attribute different
weights to the word “rock.” Where an agent is situated in
the environment provides it with contezt within which to
analyze word meanings — a structured, situated approach
to polisemy. Conversely, the words that surround links in
a document provide an agent with valuable information to
evaluate links and thus guide its path decisions ~— a statis-
tical approach to action selection.

3 ARACHNID

ARACHNID! is a system for online, distributed informa-
tion search. It is based on the simple algorithm sketched in
Figure 2. The heuristic behavior by which an agent chooses
what links to follow, while navigating from document to doc-
ument, depends on the particular agent representation that
one may pick. Representation is central to the specification
of any ARACHNID implementation, and affects all parts of
the algorithm.

A crucial part of ARACHNID is the use of relevance
feedback. The user may assess the relevance of (some of) the
documents visited up to a certain point by the algorithm,
Such relevance assessments take place off-line, but they can
alter the behaviors of agents on-line.

1The acronym, due to Dave Demers, stands for “Adaptive Re-
trieval Agents Choosing Heuristic Neighborhoods for Information Dis-
covery.” For up-to-date information on the status of the project, visit
the ARACHNID website at http://wuw.cs.ucsd.edu/~£il/agents
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0, initialize population of agents, each with energy %
while thore are alive ngents:
1, pick random agont a

2, pick link to follow from document vhere ¢ is situated
3, fotch new document D,

4, s = Fa ~c(Da) + E(Dg)

B, mark JJ, oo visited

6, optionally learn by reinforcement

7, I (Fa >¢€)

o’ + mutate(clone(a))
By By 4= Baf2

alsa it (B < 0)
die(a)

8, procopp optional rolevance feedback from user

Figure 2; Pseudo-code for the ARACHNID algorithm.

3.1 Algorithmic detaifs

The user initially provides a list of keywords and a list of
starting points, in the form of a bookmark file.? In step
(0), the population is initialized by pre-fetching the start-
ing documents, Each agent is “positioned” at one of these
document and given a random behavior (depending on the
ropresentation) and an initial reservoir of “energy”.

In step (2), cach agent “senses” its local neighborhood
hy analyzing the text of the document where it is currently
gitnated, This way, the relevance of all neighboring docu-
ments —those pointed to by the hyperlinks in the current
document— is estimated. Based on these link relevance es-
timates, an agent “moves” by choosing and following one of
the links from the current document,

In step (4), the agent’s energy is updated. Energy is
needed in order to survive and move, i.e., continue to visit
documents on behalf of the user. There is only one energy
“source” in the system: agents are rewarded with energy
}f the visited documents appear to be relevant. The E(D)
function is used by an agent to evaluate the relevance of
documents, If a document had previously been visited and
nssessed by the user, the user’s assessment is used; if the
document had not been visited before, its relevance must be
(('sgi)matcd. Hence the need to mark visited documents (step

i3}

In practice, the marking mechanism is implemented via
a cache, which also speeds up the process by avoiding dupli-
cate transfers of documents. Caching documents is a form
of communications, and one might observe that communica-
tion is a bottleneck for the performance of distributed algo-
rithms, However, since network communication is by far the
most expensive resource for the algorithm, the performance
improvement warranted by the use of a cache should out-
weigh any degradation due to its constraints. The effects of
cache sjze are not considered in the experiments described
in this paper; the cache is large enough to contain all the
visited documents,

Thers is also only one energy “sink” in the system: agents
are charged energy costs for the use of network resources in-
curred by transferring documents. The cost function ¢(D)
should depend on used resources, for example transfer la-
tency or document size. For simplicity we assume a con-
stant cost for accessing the network, and a smaller constant
cost, for accessing the cache — so that chronic latecomers
are discouraged,

Instantancous changes of energy can be used, in step
(6), as reward/penalty signals. This way, agents can adapt
during their lifetime by reinforcement learning. While this

This list could he obtained, for example, by consulting a search
engina,
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adaptive process is subject to the noise of short-term fluc-
tuations in energy, it allows an agent to modify its behavior
based on prior experience, by learning to predict the best
links to follow. This form of adaptation is appropriate to
detect environmental cues and regularities at small space
and time scales.

