
Engineering with Computers (2002) 18: 38–49
Ownership and Copyright
 2002 Springer-Verlag London Limited

A Prototype Software Framework for Internet-Enabled Collaborative
Development of a Structural Analysis Program

J. Peng and K. H. Law
Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA

Abstract. This paper describes a prototype implementation
of a software platform that enables the utilization and collab-
orative development of structural analysis programs, taking
advantage of the Internet and web-based technologies. The
new platform would allow users to have easy access to the
structural analysis platform via the Internet. Users can have
direct access to the analysis program and the analysis results
by using a web-browser or other application programs, such
as MATLAB. Furthermore, the platform is intended to serve
as a common finite element structural analysis tool for which
researchers and users can build, test, and incorporate new
developments. Researchers and developers can link the analy-
sis platform with their developments by utilizing pre-defined
Internet-enabled communication interfaces. The prototype
system is applied to perform a nonlinear dynamic analysis
for a two-dimensional frame structure. It is shown that
the Internet-enabled collaborative paradigm can potentially
provide greater flexibility and extendibility than traditional
structural analysis programs, which are typically packaged
individually.

Keywords. Collaborative software development;
Communication protocol; Component-based frame-
work; Distributed element service; Finite element
program; Internet service

1. Introduction

It is well recognized that a significant gap exists
between the advances in computing and the state-
of-practice in structural engineering software devel-
opment. Practicing engineers today typically perform
finite element structural analysis on a dedicated
computer, using the elements and analysis algor-
ithms that are provided by finite element analysis
programs. These finite element analysis programs

Correspondence and offprint requests to: K. H. Law, Department
of Civil and Environmental Engineering, Stanford University,
Stanford, CA 94305, USA. E-mail: law�cive.stanford.edu

usually bundle all the procedures and program ker-
nels into software packages that are developed by
individual organizations. As technologies and struc-
tural theories advance, structural analysis software
packages need to be able to accommodate new
developments in element formulation, material
relations, analysis strategies, solution strategies, as
well as computing environments. For the current
state of finite element software packages, modifying
or extending the code requires that the users have
intimate knowledge of the data structures and what
procedures affect what portions of the code. The
ability to reuse code from other sources is also
limited. This is because data structures vary widely
between programs. As a consequence, introducing
code from other sources often requires that the code
be modified to suit the data structure used in the
finite element program. The current trend sees the
utilization of object-oriented programming in finite
element software development in order to support
better data encapsulation and to facilitate code reuse
[1–10]. Object-oriented finite element packages, parti-
cularly those written in C��, have been shown
[11,7,8] to have comparable performance to their pro-
cedural-based counterparts and provide certain main-
tainability and extendibility to modern day software
packages. Although these programs use intrinsic
object-oriented support of abstraction, encapsulation,
inheritance, and polymorphism, the codes are usually
not designed in a very flexible and extendible way
to allow the analysts to easily experiment with their
own elements or analysis algorithms. Extending and
upgrading these programs to incorporate new de-
velopments remains a difficult process; and more
importantly, there is no easy way to link cus-
tomized components developed by users and
researchers separately outside the organization.

The current development of Open System for
Earthquake Engineering Simulation (OpenSees) by
the Pacific Earthquake Engineering Research (PEER)



39Internet-enabled Collaborative Software Development

Center is facing the same challenge. The goal of
the OpenSees development is to improve the mode-
ling and computational simulation in earthquake
engineering through open-source development. The
analysis core of OpenSees is based on an object-
oriented framework for nonlinear dynamic analysis
of structural and geotechnical systems [8]. The focus
of OpenSees is to support the communication and
cooperation of users and researchers, and to facilitate
the incorporation of their research developments into
the framework. Many participants from different
universities and organizations are involved in the
utilization and development of OpenSees with differ-
ent perspectives. There are users whose main pur-
pose is to use OpenSees solely as a structural and
geotechnical analysis tool. There are core developers
who are working to incorporate new developments
and to expand the analysis core. There are also
analysts and researchers whose focus is to develop
new element and material technologies. Since the
development is concurrent and incremental and is not
controlled by a monolithic organization, traditional
software engineering paradigms and waterfall soft-
ware development approaches are not appropriate
for the open collaborative effort.

