
1

An Online Data Access System for a Finite Element Program

Jun Peng1, David Liu2, and Kincho H. Law3

ABSTRACT

This paper describes a prototype implementation of an online data access system for a finite element

analysis (FEA) program. The system incorporates a commercial off-the-shelf (COTS) database as the

backend to store selected analysis results; and the Internet is utilized as a data delivery vehicle. The

objective is to provide the users an easy-to-use mechanism to access the needed analysis results from

readily accessible sources in a ready-to-use format for further manipulation. Three key issues

regarding the online engineering data access system are discussed: data modeling, data

representation, and data retrieval. The online data access system gives great flexibility to the

management of data in finite element programs and provides additional features to enhance the

applicability of FEA software.

1. INTRODUCTION

The importance of engineering data management is increasingly emphasized in both industrial and

academic communities. The objective of using an engineering database is to provide the users the

needed engineering information from readily accessible sources in a ready-to-use format for further

manipulation. Such trend can also be observed in the field of finite element analysis (FEA). Modern

finite element programs are increasingly required to be linked to other software such as CAD,

graphical processing software, or databases [20]. Data integration problems are mounting as engineers

confront the need to move information from one computer program to another in a reliable and

organized manner. The handling of data shared between disparate systems requires the definition of

persistent and standard representations of the data, and corresponding interfaces to query the data.

Data must be represented in such a manner that they can facilitate interoperation with humans or

mechanisms that use other persistent representations [34]. As new element and material types and

1 Graduate Student, Department of Civil and Environmental Engineering, Stanford University, Stanford, CA
94305. E-mail: junpeng@stanford.edu

2 Graduate Student, Department of Electrical Engineering, Stanford University, Stanford, CA 94305. E-mail:
davidliu@stanford.edu

3 Professor, Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305.
E-mail: law@cive.stanford.edu

2

new solution strategies continue to be introduced to a FEA program, the data structure of the FEA

program is becoming ever more complex. In order to cope with the evolutionary nature of the FEA

program, data management needs to be flexible and extendible. Presently, the state-of-practice for

data management in FEA programs still mainly rely on file systems. The prevailing data structures are

based primarily on hierarchical model, and the data representations are concentrating on primary data

types: integers and decimal numbers. Generally, file systems do not guarantee that data cannot be lost

if it is not backed up, and they do not support efficient access to data items whose location in a

particular file is unknown. Furthermore, file systems do not provide direct support for a query

language to access the data in files, and their support for a schema for the data is limited to the creation

of file directory structures. Finally, file systems cannot guarantee data integrity in the case of

concurrent access.

To improve the data processing power, a commercial off-the-shelf (COTS) database system can be

linked with finite element software packages as the backbone. By adopting a COTS database system,

we can address many of the problems encountered by the prevailing data management based on file

systems. Current trend sees that the commercial database industry is shifting to use the Internet as the

preferred data delivery vehicle. Various Internet computing is supported by backend databases. Finite

element computing is no exception.

This paper presents a prototype implementation of an online data access system for a FEA program.

This is part of an effort to utilize the Internet as a vehicle to support distributed engineering

application services. The objective is to develop a software platform that would allow researchers and

engineers to easily access to the FEA platform, and to incorporate new element technologies and

solution strategies for nonlinear dynamic analysis of structures [27-29]. Figure 1 shows the system

architecture of the distributed collaborative structural analysis platform. The core of the platform is

based on an object-oriented finite element program – OpenSees (Open System for Earthquake

Engineering Simulation) that is currently being developed at the Pacific Earthquake Engineering

Research (PEER) Center [25]. In the distributed client-server model, the analysis core is running on a

central server as a compute engine, and the users play the role of clients and have direct or remote

access to the core program and analysis results. Elements can be built as separate services and linked

with the core server via a standard protocol. The element services can be accessed by the core

remotely over the Internet. As illustrated in Figure 1, a COTS database system is linked with the

central server to provide the persistent storage of selected analysis results. In the prototype system, the

data management is supported using Oracle 8i [16] DBMS (Database Management System) with

3

customized enhancements to meet certain additional requirements. A customized interface to link the

FEA core with MySQL [7] DBMS, which is one of the most popular open source databases, has also

been implemented. The online data access system would allow the users to query useful analysis

results, and the information retrieved from the database through the core server is returned to the users

in a standard format. Since the system is using centralized server model, the data management system

can also support project management and version control.