In step (7), an agent may be killed or be selected for
reproduction. In the latter case offspring are mutated, pro-
viding the variation necessary for adapting agents by way of
evolution. Since selection is based on the energy that has
been accumulated over a long time (with respect to a sin-
gle life cycle), evolution averages out short-term and short-
range noise and can thus produce agent behaviors better
adapted over larger space and time scales. Notice that, since
the threshold ¢ is a constant, the decision whether an agent
should reproduce is independent of other agents, and there-
fore ARACHNID minimizes communication among agent
processes — a necessity for distributed algorithms.

Finally, in step (8), the user provides the system with
relevance feedback. This process is optional and can take
place off-line, without any direct interaction with the agents.
The user may assess any visited document D as relevant
or non-relevant, with feedback ¢(D) = £1. All the words
in the document are also assessed by updating a “feedback
list” of encountered words. Each word in this list, k, is
associated with an integer count wy that is initialized with
0 and updated each time any document is assessed by the
user: Vke D

w;.;(—-{

The word feedback list is maintained to keep a global profile
of which words are relevant to the user.

The output of the algorithm is a flux of links to docu-
ment, ranked according to some relevance estimate ~—modulo
relevance assessments by the user.

wr +1
wr—1

if $(D) = +1
if $(D) = —1

3.2 Architecture

Another view of the ARACHNID system is offered in Fig-
ure 3, illustrating the architecture of the system. The Web
interface is based on the libwwu-perl library {12]. The pro-
totype is written in C and Perl and runs on UNIX and Mac-
intosh platforms. Agents obey Internet etiquette by com-
plying with the proposed standard for robot exclusion [10].
Agents also employ standard information retrieval tools such
as a filter for noise words and a stemamer based on Porter’s
algorithm [8]. Finally, agents store an efficient representa-
tion of visited documents in a shared cache on the client
machine. Each document is represented by a list of links
and stemmed keywords. If the cache reaches its size limit,
the LRU (least recently used) replacement strategy is used.
Figure 3 highlights the centrat dependence of the ARACH-
NID system on agent representation. In the remainder of the
paper we will describe, analyze, and validate one representa-
tion of ARACHNID agents. A representation consists of the
genotype, which determines the behavior of an agent, and
is passed on to offspring at reproduction; and of the actual
mechanisms by which the genotype is used for implementing
behaviors.

3.3 Agent representation

The first component of an agent’s genotype consists of two
parameters 3,7 € R*. Roughly, the former represents the
degree to which an agent trusts the descriptions that a page
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Figure 3; Architecture of the ARACHNID agent population.

conkaing about its outgoing links, and the latter represents
the degree to which an agent trusts the user’s relevance as-
segsments, § and +y are initialized with uniform random dis-
tributions in intervals delimited by 0 and constants Bmaz,
“Yman, respectively,

For the reasons outlined in Section 2, each agent’s geno-
type also contains a list of keywords, initialized with the
query terms. And since feed-forward neural nets are a gen-
eral, versatile model of adaptive functions, we use them as
a standard computation device. Therefore genotypes also
comprise a vector or real-valued weights, initialized ran-
domly with uniform distribution in a small interval centered
around (. The neural net has an input for each keyword in
its genotype; it uses the hyperbolic tangent as its squashing
function, with input and activation values in [-1,+1], and
a gingle real-valued output also in [—1,+1]. The keywords
represent an agent’s opinion of what terms best discriminate
documents relevant to the user from the rest. The weights
represent the interactions of such terms with respect to rel-
evance,

Let us now describe how the different parts of the sys-
tem are implemented, based on the above representation.
In step (2) of the algorithm, an agent performs action selec-
tion by first computing the relevance estimates for each link
from the current document. This is done by feeding into the
agent’s neural net activity corresponding to the small set
of (genetically specified) keywords to which it is sensitive.

sum of matches vith
di TN
Ink! ok 1 ghting

agent’s neural net

Figure 4: How an agent estimates each link from the current
document. For each link in the document, each input of the
neural net is computed by counting the document words
matching the keyword corresponding to that input, with
weights that decay with distance from the link.

