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Abstract 

Traditional finite element analysis (FEA) programs are typically built as standalone desktop software.  

This paper describes an Internet-enabled framework that facilitates building a FEA program as distributed 

web services.  The framework allows users easy access to the FEA core service and the analysis results by 

using a web-browser or other application programs.  In addition, the framework enables new as well as 

legacy codes to be incorporated from disparate sites in a dynamic and distributed manner.  To provide 

flexible project management and data access, a database system is employed to store project-related 

information and selected analysis results.  The prototype framework demonstrates that the Internet can 

potentially enhance the flexibility and extendibility of traditional FEA programs.  
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1. Introduction 

It is well recognized that a significant gap exists between the advances in computing technologies and the 

state-of-practice in structural engineering software development.  Practicing engineers today usually 

perform finite element structural analyses on a dedicated computer using the developments offered by a 

finite element analysis (FEA) program.  Typically, a FEA program bundles all the procedures and 

program kernels that are developed by an individual organization.  As technologies and structural theories 

continue to advance, FEA programs need to be able to accommodate new developments such as element 

formulation, material relations, analysis algorithms, and solution strategies.  The need to develop and 

maintain large complex software systems in a dynamic environment has driven interest in new approaches 

to FEA software design and development.  Object-oriented design principles and programming have been 

utilized in FEA software development to support better data encapsulation and to facilitate code reuse.  

However, most existing object-oriented FEA programs are still rigidly structured.  Extending and 

upgrading these programs to incorporate new developments and legacy codes remain to be a difficult task.  

Moreover, there is no easy way to access computing resources and structural analysis services distributed 

in remote sites.  

With the advances of computing facilities and the development of communication network in which 

computing resources are connected and shared, the programming environment has migrated from relying 

on single and local computing environment to developing software in a distributed environment.  With 

the maturation of information and communication technologies, the concept of building collaborative 

systems to distribute web services over the Internet is becoming a reality [14].  Simply defined, web 

services are a combination of application and data that can be accessed from any Internet-enabled device 

[33].  Using a set of standardized communication protocol, web services can be universally accessed and 

deployed, independent of the underlying operation environment.  The basic idea behind web services is to 

adopt the loosely coupled web programming model to facilitate software component integration.  The 

goal is to provide a platform for building distributed applications that utilize software components 
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running on different operating systems and devices.  Web services, acting as the adapter for complicated 

process components and legacy applications, allow disparate systems to work together.   

Following the web services model, we have designed and prototyped an Internet-enabled framework for 

the usage and development of a FEA program [26, 28].  The framework adopts distributed service model 

to enhance and improve the capability and performance of a FEA program by seamlessly integrating 

legacy code and new developments.  Developments can be incorporated by directly integrating with the 

core as a local module and/or by implementing as a web service.  Using the Internet as a communication 

channel, the framework provides users the ability to pick and choose the most appropriate methods and 

software services for solving a problem.  The framework also includes data and project management 

functionalities.  A database system is employed to store selected analysis results and to provide flexible 

data management and data access.  Project management functions allow users to access information about 

previous analyses of related models stored distributed in different sites.  The Internet is utilized as a data 

delivery vehicle and a data query language is developed to provide an easy-to-use mechanism to access 

the needed analysis results from readily accessible sources.  

In the prototype implementation of the Internet-enabled framework, OpenSees [22] is utilized as the finite 

element analysis core.  OpenSees (Open System for Earthquake Engineering Simulation) is an object-

oriented program for the seismic simulation of structural and geotechnical systems.  It is sponsored by 

PEER (Pacific Earthquake Engineering Research) center, and is intended to serve as the computational 

platform for research in performance-based earthquake engineering.   While the prototype implementation 

is using OpenSees as the FEA core, the framework is sufficiently general to be incorporated by other FEA 

programs.  The framework described herein intends to extend FEA programs, such as OpenSees, to better 

utilize the Internet as a communication vehicle. 

This paper gives a description of the architecture of the Internet-enabled services framework.  A modular 

design of the framework is introduced and the details of each module are presented.  Details of several 
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software modules have been described elsewhere; for example, element services module is described in 

[28] and the database interface module is discussed in [29].  The objective of this paper is to present a 

more complete picture of the framework and its application in facilitating FEA program development.  

We present two examples to show the flexibility and performance of the Internet-enabled framework.   

2. Distributed Services Framework 

The distributed engineering service framework is designed to provide developers and users with easy 

access to an analysis platform and to incorporate new element technologies, new algorithms, and solution 

strategies for structural analyses.  By adopting the services model, the FEA program development can 

shift the focus from coding to the integration of engineering services. 

2.1. Software Integration with Services 

Traditionally, large programs are partitioned into subtasks of manageable sizes.  The subtasks are 

assigned to programmers who code the instructions in certain programming languages.  The resulting 

program segments are subsequently submitted for integration.  As more and more program segments are 

pre-constructed and packaged, larger portion of the overall software development effort needs to be spent 

on integration.  Such trend is illustrated in Figure 1. 

Software integration takes place in many forms.  The early attempts are based on code reuse.  The 

simplest method is to copy the source code to wherever the desired functionality is needed.  There are 

significant drawbacks to this approach, ranging from compiler incompatibility to difficulty in maintaining 

duplicate copies of code.  Generally speaking, software integration based on code reuse assumes that the 

ownership of the reused software components belongs to the users of the software components.  In 

addition, the software components are executed on the same machine as the invoker (client) of the 

components.  To deal with the drawbacks of code reuse, shared libraries are used in place of copied code.  

Software components written in a programming language are compiled into shared libraries.  The shared 
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libraries have public interfaces, through which the users can invoke the functions contained in the 

libraries.   

Coding

Integration

1970 1990 2010  

Figure 1.  The trend of software development (courtesy of G. Wiederhold, Stanford University)   

The development of network computing, especially the emergence of the Internet, allows software 

components to be distributed to multiple machines.  Each software component runs as a separate process, 

communicating with each other by exchanging messages.  This software integration model is called the 

distributed component model [11].  Assorted tools and standards for assembling distributed computing 

applications have been developed over the years.  They started as low-level data transmission APIs and 

protocols, such as TCP/IP and RPC [2] and have evolved into object-oriented distribution schemes, such 

as Object Management Group’s (OMG) Common Object Request Broker Architecture (CORBA) [32], 

Microsoft’s Distributed Component Object Model (DCOM) [10] and Sun Microsystems’ Java Remote 

Method Invocation (RMI) [30].  These programming tools essentially provide a protocol for transmitting 

structured data (and, in some case, actual running code) over a network connection. 

As the distributed component model evolves, software components are required to have well-defined 

interfaces and constraints, and are normally managed in a decentralized manner.  The distributed 

components whose interfaces are published on the web are generally referred to as web services [33].  

Web services can be regarded as the atomic building blocks for service integration.  The functionalities 

provided by the web services are composed together to form an integrated service.  Although the web 
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services are distributed and heterogeneous, they are utilized as if they were locally available to the users.  

An infrastructure is needed to provide the support for the composition of the service functionalities.   

Communication messages are exchanged among the web services to coordinate the execution of the web 

services and to exchange data among the web services.  

2.2. Framework for FEA Services 

The web services model is applied to the development of a FEA program to facilitate software 

integration.  Certain portions of the FEA program are developed as separate software services, and they 

are integrated with the framework through a set of pre-defined protocol.   