With the maturation of information and communi-
cation technologies, the concept of building collabor-
ative systems to distribute the services over the
Internet is becoming a reality [12]. Following this
idea, we have designed and prototyped an Internet-
enabled collaborative framework [13,14] for the con-
tinuing usage and development of the finite element
structural analysis program, OpenSees. A collabor-
ative system is one where multiple users or agents
engage in a shared activity, usually from remote
locations. By using the Internet as a communication
avenue, the framework can make the structural
analysis program more easily accessible by the end
users. Unlike the development of traditional pack-
aged structural analysis programs, the collaborative
framework can potentially reduce the overhead of
continuous upgrade and extension. Developers and
researchers can concentrate on developing compo-
nents and then easily integrate their components to
the core through a plug-and-play environment.

2. Architecture of the Collaborative
Framework

When integrating multiple computer applications or
systems, a suitable architecture is needed to define
how the components (applications or systems) are
connected (linked) within the constraints [15]. The

overall system architecture of the Internet-enabled
collaborative framework is schematically depicted in
Fig. 1. The architecture defines the dependency and
the interaction among the participants:

� In this framework, the structural analysis core
program is running on a central server as a
compute engine. At the heart of the compute
engine is a protocol that allows jobs to be submit-
ted to the compute engine, the compute engine
to run those jobs, and the results of the job to
be returned to the client. This protocol is
expressed in interfaces supported by the compute
engine and by the objects that are submitted to
the compute engine.

� In this collaborative system, users play the role
of clients to the central finite element compute
engine. The users can have direct or remote
access (one such avenue is the Internet) to the
core program through a web-based user interface
or other application programs, such as MATLAB.
The users can specify desirable features and
methods (element types, efficient solution
methods, and analysis strategies) contributed by
other developers that have been tested and incor-
porated into the core platform.

� For element developers, a standard interface/
wrapper is defined for communicating the
element(s) with the analysis core. The element
code can be written in languages such as Fortran,
C, C�� and/or Java as long as it conforms to
the standard interface, which is a set of pre-
defined protocols to bridge element code with the
central server. If the developer and the system
administrator agree, the new element can be
merged into the analysis core and become part
of the static element library. Moreover, the devel-
oper can also choose to be an on-line element
service provider. In this case, the element devel-

Fig. 1. System architecture for a collaborative finite element
program.



40 J. Peng and K. H. Law

oper needs to register the element code and its
location to the core and the element service can
then be accessed remotely over the Internet.

Since the open collaborative system relies on the
aggregate behavior of loosely coupled subsystems,
component-based design and modeling can be used
to facilitate the concurrent development process. The
Internet has introduced a transport mechanism that
allows various disparate components to interact with
each other to provide a more complex and complete
system behavior [16]. We can now look at software
development from a higher level of abstraction, one
that treats the individual components as the target
platforms. The interactions between them form the
dynamic behavior of the system. By utilizing a
component-based approach, the application is easy
to build and is easy to modify and extend.

Usually, a component can be viewed as a black-
box entity that provides and/or requires a set of
services (via interfaces) [17]. For a finite element
program, element code can be treated as a compo-
nent. Since there are continuing new developments
in element technologies, building an element as
a separate component can facilitate the concurrent
development and the eventual incorporation of the
new element into the core. In the prototype frame-
work, a database is used for efficient data storage
and flexible post-processing. Since the database
module is loosely coupled with the core program,
it is also a good candidate for building as a compo-
nent. As presented in Fig. 2, the Internet-enabled
structural analysis platform consists of six distinct
modules:

� The Analysis Core module is the part that consists
of a set of basic functional units of a finite
element structural analysis program. Element and
material models, solvers, as well as solution stra-
tegies, are brought into this module to provide
the basic functionality of the core.

Fig. 2. Collaborative system modules.

� The User-Interaction Interface module provides
an interface to facilitate the access to the software
platform by the users and developers. The plat-
form can be accessed from either a web-based
interface or other application programs.

� The Registration and Naming Service is provided
for on-line services to register to the core so
that these services can be found and accessed
during analysis.

� Two approaches are provided for remote access
to element services residing in different locations.
The Distributed Element Service is intended to
provide a communication link to remote element
services where the element code is executed. The
Dynamic Linked Element Service is implemented
to dynamically load the element code from a
remote element service and to link and bind the
code with the core at runtime.

� The Database Interface module is built to provide
efficient data access and to enable post-processing
tasks.