Each input unit of the neural net receives a weighted count
of the frequency with which the keyword occurs in the vicin-
ity of the link to be traversed. In the experiments reported
here, we use a distance weighting function which is biased
towards keyword occurrences most close to the link in ques-
tion. More specifically, for link I, the neural net receives, for
each keyword k input:

. 1
k= Z dist(Fes, 1)

where k; is the i-th occurrence of k in D, and dist(k;, 1) is
a simple count of other, intervening links. The neural net-
work then sums activity across all of its inputs, and produces
output X;. The process is illustrated in Figure 4. Then, the
agent uses a stochastic selector to pick a link with probabil-
ity distribution:

edM
3Ny
drep, ¢

After a link has been chosen and the corresponding new
document has been visited, in step (4) of the algorithm the
agent has to determine the corresponding energy gain and
loss; both depend on whether or not the document had been
visited previously. If the document is in the cache, and the
user has assessed the relevance of the current document as
¢(D,), then agent a receives energy

E(D, € cache) = va¢(Da)

If the user provided the system with relevance assess-
ments, the word feedback list represents a profile of his in-
terests that is both more current and more accurate than
the original query; otherwise, the list simply reduces to the
original query. This list is used to estimate the relevance
of previously unvisited document, so that the corresponding
energy intake can be computed:

E(D, ¢ cache) = tanh <Z freq(k,Ds) - Ik)
k€D,
where freg(k,D.) is the frequency of term k in document

D, and I is the weight of term % based on relevance feed~
back. The latter is an extension of the TF - IDF (term




frequency~inverse document frequency) weighting scheme:

I=wy- [1+10g (2)]

L \Cr/1
where O}, is the fraction of cache documents containing k.
Such a weighting formula differs from more traditional TF -
IDF schemes [22) in at least two respects. First, it is not

almed at weighting terms based on how well they describe
documents, but rather on how well they correlate with rel-
avance, Therefore it employs algebraic term frequencies to
account for negative contributions from documents that con-
tain the term but are anti-correlated with relevance. Second,
it i8 computed online and therefore uses document frequen-~
cies based on the contents of the cache rather than the entire
collection, The hyperbolic tangent is used to normalize en-
ergy intakes into the appropriate range [—1, +1] — the same
range a8 the corresponding neural nets prediction.

In step (6) of the algorithm, the agent can compare the
reJevance (nssessed or estimated) of the current document
with the estimate of the link that led to it. By using the
connectionist vergion of Q-learning [13], the neural net can
ba adjusted fo improve the accuracy of the link estimator.
After agent a visits document D,, E(D,) is used as rein-
forcement signal, The neural net’s weights are updated by
back-propagation of error, using teaching input:

B(Da) + - 112%7{/\1

where j1 is a discount factor. In the current ARACHNID
implementation, learned weight changes are “Lamarkian”
in that they are inherited by offspring at reproduction [3].

At reproduction (step (7) of the algorithm), the offspring
clone is mutated to provide the evolutionary process with
the neeessary power of exploration. If o’ is an offspring of
a:

Par 4 U[ﬂa(l — kp), Ba(l + ""'13)]
Yar = Ulpa(l = £q), min{ya(1 + &4), Ymaz}]

where 0 € kg, ky S 1 are parameters. While #’s can grow
without bound, the « distribution is clipped to ymez to dis-
courage “stationary” behaviors. Weights are mutated by
adding random noise:

whi = Uwh (1 — kw), wi (1 + Kw))

The word vector is mutated by replacing the least useful
(discriminating) term argmingeqr(JIx]) with one expected
to better describe the current document to the user, i.e., a
term making the current document more similar to those
assessed by the user. In order to keep any single keyword
to take over the whole genotype, mutation is a stochastic
process; a new term is selected with probability distribution

Pr{k] = freq(k, D) - |Li|

where D ig the document of birth. Learning will take care
of adjusting the neural net weights to the new keyword.