The design of the framework is focused on the interaction of services and provides the system with a 

plug-and-play character [6].  Generally speaking, a service can be viewed as a black-box entity that 

provides and/or requires a set of functions (via interfaces) [31].  For a finite element program, element 

code is a natural candidate for building as a service.  Since there are continuing new developments in 

element technologies, developing an element as a separate service can facilitate concurrent development 

and eventual incorporation of the new element into the core.  In the prototype framework, a database is 

used for efficient data storage and flexible post-processing.  Since the database module is loosely coupled 

with the core program, it can also be constructed as a service.  As presented in Figure 2, the current 

implementation of the Internet-enabled structural analysis framework has the following modules:  

• The Analysis Core module consists of a set of basic functional units of a finite element structural 

analysis program.  Element and material models, solvers, as well as analysis strategies and solution 

strategies, are brought into this module to improve the functionality of the core.  

• The User-Interaction Interface module provides an interface to facilitate the access to the software 

platform for the users and developers.  The platform can be accessed from either a web-based 

interface or other application programs. 
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• The Registration and Naming Service is provided for online application services to register to the 

core so that these services can be found and accessed during analysis.  The users can obtain 

references to certain online application services by querying the Registration and Naming Service. 

• Two approaches are provided for remote access to element services residing in different locations.  

The Distributed Element Service is intended to provide a communication link to remote element 

services where the element code is executed.  The Dynamic Linked Element Service is implemented 

to load the element code, which is built as a dynamic shared library, from a remote element service 

site and to link and bind the code with the core at runtime. 

• The Project and Data Service is built to link with a database system, which can provide selective 

data storage and efficient data access, and to facilitate post-processing tasks.  Project management 

and version control are also supported by the project and data service. 
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Figure 2.  The services of the finite element analysis framework 
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In this framework, the structural analysis core model, in this case OpenSees [22], is running on a central 

server as a compute engine to provide finite element analysis service.  A compute engine is a remote 

software program that takes a set of tasks from clients, runs them, and returns the result.  Parallel and 

distributed computing environment, if available, can be employed in the central server to improve the 

system performance and makes it more suitable for large-scale engineering simulations [8, 20].  New 

analysis strategies and solution strategies can be incorporated into the core to improve the capabilities and 

performance of the server.  The following present detailed description of other modules of the framework. 

3. User-Interaction Services 

As shown in Figure 2, the framework can offer users access to the analysis core, as well as the associated 

supporting services via the Internet.  This client/server computing environment consists of two logical 

parts: a server that provides services and a client that requests services from the server.  Together, the two 

parts form a complete computing framework with a very distinct division of responsibility [18].  One 

benefit of this model is the transparency of software services.  From a user’s perspective, the user deals 

with a single service from a single point-of-contact – even though the actual structural analysis may be 

performed in a distributed and collaborative manner.  Another benefit is that this framework can widen 

the reach of the FEA core program to the users and external developers.  The core platform offering the 

FEA service stays at the provider’s site, where the software core is developed, kept securely, operated, 

maintained and updated.  

In the framework, Java Servlet [15] technology is employed to implement the server interface, which 

serves as the wrapper to the FEA core.  Java Servlets provide a component-based, platform-independent 

method for building web-based application, without the performance limitations of CGI (Common 

Gateway Interface) programs.  For the client application, commercial off-the-shelf (COTS) software 

packages would be preferred as the user interface.  There are at least two reasons for favoring COTS 

software packages as user interfaces than developing a new GUI (Graphical User Interface).  First, COTS 
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software packages generally provide a friendly and easy-to-use interface to the users.  The users are 

usually more familiar with the interfaces of popular software packages than other interfaces.  

Furthermore, many COTS software packages normally have built-in facilities for developers to customize 

them.  The facilities can make the development process more economical in terms of both development 

time and efforts. 

3.1. Web-Based User Interface 

Client browser programs such as the Internet Explorer and Netscape Navigator allow users to navigate 

and access data across machine boundaries.  Web browser programs can access certain contents from the 

web servers via HTTP (hypertext transfer protocol).   The forms in the browsers can provide interactive 

capabilities and make dynamic content generation possible.  Java effectively takes the presentation 

capabilities at the browser beyond simple document display and provides animation and more complex 

interactions.  In the distributed services framework, a standard World Wide Web browser can be utilized 

to interact with the FEA core.  Although the use of a web browser is not mandatory for the functionalities 

of the framework, using a standard browser interface leverages the most widely available Internet 

environment, as well as being a convenient means of quick prototyping. 

The architecture of the distributed services system with web-based interface is depicted in Figure 3, which 

shows the interaction between the web browser and the FEA core.  Apache Tomcat [13] is customized to 

serve as the Servlet server, which is a middleware to enable the virtual link between the web browser and 

the FEA core.  Since Java Servlets have built-in supports for web applications, the communication 

between the web browser and the Servlet server follows the HTTP protocol standards, which is a fairly 

straightforward process.  However, the interaction between the Servlet server and the FEA core may 

cause some inconvenience because the FEA core is written in native language (such as Fortran, C, and/or 

C++) and the Servlet server is Java-based.   Since Java application can be interfaced with an external 

process in which a native application is running, this external process model is used to integrate Servlet 
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server and the FEA core.  For the database access, the FEA core utilizes ODBC (Open Database 

Connectivity) to connect the database, and the Servlet server uses JDBC (Java Database Connectivity) to 

connect the database.   

The user of the Internet-enabled framework can build a structural analysis model on the client site, and 

then save it as an input file. The structural analysis model can be submitted to the server through the 

provided web interface.  Whenever Apache Tomcat receives a request for an analysis, it will start a new 

process to run the FEA core.  The Servlet server monitors the progress of the simulation and informs the 

user periodically.  After the analysis is complete, some pre-requested analysis results are returned from 

the FEA core to Tomcat.  The Servlet server then packages the results in a properly generated web page 

and sends the web page back to the user’s web browser.  One feature of this model is that Java Servlet 

supports multithreading, so that several users can send requests for analysis simultaneously and the server 

is still able to handle them without severe performance degradation.  

Web Browser ServletServer

FEA Core

Interface

Internet

Virtual Link

HTTP Protocol

ODBC JDBC

Java Native
Interface

Database

 

Figure 3.  Interaction diagram for the web-based interface 

3.2. MATLAB-Based User Interface 

For web-based services, all too often analysis result is downloaded from the computational server as a 

file, and then put manually (cut and paste plus maybe some cumbersome conversions) into another 

program, e.g. a spreadsheet, to perform post processing.  For example, if we want to plot a time history 
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response from a dynamic analysis, we might have to download the response in a data file and then use 

MATLAB, Excel, or other software packages to generate a graphical representation.  This ad hoc manual 

process might also involve data format conversion and software system configuration.  It would be more 

convenient to directly utilize some popular application software packages to enhance the user interaction 

with the server, eliminating the cumbersome interim manual procedures.   As for illustrative example, 

besides the web-based user interface, a MATLAB-based user interface is developed in the framework as 

an alternative and enhancement for the user interaction.  The combination of the intuitive MATLAB 

interface, language, and the built-in math and graphics functions makes MATLAB the preferred platform 

for scientific computing compared to C, Fortran, and other applications [34]. 