The mechanics of the collaborative model is illus-
trated in Fig. 3. First, users build the structural
model in the client site and submit it to the analysis
core via a web-browser or an application program
using the Internet as a communication channel. Upon
receiving the model, the core server performs an
analysis in a distributed and collaborative manner.
During the analysis, elements that are available in
the core can be accessed locally from the static
element library (this is the case for most prevailing
finite element packages), whereas other elements are
obtained from on-line element services. To find the
required elements that do not exist in the local
element library, the registry will be queried to find
the location of the on-line element services, which
have been previously registered with the core plat-
form. The on-line element services are dynamically
linked with the analysis core to perform the analysis.
After the analysis is completed, part of the results

Fig. 3. Mechanics of the collaborative model.



41Internet-enabled Collaborative Software Development

will be returned to the user by generating a dynamic
web page in the user’s web browser. The user can
also query and view the analysis results using a
web browser or other application programs.

A prototype of the Internet-enabled collaborative
system has been implemented using a Sun Ultra 60
workstation as the hardware platform. Apache HTTP
server is used as the web server for handling users’
requests. Apache Tomcat, which is an implemen-
tation of the Java Servlet 2.2 technologies, is
deployed as the Java Servlet server. For persistent
storage of analysis results, the Database Manage-
ment System (DBMS) is Oracle 8i with the Open
Database Connectivity (ODBC).

All six modules shown in Fig. 2 have been
implemented in the prototype system. As we men-
tioned early, they are developed in a loosely coupled
manner by using component-based design and mode-
ling. This paper will focus on describing four of
the implemented modules, which are the User-Inter-
action Module, the Registration and Naming Service,
the Distributed Element Service, and the Dynamic
Linked Element Service. To illustrate the mechanics
of the prototype collaborative system, a simple lin-
ear-elastic three bar truss structure subject to static
loads, as shown in Fig. 4, is employed. The model
consists of four nodes, three truss elements, nodal
loads acting at node number 4, and the fixed con-
straints at the three support nodes.

3. User Interaction

As indicated in Fig. 1, the collaborative framework
can offer users access to the analysis core, as well
as the associated support services via the Internet.
This client/server computing environment consists
of two logical parts: a server that provides services
and a client that requests services of the server.

Fig. 4. Sample truss example.

Together, the two parts form a complete computing
framework with a very distinct division of res-
ponsibility [18]. One benefit of this model is the
transparency of software services. From a user’s
perspective, the user is dealing with a single service
from a single point of contact – even though the
actual structural analysis may be performed in a
distributed and collaborative manner. The other
benefit is that this framework can widen the reach
of the analysis core to the users and external devel-
opers. The core platform offering the finite element
analysis service stays at the provider’s site, where
the software core is developed, kept securely, oper-
ated, maintained and updated. Users can easily
access the software platform without the associated
cost and maintenance challenges.

3.1. Web-Based User Interface

For the collaborative system, a standard World Wide
Web browser is employed to provide the user inter-
action with the core server. Although the use of a
web browser is not mandatory for the functionalities
of the collaborative framework, using a standard
browser interface leverages the most widely avail-
able Internet environment, as well as being a con-
venient means of quick prototyping.

To conduct an analysis using the current version
of OpenSees, most users need to set up an input
file using the scripting language Tcl (Tool Command
Language) [19]. In the web-based user interface,
two modes of inputting a Tcl script are accepted.
Users can directly submit Tcl command lines to the
server; or they can first edit a Tcl script file and
then submit the input file to the core server. After
the server performs the analysis, the results can be
returned to the users by dynamically generating a
web page in their browser. As an alternative, the
users can also receive the analysis results recorded
in an output file. Figure 5 presents the web pages
of the truss example for the submission of an input
file and for the analysis results reported.

For the server to process the HTTP requests from
the user, Apache Tomcat, which is built on Java
Servlet based technologies, is deployed as the entry
point of server’s process. Whenever Apache Tomcat
receives a request for an analysis, it will start a
new process to run OpenSees. Because Java provides
simple methods for incorporating external processes,
the integration of OpenSees – which is a C��
application – with the Java Servelet server is fairly
straightforward. After the analysis results are
returned from OpenSees to Tomcat, the web server



42 J. Peng and K. H. Law

Fig. 5. Web pages generated in the client site. (a) File submission for analysis model, (b) analysis results.

will package the results in a properly generated web
page and send the web page back to the user’s web
browser. One feature of this model is that Java
Servlet supports multithreading, so that several users
can send requests for analysis simultaneously and
the server is still able to handle them without severe
performance degradation.