4 Evaluation

Evaluation of a system like ARACHNID is complex and
must be carried out at different levels. At a high level,
wo must be confident that the system performs significantly
better than simpler strategies against which it can be com-
pared. For the online information discovery task, the Web
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Figure 5: Search length of ARACHNID and BFS for queries
at different depths in the “Human Society” Propaedia cate-
gory of Encyclopaedia Britannica. Error bars are standard
errors of means over same-depth queries.

generally lacks the relevant sets that are necessary to mea-
sure recall (the fraction of relevant documents that have
been visited) and precision (the fraction of visited docu-
ments that are relevant).

We have therefore selected a subset of the Web as an
information environment, the corpus of the Encyclopaedia
Britannica [6]. The advantage is that we can make use of
readily available relevant sets of articles associated with a
large number of queries. Articles are in fact organized as the
leaves of a hierarchical topical tree, called Propaedia, which
is manually built and updated by skilled human editors.
Therefore we can use the category title of any Propaedia
node as a query, and the articles associated with the sub-
tree rooted at that node as the relevant sets. In additions,
each article also has hyperlinks to one or more Propaedia
categories and possibly to other, semantically related arti-
cles, forming a graph. In the following evaluation exper-
iments we limit the search to a subtree of the Propaedia
with approximately 700 nodes, and the associated graph of
approximately 11,000 articles.

4.1 Macro analysis

In the first experiment we measure one version of search
length, a criterion combining recall and precision, defined
as the number of non-relevant documents visited until the
first relevant document is found {4]. This measure provides
us with a “macro” analysis because the collective behavior
of the agent population is observed as a whole, and aver-
aged across a large number of queries. The search length of
ARACHNID is compared with that of a simple non-adaptive
algorithm, namely BFS (breadth-first-search). ARACHNID
uses reinforcement learning, but for a fair comparison no
user feedback is provided. The results are shown in Figure
5: the improvement of ARACHNID over BFS is as large as
one order of magnitude.

At a lower level, we considered the ARACHNID ecol-
ogy’s behavior in response to a single query. This way we
analyzed the contributions of different parts of the system,
namely reinforcement learning and relevance feedback. It
was shown elsewhere [16] that Q-learning alone can signifi-
cantly accelerate the discovery of relevant documents, short-
ening search length by a factor of 10 and improving precision



rank | k I

1 COURT 0.034
2 SYSTEM 0.023
2 | PpaRTI 0.023
2 | coverwx | 0023
5 |poLiT+ | 0.020
5 | povEr 0.020
7 ADHINISTR 0.017
8 |1m 0.016
9 |orFicx | o0.015
9 |camer | o015
21 | constrrur | 0.011
33 | oFFIcT 0.009
71 | STRUCTUR | 0.007
71 INSTITUT % | 0.007
83 | BRANCH % | 0.006

Table 1: The top portion of the word feedback list after
300 document visits, The original query terms appear with
gtars,

accordingly, Likewise, the use of positive relevance assess-
ments alone was shown to improve performance after the
system locates the first relevant documents. Finally, the
synergy between learning and user feedback results in the
greatest improvement (an observed 4-fold increase in recall)
because relevance feedback can take advantage of the earlier
discoveries elicited by learning,

The population-wide word feedback list illustrates the
information that is made available at a global, collective
level by relevance feedback. Consider for example the follow-
ing query: “Political institutions: The structure, branches,
and offices of government.” After the noise words have
heen removed and the remaining words have been stemmed,
the query is reduced to POLIT INSTITUT STRUCTUR BRANCH
OFFIC GOVERN, This is all the initial population knows about
what the user is interested in. But after some of the visited
documents are assessed by the user, her preferences become
better defined. Consider the situation after 350 document
have been visited by a number of different agents, assum-
ing that all of the relevant documents have received positive
feedback every 50 pages visited. For the above query, the
word feedback list would look like Table 1. This list captures
an image of what word features are best correlated with rel-
cvance, The term COURT, for example, appears to have the
highest correlation with relevance even though it was not
part of the query, while GOVERN, sharing second place with
SYSTEM and PARTI, is the best among the original query
terms, Other query words appear less useful in determining
whether a document is relevant.