In the current implementation of the MATLAB-based interface, some extra functions are added to the 

standard MATLAB for handling network communication and data processing.  The details on network 

communication and data processing can be found in Ref [27].  These add-on functions are sufficient to 

perform basic finite element analysis together with certain post-processing capabilities.  These functions 

can be directly invoked from either the standard MATLAB prompt or a MATLAB-based GUI (graphical 

user interface).  The add-on functions can be categorized in the following groups: 

• Analysis model submission and analysis invocation: submitfile, submitmodel; 

• Analysis results access and query: queryresults, listresults; 

• Post-processing: modelplot, deformedplot, res2Dplot. 

Figure 4 shows the interaction between MATLAB and the FEA core program.  The server 

implementation and configuration are the same as those for the web-based user interface.  As stated 

previously, Java Servlet server is employed as the middleware between clients and the FEA core.  The 

Servlet server supports protocols that are specified as rules and conventions for communication.  

Although the protocols are originally defined for web browser-based clients, they are applicable to any 

software system that speaks the same language.  To incorporate MATLAB as a client to the collaborative 
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software framework, a wrapper is needed to handle the network communication for MATLAB.  The 

wrapper can be implemented to conform to the defined Servlet server protocols, thus the same Servlet 

server can interoperate with both web client and MATLAB client.  This approach eliminates the 

modifications to the existing Servlet server for the web-based clients. 

JavaClient ServletServer

FEA CoreMATLAB
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Internet

Virtual Link

User Interface

ODBC

HTTP Protocol

JDBC

MATLAB
Java Interface

Java Native
Interface

Database

 

Figure 4.  Interaction diagram for the MATLAB-based interface 

In the prototype system, we chose MATLAB because of its build-in support and its popularity and 

availability.  However, MATLAB is not the only candidate for building a user interface.  Similar network 

communication protocols and data processing tools can be built for other application programs, such as 

FEA post-processing packages or Excel. 

4. Distributed Engineering Services 

One of the salient features of the software framework is to facilitate analysts to integrate new 

developments remotely with the core server so that the functionalities of the analysis core can be 

enhanced.  The Internet-enabled framework would allow new application services to be incorporated with 

the analysis core in a dynamic and distributed manner.  A diverse group of users and developers can 

easily access the FEA program and contribute their own developments to the central core.  By providing a 

modular infrastructure, services can be added or updated without the recompilation or reinitialization of 

the existing services.   
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The distributed services integration can be roughly categorized as coarse-grained integration or fine-

grained integration.  Each message between distributed services has certain performance overhead, such 

as the time for parameter marshalling and unmarshalling, the initialization cost, the network latency, and 

other types of associated performance penalties.  Since coarse-grained integration bundles communication 

messages between distributed services, it generally has better performance than fine-grained integration 

for composition of the same services.  For illustration purpose, this paper focuses on the service 

integration of elements to the analysis core.  There are two types of online element services: namely 

distributed element service (fine-grained integration) and dynamic shared library element service (coarse-

grained integration).  Which form of services to be used for linking the element with the core is up to the 

developers for their convenience and other considerations.  As long as the new element conforms to the 

standard interface, it will be able to communicate with the analysis core.  As opposed to the traditional 

statically linked element library, the online element services will not expose the source code to the core.  

Therefore, the framework allows the building of proprietary element services and facilitates the linking of 

legacy applications.  The infrastructure for supporting the integration of these two types of online element 

service is presented in this paper.  Similar infrastructure and communication protocol can be designed and 

implemented to link other types of online modular services, e.g. material services, solution algorithms 

services, and analysis strategies services, etc. 

4.1. Registration and Naming Service 

To support distributed services with many participants, the core server must be able to differentiate the 

services and locate appropriate services for specific tasks.  One approach to achieve this goal is to create a 

Registration and Naming Service (RANS), where an agent or participant could register its service with a 

unique service name and location.  The RANS allows names to be associated with services, and would be 

responsible for mapping the named services to the physical locations.  With the RANS, the users can 

obtain references to the services they wish to use.  Clients may query the RANS to obtain the associated 

service and the description of the service.  Figure 5 shows a distributed service registering its name and 
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property to the RANS server.  Clients can then query the RANS using a predetermined name to obtain the 

associated distributed service. 

<name_1, property_1>
. . .

<name_n, property_n>

<name_1, property_1>
. . .

<name_n, property_n>

RANS

Client

Distributed
Service

register(name, property)

query(name)

property   

Figure 5. Registering and resolving names in RANS 

The RANS is a service located on the central server to handle the user requests for registering or querying 

for a distributed service.  In the prototype system, the RANS is implemented in Java, and a Java class 

Identity is defined to record the service identity.  Each service is identified by a name property and an id 

property.  The string name property is a descriptive name that can be used to specify the service.  The 

integer id is an internal identifier generated to uniquely tag each service. We have designed the Identity 

class to implement the Java Serializable interface [4], so that Identity objects can be passed back and forth 

on the network as a data stream.  One important method of the Identity class is equals(), which can be 

used to identify if two identities are the same.  Besides the name and id fields, the Identity class also 

stores other service-related information, for example, the service type, IP address, the port number, and 

the owner of the service, etc. 

In the framework, after a distributed element service is developed and tested, the author of the element 

may release the element for other users.  To make the element accessible to others, the first step the 

developer needs to perform is to register the element service to the RANS server.  The registration can be 

done through a web-based interface, which sends the service information to the Java Servlet server, and in 

turn invokes certain methods of the RANS service. 
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4.2. Distributed Element Services 

A key feature of the framework is the interchangeability of components and the ability to integrate 

existing libraries and new components into the analysis core without the need to dramatically change the 

existing code.  In an object-oriented FEA program, introducing a new type of element generally consists 

of creating a new subclass for a specific element [23].  This local object-computing paradigm can be 

extended to support distributed services.  Instead of only using the objects that reside exclusively on one 

local computer, the framework also utilizes distributed objects to allow the building of a distributed 

application to facilitate new element development. 

The essential requirements in a distributed object system are the ability to create and invoke objects on a 

remote host or process, and interact with them as if they were objects within the same local process.  To 

do so, some kind of message protocol is needed for sending requests to remote services to create new 

objects, to invoke methods on these objects, and to delete the objects when they are done.  As discussed 

earlier, assorted tools and protocols are provided to transmit structured data over the network, such as 

CORBA [32], DCOM [10], and Java RMI [30].  There are also web services technologies for facilitating 

distributed service composition, for example, Microsoft .NET [16] and SOAP [3]. 