3.2. MATLAB-based User Interface

For web-based services, all too often analysis result
is downloaded from the computational server as a
file, and then put manually (cut and paste plus
maybe some cumbersome conversions) into another
program to perform post processing, e.g. a spread-
sheet. For example, if we want to plot a time history
response of a certain node after a dynamic analysis,
we might download the response in a data file and
then use MATLAB, Excel, or other software pack-
ages to generate the graphical representation. It
would be more convenient to directly utilize some
popular application software packages to enhance
the user interaction with the core. In our prototype
system, a MATLAB-based user interface is available
to take advantage of the flexibility and graphical
processing power of MATLAB. The user can also
customize the post-processing of the results. In the
implementation, some extra functions are added to
the standard MATLAB in order to handle the net-
work communication and data processing. These

add-on functions can be directly invoked from either
the MATLAB prompt or a MATLAB-based graphi-
cal user interface. Similar network communication
protocols can be built for other application programs.

For the truss example in Fig. 4, the command,
submitmodel truss.tcl, can be issued to sub-
mit the input Tcl file to the analysis server. Some
pre-defined commands can be invoked to generate
graphical representations of the model. Figure 6
presents the plots of the truss model and its
deformed shape using the commands modelplot
and deformedplot 20, where 20 is an amplifi-
cation factor.

MATLAB can also be employed directly for post-
processing purposes, i.e. the analysis results from
the core server can be directly queried from
MATLAB by using a data query language (DQL).

Fig. 6. Sample MATLAB-based user interface. (a) modelplot,
(b) deformedplot 20.



43Internet-enabled Collaborative Software Development

The DQL is defined in a systematic way and it is
capable of querying the analysis results. As an
example, we can query the displacement from degree
of freedom (dof) 1 of node 4 by issuing

SELECT disp FROM node�4 AND dof�1;

We can also query the information from an element,
for example,

SELECT tangentStiff FROM element=2;

returns the stiffness matrix of element 2. Besides
the general queries, two wildcards are provided. One
is the wildcard * that represents all values. For
instance, if we want to obtain the displacement from
all the nodes, we can use

SELECT disp FROM node�*;

The other wildcard ? may be used on certain object
to find out what kind of queries it can support. For
example, the following query

SELECT ? FROM node=4 returns

Node 4:: NumDOF Crds Disp Vel Accel
Load TrialDisp TrialVel TrialAccel *
If the user desires, the results returned can then be
post-processed directly using MATLAB.

4. On-line Element Services

One of the salient features of the collaborative finite
element software platform is to support analysts
to integrate new element technologies and material
models with the core server. In this collaborative
framework, a standard interface/wrapper is defined
for communicating the element with the object-
oriented analysis core. Using a standard interface
facilitates the concurrent development of new
elements. It allows the replacement of an existing
element code if a superior one becomes available.
The encapsulation and inheritance features of object-
oriented programming are utilized to define the
standard interface for the element. In OpenSees, a
super-class Element is defined in the analysis kernel
(for details, see McKenna [8]). To introduce a new
element into the analysis core requires simply cre-
ating a subclass of the Element class. The new
element code, once tested and approved for adop-
tion, may become part of the core’s static element
library.

In addition to contributing a new element to the
analysis core directly, the developer can also choose
to be an on-line element service provider. Two
forms of on-line element services, namely distrib-
uted element service and dynamic shared element
service, are introduced in the prototype system.
Which form to be used for linking the element
services with the core is up to the developers for
their convenience and other considerations. As long
as the new element conforms to the standard inter-
face, it will be able to communicate with the analy-
sis core. As opposed to the traditional statically
linked element library, the on-line element services
will not expose the source code to the core. The
collaborative platform allows the building of pro-
prietary element services and the linking of legacy
applications.

The on-line element service can be released to
public use by registering itself to the Registration
and Naming Service with its name, location, service
type (whether a distributed service or a dynamic
shared library service) and other pertinent infor-
mation. During a structural analysis, the Registration
and Naming Service can be queried to find the
appropriate type and location of element service.
Although there are three types of element services
(static element library and two forms of on-line
element services), the selection and binding of
element services are automatic and completely trans-
parent to the users. The end users do not need to
know the type of an element service to choose and
the location of the service.

4.1. Registration and Naming Service

To support distributed services with many parti-
cipants, the core server must be able to locate
appropriate services for specific tasks. One approach
is to create a naming service for objects, where an
agent of a certain service could register its service
to the naming service and generate a unique name
and address for the object. The naming service
would be responsible for mapping the named ser-
vices to the physical locations. With the naming
service, the users (clients) can obtain references to
the objects (services) they wish to use. The service
allows names to be associated with object references.
Clients may query the naming service to obtain the
associated object reference and the description of
the service.