4,2 Micro analysis

A different type of evaluation can be obtained by a “micro”
analysig of individual agents trying to answer the same user
query, but at different times and situated in different areas
of the information environment. Let us consider the same
query as in the example above. A typical agent in the initial
population (shown in Figure 6) has a word vector which
coincides with the user query; its initial weights are random.
After learning, the weights reflect the relative importance of
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Figure 6: An agent from the initial population. The neu-
ral nets in this case are simple perceptrons, without hidden
units. The numbers shown are the connection weights and
output bias after learning (numbers in parentheses are be-
fore learning).

the query terms; based on environmental cues perceived by
this agent during its life, POLIT and BRANCH are perceived as
the most and the least relevant terms, respectively.

Two agents born after 350 document have been visited
and assessed, shown in Figures 7 and 8 respectively, have
internalized some of the global environmental cues (cf. Ta-
ble 1) into their internal representations. Query words that
are not very useful (e.g., INSTITUT and BRANCH) have dis-
appeared from the keyword vectors through evolution, their
places being taken by words that better correlate with user
preferences (e.g., SYSTEM and PARTI).

Not all agents living at one time, however, are alike,
They can differ substantially in their perceptions of what
features are relevant to the user, based on where they are
situated and on their evolutionary and life histories. This is
a crucial consequence of our representation model, reflect-
ing the fact that context refines the meaning of words and
phrases [23]. For example, agents A and B have internalized
some common features (SYSTEM, GOVERYN) and some individ-
ual ones (e.g., POLIT vs. OFFICI). Their differences point to
the role played by the documents visited by their ancestors,
as well as those in which they are born, in shaping their rep-
resentations. Agent A (Figure T7), situated on a page about
“colonialism,” will be looking for terms such as POLIT and
TH that best discriminate between that document and oth-
ers. Agent B (Figure 8) will focus more on the word OFFICI,
better describing the “chancellor” document which gave rise
to its birth.

‘We conclude this analysis by noting that even features
shared by agents may be quantitatively different. For exam-
ple, both agents have GOVERN in their genotypes; but while
agent A attributes weight 0.19 to this term, the feature is
duplicated in agent B and the combined weight is slightly
larger (0.21). 3

5 Conclusion

In this paper we have discussed how to represent agents that
are to perform autonomous information tasks in distributed
text environments. We have shown that a population of
agents who both learn and evolve can adapt to a large, dis-

5The negative weight is due to a mutation; learning will eventually
change its sign and further increase the combined weight.
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Figure 7: Agents A, born after 368 documents have been vis-
ited, In this and the following figure, the weights shown are
those inherited at birth (plus mutations) and the keyword
with emphasis is the result of a new mutation — in this case,
TH i a term usually associated with historical events. On
the left, part of the document where agent A was born, with
keyword hits in bold. ©1997 Encyclopaedia Britannica, Inc.

chancollor,

inviestzin Europe, thot o of h:Men of numarous

01108 ed vary

toged, pririctiatyo, ord MUT-’A!C} pc/ '»uln

rature, The Romen cancelard,

aificlale vho lood by tho carcelus, of bal

oc;.:mv 1 o Irtura fiom the mw- wem Ia!ar
ermgluyed [n tha brperiaf eovinia fwr

d:mnmer 43). { ]As kacpef of o ouei scafused

(otﬂci ) 0.4
019

becara inmviet modwd l@'adam tho ey N .
pavicitd efficlal. [ ) ( systen ) —028—3 vy

In Er'2nd o rembier of tha Cabinet In chame of
Frorcolsceled tho charsellis of tho Exchequer;
arvhet Cotinet romber, Bio chanceva el tho
duthy 6l Lanzatier, 19 o s ster witout
departirantal eepanti.! y vioso Lto derives from
ihat et ihe oifictal criginal’y emplayed by the crowm
12 menago the pelatne duchy of tancaster,

Aeloted Prepacdta Teplas

e
.

Puttzpdministaten, tho glonn'ng, e
ordcosrdnatin s goyemmreantalturtayspet s
CLsIpt LA renic
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tributed, heterogeneous, and dynamic environment at dif-
ferent time and space scales. We have also argued that such
agents need to be able to internalize the salient features of
their local environments, by detecting the clues that best
correlate with their fitness.