In the prototype implementation, Java’s Remote Method Invocation (RMI) is chosen to handle 

communication for the distributed element services over the Internet.  Java RMI enables a program in one 

Java Virtual Machine (VM) to make method calls on an object located on a remote server machine.  RMI 

allows distributing computational tasks across a networked environment and thus enables a task to be 

performed on the machine most appropriate for the task [12].  The design goal for the RMI architecture is 

to create a Java distributed object model that integrates naturally into the local object model.  The easy-to-

use interface and the language features in Java help programmer to write client/server components that 

can interoperate easily.  Java RMI also provides a high level of security and reliability in developing a 

distributed environment.  Therefore, Java RMI is chosen as a convenient environment to build the 
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prototype system.  However, compared with distributed computing environment with a design goal of 

supporting heterogeneous systems (such as CORBA and Microsoft .NET), there is one challenge for 

building distributed element service by using Java RMI: incorporating legacy systems in the Java 

infrastructure.  The original FEA core system is written in C++, and partly written in C and Fortran 

(referred to as native language in Java terminology).  A communication support between Java and other 

languages needs to be provided by using Java Native Interface (JNI) [19].  By programming through the 

JNI, we can use Java objects to access native methods and libraries.  However, JNI has fairly complicated 

interfaces and a devious invocation mechanism.  As a result, JNI may incur certain performance overhead 

to the overall system. 

Figure 6 illustrates the mechanics of the distributed element services infrastructure.  Within the 

infrastructure, an element service can be written in any popular programming languages: Java, C, C++, or 

Fortran.  As long as the element service conforms to the defined protocol, the service can participate in 

the framework.  The skeleton, which is the object at the server site, receives method invocation requests 

from the client.  The skeleton then makes a call to the actual object implemented on the server.  The stub 

is the client’s proxy representing the remote object and defines all the interfaces that the remote object 

supports.  The actual element code of a distributed element service resides in the service provider’s site.  

The developed element service communicates with the analysis core through a communication layer, 

which consists of a stub and a skeleton.  A remote method call initiated by the analysis core invokes 

certain method on the element service via the communication layer.  For example, the analysis core may 

issue a remote method invocation to send the input data of an element (e.g. geometry, nodal coordinates, 

Young’s modulus, and Poisson ratio, etc.) to the element service.  Later on, when the core needs certain 

element data, for example a stiffness matrix, the analysis core requests the service provider through a 

sequence of remote method invocations.  The computation (e.g. the forming of the stiffness matrix of an 

element) is performed at the service provider’s site and the results are then sent back to the core as the 

return value of the remote method invocations.   
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A typical distributed service conceptually can be viewed as a blackbox – it takes certain inputs and then 

generates data as outputs.  The key item in the distributed service computing is the interface, which 

defines what types of functions the service supports.  A set of interfaces should be fully defined, available 

to the public, and appropriately maintained.  Following the object-oriented paradigm, the exposed 

methods of the interface are the points-of-entry into the distributed services, but the actual 

implementation of these methods depends on individual service.  To standardize the implementation of a 

new distributed element, we define a common interface named ElementRemote in the framework, as 

shown in Figure 7. 

USERS

ElementClient
(STUB)

ElementServer
(SKELETON)

RMI communication

Distributed
Element Service

(written in Java, C,
C++ or Fortran)

JNI

JNI

Requests Data
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Analysis Core
(OpenSees)

RMI: Remote Method Invocation

JNI:  Java Native InterfaceHTTP

TCL / TK

Method calls on ElementClient (stub)
tunnel over to ElementServer (skeleton)

 

Figure 6.  Mechanics of the distributed element services 

For a typical distributed element service, there is a pair of classes that implement the ElementRemote 

interface, namely the ElementSever and the ElementClient.  Every distributed element service implements 

an ElementServer, which serves as a wrapper for the actual code of the element service.  The analysis 

core of the framework has a corresponding ElementClient class to communicate with the ElementServer 

class.  In the Java RMI infrastructure, the ElementClient object plays the role of a stub that forwards the 

core server’s requests to the element service.  The ElementServer object is a skeleton that defines the 

entry point of the element service. 
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public class ElementRemote extends Remote { 
    // This is the service name for publishing. 
    public static final String SERVICE = "ElementService"; 
    // This is the port number, could be changed as needed. 
    public static final int PORT = 5432; 
 
    // This function is used to send the element data to server. 
    public int formElement(int tag, Identity src, char[] input); 
    // This function is used to perform house cleaning. 
    Public int clearElements(Identity src); 
  
    public int commitState(int tag, Identity src); 
    public int revertToLastCommit(int tag, Identity src); 
    public int revertToStart(int tag, Identity src); 
    public int update(int tag, Identity src); 
 
    // Form element stiffness, damping and mass matrix. 
    public MyMatrix getTangentStiff(int tag, Identity src); 
    public MyMatrix getSecantStiff(int tag, Identity src); 
    public MyMatrix getDamp(int tag, Identity src); 
    public MyMatrix getMass(int tag, Identity src); 
  
    public void zeroLoad(int tag, Identity src); 
    public MyVector getResistingForce(int tag, Identity src); 
    public MyVector getTestingForceIncInertia(int tag, Identity src); 
} 

 

Figure 7. Interface for the ElementRemote class 

4.3. Dynamic Shared Library Element Services 

The distributed element service model described in the previous section is flexible and convenient.  

However, this approach does carry some overhead on remote method invocation, which is generally more 

expensive than a local method procedure call.  The system performance decreases because a remote 

method has to be invoked for accessing every distributed element.  A dynamic shared library (or simply a 

shared library) element service is designed to improve the system performance without losing the 

flexibility and other benefits of the distributed services.  Instead of being compiled to a static library and 

merged to the core server, an element service is built as a dynamic shared library and located on the 

element service provider’s site.  During the system runtime, the installed shared library can be 

automatically downloaded to the core server and linked with the FEA core.   The shared library element 

service allows the replacement of an element service without reinitiating the core server. 
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The mechanics of the dynamic shared library element service is depicted in Figure 8.  In this approach, 

the element code is built in the form of a dynamic shared library conforming to a standard interface.  The 

developed shared library can be placed on an FTP server or an HTTP server on the element service 

provider’s site; and the service needs to be registered to the analysis core’s RANS server.  During a 

structural analysis, if the core needs the element, the RANS server will be queried to find the pertinent 

information about this element service.  After the location of the element service is found, the shared 

library is downloaded from the service provider’s site and is placed on a predetermined location on the 

core’s computer.  The downloaded shared library can then be dynamically accessed at runtime by the 

analysis core whenever the element is needed.  Since the RANS server keeps track of the modifications 

and versioning of the shared library element services, the replacement of an element service can be easily 

achieved by downloading the updated copy of the shared library.  

There are many advantages for the shared library element services.  One advantage of linking 

dynamically with shared libraries over linking statically with static libraries is that the shared library can 

be loaded at runtime, so that different services can be replaced at runtime without re-compilation and re-

linking with the application.  Another benefit of using dynamic shared library is that the shared library is 

in binary format.  The binary format guarantees that the source code of the element will not be exposed to 

the core server, making the building of proprietary software components easier.  This also implies that the 

element developer controls the maintenance, quality, and upgrade of the source code, facilitating bug-

fixing and version control of the element service.  However, the dynamic shared library element service 

also bears some drawbacks.  The most prominent one is platform dependency.  In order to support 

dynamic loading and binding, in most cases the shared library must be built using the same platform as 

the core server.  Other disadvantages include potential security problem and minor performance overhead 

due to network downloading and dynamic binding. 
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Figure 8.  Mechanics of dynamic shared library element services 

5. Data and Project Management Service 

Data integration problems are mounting as engineers confront the need to move information from one 

computer program to another in a reliable and organized manner.  The handling of data shared between 

disparate systems requires persistent storage of the data and corresponding interfaces to access the data.  