In the prototype implementation, a Java class
Identity is defined to record the service identity. The
service is identified by a name property and an id



44 J. Peng and K. H. Law

property. The string name property is a descriptive
name that can be used to specify the service. The
integer id is an internal identifier generated to
uniquely tag each service. The Registration and
Naming Service stores all the Identity objects in a
hash-table keyed by the name property. We have
designed the Identity class to implement the Serializ-
able interface, so that Identity objects can be passed
back and forth on the network. One important
method of the Identity class is equals(), which can
be used to identify if two identities are the same.

As an example, the truss element in the problem
shown in Fig. 4 is built in the form of a distributed
element service, which resides on a separate com-
puter than the core server. The service is pre-regis-
tered with the central server using the web-based
registration form as presented in Fig. 7. The infor-
mation required for the registration service is the
type of the service, the name of the service, the
IP and port number of the service provider’s site,
developer’s identity and password, and a description
of the service. If the input name is already existed
in the service list, the registration server will inform
the developer to choose a different name. Based on
the input data, the naming service can generate a
unique Identity object for the service. This Identity
is used later to find the service and to handle
dynamic binding of the element service with the
core server.

4.2. Distributed Element Service

For the distributed element service, the actual code
resides in the service provider’s site. As shown in

Fig. 7. Registration and naming service interface.

Fig. 8, whenever the core needs certain element
data, for example a stiffness matrix, the core will
request the service provider through a sequence of
remote method invocations. The computation (i.e.
the forming of the stiffness matrix of an element)
is performed at the service provider’s site and the
results are then returned as the return of remote
method calls.

The essential requirements in a distributed object
system are the ability to create and invoke objects
on a remote host or process, and interact with them
as if they were objects within the same process. To
do so, some kind of message protocol is needed for
sending requests to remote agents to create new
objects, to invoke methods on these objects, and to
delete the objects when they are done. Assorted tools
and standards for assembling distributed computing
applications have been developed over the years.
They started as low-level data transmission APIs
and protocols, such as TCP/IP and RPC, and have
recently begun to evolve into object-oriented distri-
bution schemes, such as CORBA, DCOM, Java
RMI, and OpenDoc. These programming tools
essentially provide a protocol for transmitting struc-
tured data (and, in some case, actual running code)
over a network connection.

In the prototype implementation, Java’s Remote
Method Invocation (RMI) is chosen to handle the
network communication. RMI enables a program in
one Java Virtual Machine (JVM) to make method
calls on an object located on a remote server
machine. RMI allows distributing computational
tasks across a networked environment and thus
enables a task to be performed on the machine
most appropriate for the task [20]. RMI can be
implemented efficiently and it can be beneficial for
scientific and engineering computing [21,22]. The
skeleton, which is the object at the server site,

Fig. 8. Mechanics of the distributed element service.



45Internet-enabled Collaborative Software Development

receives method invocation requests from the client.
The skeleton then makes a call to the actual object
implemented on the server. The stub is the client’s
proxy representing the remote object and defines all
the interfaces that the remote object supports. To
illustrate the interaction between a distributed
element service and the core server, Fig. 9 shows the
interaction diagram of a typical distributed element
service. The TrussElementClient object plays the
role of a stub that forwards the core server’s requests
(formElement() and getStiff()) to the element service.
The TrussElementServer object is a skeleton that
defines the entry point of this TrussElement service.
The actual element service itself is an example of
a legacy application, which is, in this case, written
partly in C and partly in Fortran. Once wrapped and
conformed to the protocol, the legacy application can
be integrated into the distributed service architecture.

The key item in the open collaborative system
presented earlier is interfaces. A set of interfaces
should be fully defined, available to the public,
and appropriately maintained. To standardize the
implementation of a new element, a common inter-
face named ElementRemote is provided, as presented
in Fig. 10. Following the object-oriented paradigm,
the ‘exposed’ methods are the points of entry into
the element services, but the actual implementation
of these methods is dependent on the individual
services. Element developers need to implement an

Fig. 9. Interaction diagram of the distributed truss element service.

Fig. 10. Class interface of ElementRemote.