We have described how agents in the ARACHNID sys-
tem are able to achieve such goals by exploiting both statisti-
cal word regularities of text environments and the link struc-
ture of networked environments. For applications where
both topologies are available, such as online information
discovery on the Web, the ARACHNID approach seems
promising.

Macro analysis results provide us with encouraging sup-
port for the approach: the ARACHNID population can lo-
cate relevant documents in a large distributed corpora 10
times faster than a non-adaptive BFS algorithm, using the
same resources. Also, individual learning can interact with
user relevance feedback, when this is available, to create a
synergy that further boosts system performance.

A micro analysis enabled us to determine that single
agents can in fact internalize important local features of
the environment into their internal representation, while the
collective ecology captures a more global snapshot of what
features best discriminate between what is relevant to the
user and what is not. Agent behaviors evolve with time,
change over an agent’s lifetime, and are different from agent
to agent depending on what parts of the environment each
has experienced.

We have argued that distributed agents are well suited
to perform tasks in distributed environments. The current
ARACHNID implementation is client-based, but the agents
that we envision are mobile agents that execute on the CPUs
of servers. It is not just information that must travel, as
in current client-server protocols, but agent code as well.
This way agents can use their 'mtelligence to select the in-
formation to be sent back to the user’s machine, improv-
ing network bandwidth. Secure languages and protocols are
needed before information providers will welcome trusted
autonomous agents to their servers; agent research is pro~
viding systems technology with the thrust that may enable
such mobile agents developments feasible very soon [19].

Many different models of interaction among agents are
also worth exploration. For example, research is under way
into the issues of agents learning from other agents, agent
collaboration, and agent communication languages. The
first form of direct agent interaction that we are going to ad-
dress is recombination. This is a natural part of the genetic
algorithm that is used to model the evolution of ARACH-
NID populations. An agent at reproduction can crossover
its internal representation with that of a nearby agent, per-
haps one situated on the same server. The two can exchange
their internal representations, internalizing experiences that
are now relevant to each other because of their proximity.

Because we have been, in our early experiments, most
interested in the behavior of agents on a carefully controlled
and structured corpus (Encyclopedia Britannica), the full
diversity we can reasonably expect from our agents as they
interact with the real Web cannot be demonstrated. We
have shown at least some divergence in the features that
allow one agent to be successful within one topical area
of the Encyclopedia and another, but the real purpose of
open-ended evolutionary methods like those we propose is to
adapt to the much wider variation found in Web media. We
expect there to be roles for many different types of agents,
sensitive to widely varying user demands, and effective at
searching disparate corpora.



In fact, we anticipate enough varieties of “expertise”
within agents that an entire markefplace will form for their
various gkills, The collaborative, social sharing of search
expertise adapted on behalf of one user, then exploited by
another, has been considered by others {2, 20, 7). The ex-
trcmely mmple form of our agents (viz., small neural net-
works) ) allows their expertise to be cxchangeu ina pa:r'cmu-
larly straight-forward fashion: If I like what your agent is
doing for you, and you allow it, I can simply clone a new
copy of this agent for my own use. As soon as I have in-
teracted with my copy of this agent, it will quickly come to
take on features of my idiosyncratic preferences,

But progress towards a true economic marketplace for

the exchange of informatxon-seeking expertise almost cer-
tainly will require the integration of a middieman roie. Rather
than gecking, digesting and evaluating “raw” information re-
sources directly, such middleman information brokers must
he made especially sensitive to the value added by the agent’s
processing, How much more will a user pay for the results

of ﬂ\nn' agont’s cnarnhnc than thev would for a e-mnln list of
Wir age taan they IS0 X

all documents vxsxted? Assessing the actual economxc value
of this service can be compared to moderated news groups
and various “clipping services,” where a person manually
performs a very similar function. This type of editorial fo-
cusing is the ultimate goal of our information-seeking agents,
bui comparison against the currently available alternatives
(e.g., the Computists’ Communique newsletter [11] shows
just how far we have to go.
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