As shown in Figure 2, a project and data service is designed as one module of the Internet-enabled 

framework to provide users with easy and efficient access to project information and structural analysis 

results [29].  The data management service would allow the users to query the core server for useful 

analysis results, and the information retrieved from the database through the core server is returned to the 

users in a standard format.  The project management service facilitates the users to manage and to 

collaborate on the analysis of a structure. 

5.1. Multi-Tiered Architecture 

Figure 9 depicts the architecture of the data management service.  A multi-tiered architecture is employed 

instead of the traditional two-tier client-server architecture.  The multi-tiered architecture provides a 

flexible mechanism to organize distributed services.  Since components in the system are modular and 
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self-contained, they could be designed and developed separately.  The multi-tiered data management 

system has the following components: 
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Figure 9.  Project and data management system architecture 

• A standard interface is provided for the Remote Client programs to access the server system.  

Application programs, such as web browsers or MATLAB, can access the server core and the 

analysis results from the client site via the pre-defined communication protocols.  Using dynamic 

HTML pages and JavaScript code, together with the mathematical manipulation and graphic display 

capability of MATLAB, the client has the ability to specify the format and views of analysis results.  

• Java Servlet-enabled Web Server is employed to receive the requests from the clients and forward 

them to the Application Server.  The Web Server also plays the role of re-formatting the analysis 

results in certain HTML format for the web-based clients.  In the prototype system, Apache HTTP 

web server is employed to handle the requests from the users, and Apache Tomcat is employed as the 

Java Servlet server.   

• The Application Server is the middle layer for handling communication between the Web Server and 

the Data Server.  The Application Server also provides the core functionalities for performing 

analyses and generating analyses results.  In the Internet-enabled framework, the FEA core is situated 

in the Application Server.   
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• A COTS database system is utilized as the Data Server for the storage and retrieval of selected 

analysis results.  Examples of COTS database systems include Oracle [17], Access [1], and MySQL 

[9].  The communication between the Application Server and the Database is handled via the 

standard data access interfaces based on Open Database Connectivity (ODBC) that most COTS 

database systems provide.  ODBC makes it possible to access different database systems with a 

common language.   

In this multi-tiered architecture, the FEA application is tightly integrated with the database system.  The 

FEA application provides data semantics and the database system is used as efficient data storage.  

Similar approach is adopted in other data management systems for FEA application, such as FEAMOS 

[25].  By this approach the application internally gains access to general database capabilities, tightly 

coupled to the application itself.   

5.2. Selective Data Storage 

A typical finite element analysis generates large volume of data.  The analysis results can be saved and 

retrieved in two ways.  One approach is to pre-define all the required data and save only those pre-defined 

data during the analysis.  However, if analysis results other than the pre-defined ones are needed, a 

complete re-analysis is needed to generate those analysis results.  For a nonlinear dynamic analysis of a 

large structural model, the analysis needs to be restarted from scratch, which is an expensive process in 

terms of both processing time and storage requirement.  The other approach is simply dumping all the 

interim and final analysis data into files, which are then utilized later to retrieve the required results as a 

postprocessing task.  The drawbacks of this approach are the substantial amount of storage space and the 

potential poor performance due to the expensive search on the large data files. 

There is an alternative to store only selected data.  Many approaches can be adopted for selecting the data 

to be stored during an analysis.  The objective is to minimize the amount of storage space without 
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severely sacrificing performance.  For many commercial FEA packages, such as ANSYS and ABAQUS, 

two types of output files can be created during an analysis.  One type is a results file containing results for 

postprocessing.  The results file is the primary medium for storing results in computer readable form.  The 

results file can also be used as a convenient medium for importing analysis results into other 

postprocessing programs.  Users are able to specify in the analysis input the kind of data to be saved in 

the results file.  The other type of output file is a restart file containing results for continuing an analysis.  

The restart file essentially stores the state of an analysis model so that it can be used for subsequent 

continuation of an analysis.  For a nonlinear dynamic analysis, users are allowed to specify the frequency 

at which results will be written to the restart file.  

In the data management service proposed in this work, these two types of data storage (results and restart) 

are also supported.  However, they are carried out in a different fashion.  The data management service 

allows the collection of certain information to be saved as the analysis progresses, e.g. the maximum 

nodal displacement at a node or the time history response of a nodal displacement.  A new type of class, 

e.g. a Recorder, is introduced to facilitate recording and storing data during an analysis.  The purpose is to 

keep track of the progress of an analysis and output the users’ pre-specified results.  Besides the recording 

functionalities, the data access system also has the restart capability.  Certain selected data are stored 

during the analysis that allows the analysis results to be restored as needed.  The selected data need to be 

sufficient for the re-computation during postprocessing.  In the data access system, we use object 

serialization [4] to facilitate the restart function.  Ordinarily, an object lasts no longer than the program 

that creates it.  In this context, persistence is the ability of an object to record its state so that the object 

can be reproduced in the future, even in another runtime environment.  Object serialization allows the 

internal data structures of an object to be mapped to a serialized representation that can be sent, stored, 

and retrieved by other applications.  Through object serialization, the object can be shared outside the 

address space of an application by other application programs.  A persistent object might store its state in 

a file or a database, which is then used to restore the object in a different runtime environment.  Consider 
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a Truss element as an example, its nodes, dimension, number of DOFs, length, area, and material 

properties can be saved in a file or a database system during an analysis.  Based on these stored data, a 

copy of the Truss object can be restored, and the stiffness matrix of the Truss element can then be re-

generated.     

The restart function introduced in the framework is different from those supported by current commercial 

FEA programs (e.g. ANSYS, ABAQUS, etc.).  For most commercial FEA programs, the data saved in the 

restart file must conform to certain pre-defined data format.  The restart function in the framework, on the 

other hand, relies on object serialization.  As long as a replica of an object can be recreated with the saved 

data, the developer of the class can freely decide what kind of data to be saved and manipulate the saved 

data.  This decentralized development control provides great flexibility and extendibility to the 

developers, especially in a distributed and collaborative development environment.   Furthermore, the 

restart file of most commercial FEA programs is organized as a sequential file.  On the other hand, the 

restart data saved in the framework can be retrieved randomly, i.e., the state of a particular object is 

accessed through a key value.  Therefore, a particular object or a sub-model of the finite element model 

can be easily restored without retrieving unnecessary data.    

5.3. Data Storage Scheme 

In the data access system, a COTS database system is associated with the FEA core to provide data 

storage and facilitate data query.  Because COTS database systems generally have indexing capability to 

support key-based searching, the required data retrieval mechanism of the data management service is one 

reason that makes COTS database systems preferable to file systems.  For a typical structural analysis, the 

analysis core stores selected data into the database.  During the post-processing phase, a request from a 

client for certain analysis result is submitted to the analysis core instead of directly querying the database.  

Upon receiving the request, the analysis core automatically queries the database for saved data to 

instantiate the required new objects.  If necessary, these objects are initialized to restart the analysis to 
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generate the requested results.  Compared with re-performing the entire analysis to obtain the data that are 

not pre-defined, re-computation is more efficient since only a small portion of the program is executed 

with the goal of fulfilling the request.  As opposed to storing all the data needed to answer all queries, the 

selective storage strategy can significantly reduce the amount of data to be stored in the data management 

system. 