ElementServer, which is a subclass of ElementRe-
mote. The ElementRemote interface is almost the
same as the standard element interface that is pro-
vided by the core OpenSees program. The only
difference lies in the fact that two additional
methods are introduced in this interface. One is
formElement() that is used by the client to send the
input data (geometry, nodal coordinates, etc.) to the
actual element. The other is clearElements(), which
can be called to perform the ‘house-cleaning’ task
once the analysis is complete. During the analysis,
the output data (stiffness matrix, mass matrix, etc.)
of each element can be obtained by calling the



46 J. Peng and K. H. Law

corresponding member methods. Although it is not
shown in Fig. 10 for the purpose of clarity, excep-
tion handling is included in the implementation for
all the methods.

When the analysis core needs to use the distrib-
uted element, it instantiates and makes method calls
to the element in the same way as it treats a local
element object. The actual method calls on the
ElementClient and tunnels over to the ElementSer-
ver. Figure 11 shows partial sample code that illus-
trates the usage of the two methods: formElement()
and getStiff(). Upon receiving a formElement()
request from the ElementClient, the ElementServer
will instantiate a new Element object and start a
new thread to compute the element stiffness matrix.
After the computation is complete, the stiffness
matrix is saved in a hash-table. The next time when
the Client issues a call getStiff() for the stiffness
matrix, the hash-table will be searched and the data
can be sent to the caller as a function return.

Let’s consider the truss example in Fig. 4, where
the truss element is built in the form of a distributed
element service. When the server receives the input
model (Tcl file), the core program will first consult
the Naming and Registration Service to find the
information of the distributed truss element. The
TrussElementClient will then use the queried infor-
mation to initiate the communication with the Trus-
sElementServer. After the communication is

Fig. 11. Sample ElementClient and sample ElementServer.

initiated, the core analysis program treats the truss
element in the same way as a local element. Again,
the searching and the binding of an on-line element
service are automated – the user is not aware of
the difference between a local element and an
online element.

4.3. Dynamic Shared Library Element
Service

The distributed element service model described pre-
viously is flexible and convenient; however, the
approach does carry some overhead on remote
method invocation, which may be quite expensive
considering that it has to be done for every call to an
element. A dynamic shared library element service is
designed to alleviate the problem and to improve
performance without losing flexibility. The mech-
anics of the Dynamic Shared Library Element Ser-
vice is depicted in Fig. 12. In this approach, the
element code is built in the form of a dynamic
shared library conforming to a standard interface.
The shared library is placed on an FTP server or
an HTTP server in the on-line service provider’s
site. When the core calls for the element, the
dynamic shared library will be downloaded from
the service provider’s site. The downloaded shared
library can then be dynamically linked with the
analysis core during run-time.

The mechanics of a dynamic shared library differs
from a static library. With a static library, objects
within the library are linked into the program’s
executable file at compilation time. For a dynamic
shared library, objects within the library are not
linked into the program’s executable file, but rather
the linker notes in the executable that the program
depends on the library. When the program is
executed, the system loads the dynamic libraries
that the program requires. One advantage of linking

Fig. 12. Mechanics of the dynamic shared library element service.



47Internet-enabled Collaborative Software Development

dynamically with shared libraries over linking stati-
cally with static libraries is that the shared library
can be loaded at runtime, so that different services
can be replaced at runtime without re-compilation
and/or re-linking with the application. Another bene-
fit of using dynamic shared library is that the shared
library is in binary format. This guarantees that the
source code of the element will not be exposed to
the core server. This also implies that the element
developer controls the maintenance, quality, and
upgrade of the source code. However, the dynamic
shared library service bears some disadvantages. The
most prominent one is platform dependency. To
support dynamic loading and binding, the shared
library must be built on the same platform as the
core server. Other disadvantages may include poten-
tial security problem and minor performance over-
head due to network download and dynamic binding.

5. Example

This section presents a nonlinear dynamic analysis
to illustrate the usage of the collaborative software
framework. Figure 13 shows the sketch of a struc-
tural model and part of the input Tcl file for the
model. The structural model is an 18 story two-
dimensional one bay frame. The model is finetuned
so that beam hinging occurs simultaneously at the
ends of the beams and at the bottom of the first
story columns. The story heights are all 12 feet and
the span is 24 feet. The beams and columns are
modeled by using ElasticBeamColumn element and
the hinging is modeled with zero-length elasto-
plastic rotational element. A nonlinear dynamic
analysis is performed using the 1994 Northridge
earthquake recorded at the Saticoy St. station.

Fig. 13. The model and part of the input Tcl file.