One example to reduce the storage space is a strategy named Sampling At a Specified Interval (SASI), 

which can be applied to nonlinear incremental analyses to dramatically reduce the storage space 

requirement.  Both incremental single-step methods and some of the incremental-iterative methods (such 

as Newton-Raphson scheme) are common for nonlinear incremental analysis [21].  From these nonlinear 

analysis methods, it can be seen that the state of the model at a certain step is only dependent on the state 

of the model at the immediate previous step.  Based on this observation, a discrete storage strategy can be 

applied to nonlinear structural analysis.  More specifically, instead of storing all the analysis results, the 

state information of a nonlinear analysis is saved at a specified interval (e.g. every 10 steps or other 

appropriate number of steps, instead of every step).  The key requirement is that the saved information 

needs to be sufficient to restore the analysis model to that particular step.  As discussed earlier, object 

serialization can be used to guarantee this requirement.   

During the postprocessing phase, the data requests are forwarded from the remote client site to the 

analysis core.  After receiving the requests, the analysis core will search the database to find the closest 

sampled point that is less than or equal to the queried step.  The core then fetches the data from the 

database to obtain the necessary state information for that step.  These fetched data will be sufficient to 

restore the model to that sampled step.  After the model restores itself to the required step, the core can 

progress itself to reach the queried time or incremental step.  Once the information of the queried step is 

restored, data queries regarding information at that step can be processed by calling the corresponding 

functions of the restored model objects.  Since the information is only saved at the sampled steps, the total 

storage space is dramatically reduced as opposed to saving the entire analysis results at all the steps.  
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Compared with restarting the analysis from the original step, the processing time needed by using SASI 

(i.e. restarting the analysis from a sampled step) can potentially be reduced significantly.  The same 

strategy can also be designed for other types of analyses (such as for time dependent problems). 

5.4. Data Query Processing 

For finite element programs, the post-processing functions need to allow the recovery of analysis results 

and provide extensive graphical and numerical tools for gaining an understanding of results.  In this sense, 

querying the analysis results is an important aspect and query languages need to be constructed to retrieve 

the analysis results.  In the data management service, a data query processing system is provided to 

support the interaction with both humans and other application programs.   

A data query language is defined to facilitate data retrieval as well as invoking post-processing 

functionalities.  A query language can be used to define, manipulate, and retrieve information from a 

database.  For instance, for retrieving some particular result of an analysis, a query can be formed in the 

high-level and declarative query language that satisfies the specified syntax and conditions.  In the data 

management service, the DQL (data query language) is defined to query the analysis results together with 

invoking certain post-processing computation.  Combining general query language constructs with 

domain-related representations provides a more problem-oriented communication. [24].  The defined 

DQL and the programmed procedures have at least two features: 

• It provides a unified data query language.  No matter what kind of form the data is presented (whether 

a relation or a matrix), the data is treated in the same way.  It is also possible to make query on 

specific entries in a table or individual elements of a matrix. 

• The DQL language provides the same syntax for both terminal users (from command lines) and for 

those who use the DQL within a programmed procedure.  This leads to the ease of communication 
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between the client and the server, and can save programming efforts when linking the data access 

system with other application programs.  

As discussed earlier, a hybrid storage strategy is utilized for storing nonlinear dynamic simulation results.  

For different type of stored data (results regarding a certain time step or time history responses), different 

query commands are needed and different actions are taken.  These query commands can be issued using 

the web browser interface or directly from an application program such as MATLAB.  Several commonly 

used features of the DQL are illustrated below.  

First, we will illustrate the queries related to a particular time step.  To query the data related to a 

specified time step, the information needs to be restored to that time step.  For example, we can use 

command  

RESTORE 462 

which will trigger the restoration of the information to time step 462.  

After the model has been restored to the time step, queries can be issued for detailed information.  As an 

example, we can query the displacement from Node number 4, 

SELECT disp FROM node=4; 

 
The analysis result can also be queried from other objects, such as Element, Constraint, and Load.  For 

example,   

SELECT tangentStiff FROM element=2; 

  
 returns the stiffness matrix of Element number 2. 

Besides the general queries, two wildcards are provided.  One is the wildcard ‘*’ that represents all 

values.  For instance, if we want to obtain the displacement from all the nodes, we can use   

SELECT disp FROM node=*; 
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The other wildcard ‘?’ can be used on certain object to find out what kind of queries it can support.  For 

example, the following query 

SELECT ? FROM node=1;  

returns  

Node 1:: numDOF crds disp vel accel load mass * 

Another class of operations is aggregation.  By aggregation, we mean an operation that forms a single 

value from a list of related values.  The following are five common operators that apply to a list of related 

values and produce a summary or aggregation of that list:  

SUM, the sum of the values in the list; 

AVG, the average of values in the list; 

MIN, the least value in the list; 

MAX, the greatest value in the list; 

COUNT, the number of values in the list. 

The aggregation operators are particularly convenient for producing simple summary results.  

The second type of queries is used to access the pre-defined analysis results, especially the time history 

responses.  The users can specify in the input file what kind of information they want to keep track of.  

During the structural analysis, these pre-defined data are stored in files in the central server site.  The files 

saved in the server can be queried and downloaded by the clients.  The queried time history responses can 

then be saved into files in the client site for future post-processing applications.  For instance, if we want 

to save the displacement time history response of a particular node, the following query command can be 

issued to the server 

SELECT time disp FROM node=1 AND dof=1 

SAVEAS node1.out; 
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If the data are pre-defined in the input file and saved during the analysis phase, the query can return the 

corresponding saved analysis results.  Otherwise, a re-computation is triggered to generate the requested 

time history response. 

5.5. Project Management 

In nonlinear dynamic analysis, extensive study of a structure involves numerous simulations to be 

performed.  Typically, model calibration requires several analysis models to be constructed with different 

model characteristics.  To conduct a probability analysis, earthquake records with different magnitudes 

are applied to the same analysis model.  Since there are numerous simulations for the same structure, a 

project management mechanism is needed to store and manage model information and simulation results. 

The Internet-enabled framework provides users with a project management service that enables 

collaborative work on a specific structure model.  In this work, we refer to project as a particular analysis 

model, case as a specific simulation, and owner as the user who performs simulation on a case and 

manages the simulation results.  Following this terminology, a structure could potentially result in several 

projects, with each representing one analysis model.  Each project could incorporate many cases by 

applying different earthquake records or using different analysis strategy on the same model. 

Due to the large amount of model data and simulation results of a structure, it is infeasible to store all 

analysis related data in a single computer.  Therefore, a centralized control-distributed data storage 

scheme is adopted in the project management service.  Specifically, a central server stores all of the 

project background information (such as size of the model, the types of finite elements, specific boundary 

conditions, etc.) and the locations of projects and cases.  The actual analysis data (such as finite element 

models, documents, simulation results, etc.) of each case resides on disparate sites and managed by 

different owner.  The distributed nature of data storage allows the owner to perform simulation and 

manage the results locally. 
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There are several other capabilities of the project management service in the framework.  One important 

feature among others is network transparency, which results in a unified front-end representation to users, 

regardless of where the data is stored.  The project management service provides a web interface for 

retrieval of project background information, documents, messages, and simulation results.  By doing so, 

the project management service creates an environment where users only need to deal with a single 

server.  The complexity of the distributed data storage is hidden from the users.  Besides network 

transparency, other features of the project management service are access control and version control 

capabilities.  Access control is incorporated to differentiate users and to allow them access projects based 

on their privileges.  For instance, owner of a project has full control on all the project data, while some 

users are only allowed to access the data without the ability to modify.  Version control is implemented 

with the project management service to keep track of the modifications to the analysis models and to 

present the difference between projects. 