Figure 14 illustrates the interaction of the distrib-
uted services during the simulation of the model.
The analysis core, OpenSees, is running in a central
server computer called opensees.stanford.edu. The
ElasticBeamColumn element is built in the form of
a distributed element service, which is running on
a computer named galerkin.standford.edu. In order
to use the element in the analysis, it has to be
registered with the central server, using a web inter-
face similar to the one shown in Fig. 7, before it
can be utilized to provide the service. As we indi-
cated before, users only need to know the location
of the central server without the awareness of the
underlying distributed framework; the users can
communicate with the server via a web-based inter-
face. The input Tcl file is submitted to the server
using a web-based interface (as illustrated earlier in
Fig. 5(a)). Upon receiving the request, the central
server starts a new process to perform the nonlinear
dynamic analysis. When the analysis is in need of
certain type of element (in this case, ElasticBeamCo-
lumn element), the Registration and Naming Service
will be consulted to query the element service. Once
the communication between element service and the
central server is established, the analysis can con-
tinue as if the element resides in the central server.

During the simulation, some selected analysis
results will be saved in the Database, and certain
information will be returned to the user’s browser
to inform the progress of the simulation (similar to
Fig. 5(b)). After the simulation is complete, typical
analysis results can be queried, or the results can
be downloaded from the server and saved in a data
file. To facilitate plotting of the analysis result in a
user’s web browser, a MATLAB-based distributed
post-processing service is deployed in this example.
For example, if the user wants to plot response time
history of node 1 (which is the left node on the
18th floor in the structural model), the central server
will forward the time history response data to the
MATLAB-based service running on a separate com-

Fig. 14. Interaction of distributed services.



48 J. Peng and K. H. Law

puter (in this case, epic21.standford.edu). Once the
post-processing service receives the request, it auto-
matically starts a MATLAB process to plot the time
history response and then save it in a file of PNG
(Portable Network Graphics) format. This file can
later on be sent to the client and be plotted in the
user’s browser, as shown in Fig. 15.

In this example, the simulation was the result of
the collaboration among four computers and several
services running on these computers. The services
are distributed on different computers on the Inter-
net, residing within their own address space outside
of the central server, and yet they appear as though
they were local to the client.

6. Conclusions

This paper has described an Internet-enabled distrib-
uted service architecture that allows new services to
be incorporated into a modular nonlinear dynamic
analysis platform. The main design principle of this
collaborative framework is to keep the kernel flex-
ible and extendible. A diverse group of users and
developers can easily access the platform and attach
their own developments to the core. By providing
a modular infrastructure, services can be added or
updated without recompilation or reinitialization of
the existing services. Although this work has focused
on new element services, other analysis services
(e.g. material services, solution strategies services,
analysis strategies services, etc.) can be implemented
and linked to the modular server in the similar
fashion.

Fig. 15. Graphical response time history of Node 1.

This research has illustrated the many possibilities
of the Internet for enhancing the distributive and
collaborative software development and utilization.
The Internet-enabled collaborative system imple-
mentation of engineering software for analysis and
simulation has at least three benefits. First, the
platform provides a means of distributing services
in a modular and systematic way. Users can select
appropriate services and can easily replace a service
by another one, without having to recompile the
existing services being used. Secondly, it provides
a means to integrate legacy code as one of the
modular services in the infrastructure. Thirdly, the
framework alleviates the burden of managing a
group of developers and their source code. Once a
common communication protocol is defined, parti-
cipants can write the code based on the protocol
and there is no need to constantly merge the code
written by different participants.

The collaborative prototype described in this paper
does not address issues of authentication and secur-
ity. These security issues could be addressed in the
network level, especially by utilizing the Public Key
Infrastructure (PKI) that supports digital signatures
and other public key-enabled security services [23].
Another issue of the framework is scalability. The
current implementation relies on Java’s multithread-
ing feature to handle simultaneous requests. Our test
result shows that the performance will be substan-
tially degraded when more than a dozen clients
access the server simultaneously. This scalability
problem could be tackled by providing multiple
core servers, utilizing more powerful computers,
and deploying parallel and distributed computing
environment [24,25].

Acknowledgements

The authors would like to thank Dr. Frank McKenna
and Prof. Gregory L. Fenves of UC, Berkeley for their
collaboration and enthusiastic support of this research.
This work was supported in part by the Pacific Earthquake
Engineering Research Center through the Earthquake
Engineering Research Centers Program of the National
Science Foundation under Award number EEC-9701568,
and in part by NSF Grant Number CMS-0084530. The
authors would also like to acknowledge the Technology for
Education 2000 equipment grant from Intel Corporation.