6. Examples 

A prototype of the collaborative framework for structural analysis is implemented using Sun workstations 

as the hardware platform.  The FEA core is based on OpenSees (a C++ program), and the employed 

database system is Oracle 8i.  Apache HTTP server is served as the web server, and Apache Tomcat 4.0 is 

utilized as the Java Servlet server.  MATLAB 6.0 and a standard web-browser are employed as the user 

interfaces for accessing the analysis results and project-related information. 

6.1. Example 1: An Eighteen-Story One-Bay Frame 

The first example is a structural model of 18 story two-dimensional one bay frame.  The story heights are 

all 12 feet and the span is 24 feet.  Figure 10 shows a sketch of the structural model.  As illustrated in the 

figure, all the beams and columns are modeled as ElasticBeamColumn elements and the hinging is 

modeled with zero-length elasto-plastic rotational element.  A nonlinear dynamic analysis is performed on 

the model using Newton-Raphson analysis algorithm.  The input earthquake record is from the 1994 
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Northridge earthquake recorded at the Saticoy St. Station, California.  A time history plot of the 

earthquake record is also shown in Figure 10. 
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Figure 10. The example model and the Northridge earthquake record 

The prototype framework is employed to conduct a nonlinear dynamic analysis on the example model.  

As an example, the ElasticBeamColumn element in the example model is built as an element service.  

Both distributed element service and shared library element service are implemented.  Figure 11 

illustrates the interaction among the distributed services during a simulation of the model.  The analysis 

core is running on a central server computer called opensees.stanford.edu.  The web server and Java 

Servlet server are also running on this computer.  The developed ElasticBeamColumn element services 

are running on a computer named galerkin.stanford.edu.   As we indicated before, users only need to 

know the location of the central server (opensees.Stanford.edu) without the awareness of the underlying 

distributed framework.  Although in the figure we only illustrate the usage of the web-based interface, the 
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users can also communicate with the server via a MATLAB-based interface, or other types of user 

interfaces. 

opensees.stanford.edu epic21.stanford.edugalerkin.stanford.edu
Element Service

(ElasticBeamColumn)
Postprocessing Service

(Matlab Software)
Core Server
(OpenSees)

Client
1

3

2
4

5

 

Figure 11.  Interaction of distributed services 

Figure 12(a) shows the web form for the submission of an input file in the web-based user interface.  

After the user submits an analysis model to the Servlet server, the model is forwarded to the FEA core to 

trigger the analysis.  During the structural analysis, some selected analysis results are saved in the 

database or in the server file system to facilitate future post-processing.  Some user pre-requested data 

(specified in the input file) are returned to the user whenever they are generated by the FEA core.  The 

Servlet server can properly wrap the data in certain format and return the dynamically generated web 

pages to the user’s browser.  These data can be used to indicate the progress of the analysis, as shown in 

Figure 12(b).   

The web-based user interface also supports post-processing.  It allows the user to query the analysis 

results and to download certain results into files.  Figure 12(c) shows the web interface for downloading 

time history response files.  Besides transmitting the analysis results in data file format, the server can 

also automatically generate a graphical representation of the result and send the graph to the user.  Figure 

12(d) shows the graphical representation of the time history response of Node 19, which is the left node 
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on the 9th floor of the structural model.  The plotting is performed by a stand-alone MATLAB post-

processing service (in this case, running on epic21.Stanford.edu) that is connected with the framework.  

Once the post-processing service receives the request, it automatically starts a MATLAB process to plot 

the time history response and then save it in a file of PNG (Portable Network Graphics) format.  In 

responding to the user’s request, this plot can be sent to the client. 

 

(a) Analysis model submission 

 

(b) Analysis progress report 

 

(c) Analysis result query 

 

(d) Time history response of node 19 

Figure 12. Sample web pages generated at the client site 
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To assess the relative performance of the online element services, we compare three types of 

ElasticBeamColumn element services developed for the analysis model: static element library, distributed 

element service, and dynamic shared library element service.   The static element library is the traditional 

way of incorporating new elements, and the static ElsticBeamColumn element runs on the same computer 

(opensees.Stanford.edu) as the core server.  On the other hand, the distributed element service and shared 

library element service are located on a separate computer named galerkin.Stanford.edu.   Table 1 lists the 

total analysis time for the simulations with different types of element services.  The number of time steps 

shown on the table indicates the number of data points used in the input earthquake record. 

Table 1. System performance using different element services 

Number of  
time steps 

Static library 
Element Service 

Distributed  
Element Service 

Shared library 
Element Service 

50 4.25 s 108.06 s 8.91 s 

300 38.24 s 856.95 s 51.53 s 

1500 204.47 s 6245.6 s 284.82 s 

 

From Table 1, we can see that the distributed element service has performance overhead.  This is mainly 

because the network communication is fine-grained.  For every action on every element (sending input 

data, obtaining stiffness, etc.), a remote method is invoked.  Compared with a local method call, a remote 

method invocation has higher cost, which involves the time for parameter marshalling and unmarshalling, 

the initialization cost, the network latency, the communication cost, and other types of associated 

performance penalties.  One avenue to improve the performance is to bundle the network communication.  

Instead of using the fine-grain element level communication, both sides of the element service can set up 

a buffer for temporarily storing element data.  The element data will then be sent out when there is 

enough number (say, 20) of elements saved in the buffer.  This method would be able to reduce the cost 

associated with remote method initialization and network latency.  
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The shared library element service has better performance than the distributed element service.  However, 

the shared library element service does incur performance overhead compared with the static element 

service.  The performance overhead is primarily associated with the downloading of library files and the 

runtime dynamic binding of libraries.  To reduce these costs, two types of caching techniques could be 

utilized: one is related to file caching, the other is runtime shared library caching.  As we discussed 

earlier, the RANS sever has a simple versioning mechanism to keep track of the modifications to element 

services.  If there are no major changes to a shared library service, the downloaded copy of the shared 

library can be reused.  During the analysis core server’s initialization phase, the registered shared libraries 

are loaded and bound with the analysis core.  If there are no newer versions of the libraries, these shared 

libraries will stay loaded on the server.  By adopting these caching techniques, the performance gap 

between using shared library element service and using static element service can be reduced. 

6.2. Example 2: Humboldt Bay Middle Channel Bridge 

The second example is an ongoing research effort within the Pacific Earthquake Engineering Research 

(PEER) center to investigate the seismic performance of the Humboldt Bay Middle Channel Bridge.  The 

Humboldt Bay Middle Channel Bridge is located at Eureka in northern California.  The bridge is a 330 

meters long, 9-span composite structure with precast and prestressed concrete I-girders and cast-in-place 

concrete slabs to provide continuity.  It is supported on eight pile groups, each of which consists of 5 to 

16 prestressed concrete piles.  The foundation soil is mainly composed of dense fine-to-medium sand 

(SP/SM), organic silt (OL), and stiff clay layers.  In addition, thin layers of loose and soft clay (OL/SM) 

are located near the ground surface.   