References

1. Forde, B. W. R., Foschi, R. O., Stiemer, S. F. (1990)
Object-oriented finite element analysis. Computers and
Structures, 34(3), 355–374



49Internet-enabled Collaborative Software Development

2. Miller, G. R. (1991) An object-oriented approach to
structural analysis and design. Computers and Struc-
tures, 40(1), 75–82

3. Mackie, R. I. (1992) Object-oriented programming of
the finite element method. International Journal for
Numerical Methods in Engineering, 35(2), 425–436

4. Zimmermann, T., Dubois Pelerin, Y., Bomme, P.
(1992) Object-oriented finite element programming: I.
Governing principles. Computer Methods in Applied
Mechanics and Engineering, 98(2), 291–303

5. Kong, X. A., Chen, D. P. (1995) An object-oriented
design of FEM programs. Computers and Structures,
57(1), 157–166

6. Archer, G. (1996) Object-oriented nonlinear dynamic
finite element analysis. PhD thesis, Department of
Civil and Environmental Engineering, University of
California, Berkeley, CA

7. Rucki, M. D., Miller, G. R. (1996) Algorithmic frame-
work for flexible finite element-based structural mode-
ling. Computer Methods in Applied Mechanics and
Engineering, 136(3–4), 363–384

8. McKenna, F. (1997) Object-oriented finite element
programming: Frameworks for analysis, algorithm and
parallel computing. PhD thesis, Department of Civil
and Environmental Engineering, University of Califor-
nia, Berkeley, CA

9. Ones, S. R., De Santiago, E. (2000) An object based
application of distributed programming for turbulent
flow problems. Fourteenth Engineering Mechanics
Conference ASCE, Austin, TX

10. Commend, S., Zimmermann, T. (2001) Object-oriented
nonlinear finite element programming: A primer.
Advances in Engineering Software, 32(8), 611–628

11. Dubois-Pelerin, Y., Zimmermann, T. (1993) Object-
oriented finite element programming: III. An efficient
implementation in C��. Computer Methods in
Applied Mechanics and Engineering, 108(1–2), 165–
183

12. Han, C. S., Kunz, J. C., Law, K. H. (1999) Building
design services in a distributed architecture. Journal
of Computing in Civil Engineering, 13(1), 12–22

13. Peng, J., Law, K. H. (2000) Framework for collabor-

ative structural analysis software development. Struc-
tural Congress & Expositions ASCE, Philadelphia, PA

14. Peng, J., McKenna, F., Fenves, G. L., Law, K. H.
(2000) An open collaborative model for development
of finite element program. The 8th International Con-
ference on Computing in Civil and Building Engineer-
ing (ICCCBE-VIII), Palo Alto, CA, 1309–1316

15. Smith, B. L., Scherer, W. T. (1999) Developing com-
plex integrated computer applications and systems.
Journal of Computing in Civil Engineering, 13(4),
238–245

16. Hopkins, J. (2000) Component primer. Communi-
cations of the ACM, 43(10), 27–30

17. Plasil, F., Visnovsky, S., Besta, M., (1999) Bounding
component behavior via protocols. TOOLS USA 1999:
30th International Conference & Exhibition, Santa
Barbara, CA, 387–398

18. Lewandowski, S. M. (1998) Frameworks for compo-
nent-based client/server computing. ACM Computing
Surveys, 30(1), 3–27

19. Ousterhout, J. K. (1994) Tcl and the Tk Toolkit, 1st
Ed. Addison-Wesley

20. Farley, J. (1998) Java Distributed Computing,
O’Reilly & Associates, Sebastopol, CA

21. Phillipsen, M., Haumacher, B., Nester, C. (2000) More
efficient serialization and RMI for Java. Concurrency:
Practice and Experience, 12(7), 495–518

22. Govindaraju, M., Slominski, A., Choppella, V., Bram-
ley, R., Gannon, D. (2000) Requirements for and
evaluation of RMI protocols for scientific computing.
High Performance Networking and Computing Confer-
ence (SC 2000), Dallas, TX

23. Stallings, W. (1998) Cryptography and Network Secur-
ity: Principles and practice, 2nd Ed. Prentice Hall, NJ

24. Law, K. H., Mackay, D. R. (1996) A parallel
implementation of a generalized Lanczos procedure
for structural dynamic analysis. International Journal
of High Speed Computing, 8(2), 171–204

25. De Santiago, E., Law, K. H. (2000) A distributed
implementation of an adaptive finite element method
for fluid problems. Computers and Structures, 74,
97–119