A two-dimensional FEA model of the Middle Channel Bridge, including the superstructure, piers, and 

supporting piles, was developed as shown in Figure 13 [7].  The bridge piers are modeled using 2-D fiber 

beam-column elements and the abutment joints are modeled using zero-length elasto-plastic gap-hook 
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elements.  A four-node quadrilateral element is used to discretize the soil domain.  The soil below the 

water table is modeled as an undrained material, and the soil above as dry.   

 

Figure 13. Finite element model for Humboldt Bay Bridge (from [7]) 

To conduct probability analysis, approximately sixty ground motion records are applied to the bridge 

model for damage simulation.  The ground motion records are divided into three hazardous levels based 

on their probability of occurrence, which are 2%, 10%, and 50% in fifty years respectively.  Many 

simulations are conducted on the bridge model by applying different ground motion records.  Figure 14 

shows a partial list of the Humboldt Bay Bridge cases.  When using the project management service 

developed in this work, a web interface is a single point-of-entry for all the project related background 

information, documents, messages, and simulation results.  Adding a new simulation to the system is 

simple.  For instance, if a new simulation is to be performed on an existing model with a new earthquake 

record, the user can first download the analysis model from the project management service.  After 

performing a simulation on the analysis model with the new earthquake record, the owner can put all the 

project related data and simulation results in a local website, and then register the simulation to the central 

server.  Once the registration process is completed, the central web page will be updated to reflect the 

modification.  For example, Figure 15 shows that a new case (case Rinaldi of project X1) is added to the 

server.  The new case essentially uses the same model as case NF15 of project X1.   



 37. 

 

Figure 14.  The list of Humboldt Bay Bridge cases 

 

Figure 15.  The list of updated Humboldt Bay Bridge cases 

Detailed information of a particular simulation can be retrieved by clicking on the project name, which is 

a hyperlink to the project website located in the owner’s computer.  We will use case Rinaldi of project 

X1 (see Figure 15) as an illustration.  The ground motion applied to this case is the 1994 Northridge 

earthquake recorded at the Rinaldi station (PGA = 0.89g, PGV = 1.85 m/sec, PGD = 0.60 m), with a 

probability of 2% occurrence in fifty years.  We have conducted a nonlinear dynamic analysis on the 
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model under three different conditions: without any intermediate storage, using Oracle database to save 

the information at every 20 time steps, and using file system to save the information at every 20 time 

steps.  Table 2 shows the solution time for the nonlinear dynamic analysis.  Since the model is fairly large 

and some expensive elements (fiber element) and materials (nonlinear) are used in the model, the 

nonlinear dynamic analysis requires a significant amount of computational time.  As shown in Table 2, 

the usage of Oracle database and file system to store the selected model states further reduces the analysis 

performance. 

Although there are performance penalties for using database or file system to save selected information 

during a nonlinear dynamic analysis, using data storage can improve the performance of re-computation 

during the post-processing phase.  Table 3 shows some solution time for re-computation that restores the 

model to certain time steps.  If there is no information archived during the analysis phase, we have to start 

the analysis again from the scratch, which can take a long time.  On the other hand, with the selected 

information saved in the database or file system, we can restore the analysis to certain archived state and 

then progress the analysis to the requested time step.  For example, in order to restore the analysis to the 

time step 105, we can retrieve the saved information at time step 100 and then progress the analysis to 

time step 105 by using Newton-Raphson scheme.  The solution time shown in Table 3 clearly 

demonstrated that the usage of data storage dramatically improves the performance of re-computation.  

The experimental results also show that the use of commercial database system, such as Oracle, is 

generally more efficient than the direct use of file systems. 

Table 2. Solution time (in minutes) for nonlinear dynamic analysis 

Time Steps 
Analysis Time 

(mins) 
Analysis Time (mins) 

(With Database) 
Analysis Time (mins) 

(With Files) 

100 262.6 321.6 314.5 

500 1249.4 1663.8 1701.1 

600 1437.3 1914.3 2026.7 
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Table 3. Solution time (in minutes) for re-computation 

Time Steps 
Analysis Time 

(mins) 
Re-analysis Time (mins) 

(With Database) 
Re-analysis Time (mins) 

(With Files) 

105 281.7 39.4 46.9 

539 1309.5 67.9 85.6 

612 1464.8 55.7 71.4 

 

7. Conclusions 

This paper has described an Internet-enabled framework that can facilitate the development of structural 

analysis services and the access to simulation results.  The main design principle of this framework is to 

keep the software kernel flexible and extendible, so that a diverse group of users and developers can 

easily access the platform and attach their own developments to the core server.  The web service 

architecture would allow new services to be remotely incorporated into the modular FEA platform.   

Users can select appropriate services and can easily replace one service by another without having to 

recompile or reinitialize the existing services.  The Internet is utilized in the software framework as a 

communication channel to link distributed software services and to access simulation results.  One 

important feature of the Internet-enabled framework is network transparency, which makes it indifferent 

to users whether code is running locally or remotely.  The software framework described in this paper 

provides an execution environment that users only deal with a single server.  The end users do not need to 

be aware of the complexity of the core server in terms of both its hardware and software configurations.   

Component-based modular design is adopted in the framework to enhance the usability, flexibility, 

interoperability, and scalability of the FEA software.  The framework for finite element structural analysis 

described consists of six distinct components modules.  Each module in the system is well-defined and 

encapsulated.  In addition, each component module provides and/or requires a set of services interacting 

with the core via well-defined interfaces.  The modules are loosely coupled, and the loose connectivity 

among components allows each component to be implemented separately, which can facilitate concurrent 
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software development.  Another benefit of component-based design is that the code changes tend to be 

localized.  The localized code change can substantially reduce the efforts of service integration and 

minimize the potential of bugs being introduced.  

A data and project management service is provided to manage simulation results and other pertinent 

information.  This research has illustrated the usage of a database system that addresses some of the issues 

associated with traditional engineering data processing.  A selective data storage scheme is introduced to 

provide flexible support for the tradeoffs between the time used for reconstructing analysis model and the 

space used for storing the analysis results.  The data management service also defines a data query 

language to support the interaction with both humans and other application programs.  This research has 

presented the potentials of using a project management system to archive project-related data and to 

perform access and revision control.  The project management system allows the usage of a database 

system to manage the information related to projects.  The actual project data is stored in distributed 

machines.  The project management service can also facilitate users to collaboratively working together 

on a specific project model.  

Performance of the collaborative framework remains to be a key challenge for the wide adoption of the 

collaborative system for engineering practice.  The performance penalties imposed by distributed services 

can potentially be high.  The scalability of the system should also be further improved.  The current 

implementation relies on Java’s multithreading feature to handle simultaneous requests from uses. The 

performance might be substantially degraded when there are a large number of services that are 

geographically dispersed or where there are numerous clients access the server simultaneously.  This 

scalability problem could be tackled by improving both hardware and software.  Multiple core servers and 

more powerful computers can be deployed; especially the locally distributed web-server systems are very 

promising to improve the performance and scalability [5].  Another possibility to enhance the framework 

is to utilize parallel and distributed computing environment [8] and better fault-tolerance and fault-

recovery techniques for distributed applications.  
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