Client

Workstation Workstation Parallel ComputerParallel Computer

Data
Server Interface

Element Server 1

Element Server 2

Registry

Finite Element
Compute Engine

Client
Internet

Internet

LAN (Local Area Network)

Internet

Figure 1. System Architecture for a Collaborative Finite Element Program

In this paper, we will first present the overall architecture of the data access system. The system is

built with a multi-tier architecture that provides a flexible mechanism to organize distributed client-

server systems. The communication between different components will be discussed. The rest of the

paper will then address three aspects of the data management system:

• Data storage scheme: A selective data storage scheme is introduced to provide flexible support

for tradeoff between the time used for reconstructing analysis domain and the space used for

storing the analysis results. Rather than storing all the interim and final analysis results, the data

management system allows saving only selected analysis data in the database. That is, the user

has the flexibility to specify storing only the needed data. All the other analysis results can be

accessed through the FEA core with certain re-computation.

• Data representation: Data are organized internally within the FEA analysis core based on an

object-oriented model. Data saved in the COTS database are represented in three basic data types:

Matrix, Vector, and ID. Project management and version control capabilities are also supported

4

by the system. For external data representation, XML (eXtensible Markup Language) is chosen as

the standard for representing data in a platform independent manner.

• Data retrieval: The system needs to support the interaction with both human and other

application programs. A systematic data query language is defined to provide support for data

retrieval as well as post-processing functionalities. Through the query language, users can have

uniform access to the analysis results by using a web-browser or other application programs.

2. RELATED WORK

The importance of data management system in scientific and engineering computing has been

recognized for over thirty years. Techniques for generalized data management were gradually making

inroads in scientific computing during the 1970s. This development paralleled in many ways the rapid

acceptance of the centralized database concept in business-oriented processing. However, engineering

data manipulation systems faced a specialized environment with its own set of operational

requirements. Tuel and Berry [33] outlined the basic database requirements for computer-based

information systems needed to handle the diverse and changing information requirements of

geographic facilities. Recognizing the fact that computer solution of structural analysis problems

results in the generation of large volumes of data, Lopez et al. [17] proposed a database management

system for large-scale structural engineering problems. To present the specialized environment and

operational requirements of engineering data management systems, Felippa [8-10] published a series

of three papers on database usage in scientific computing. These papers reviewed general features of

scientific data management from a functional standpoint. The general data structures and program

architecture were also presented, together with the issues regarding implementation and deployment.

In 1983, Blackburn et al. [3] described a relational database (RDB) management system for computer-

based integrated design, including application to the analysis of various structures to demonstrate and

evaluate the ability of RDB system to store, retrieve, query, modify, and manipulate data. All these

papers emphasized the importance of centralized data management for large-scale computing. Two

factors that determined the favor of centralized scientific data management were: the sheer growth of

large-scale engineering analysis codes to the point of incipient instability as regards to propagation of

local program errors, and the appearance of integrated program networks that share a common project

database. Centralized data management was most effective when used in conjunction with a highly-

modular, structured program architecture [9].

The role of databases as repositories of information (data) highlighted the importance of data

5

structures. The component data elements of data structures could be either atomic (i.e. non-

decomposable) or data structures themselves. The relationships between these component data

elements constitute the structure and have implications for the functions of the data structure [1].

Several general approaches for organizing the data models have been developed. They are: the

hierarchical approach, the network approach, the relational approach, and the object-oriented

approach. The relational model has been adopted in several finite element programs [3,30,35]. No

matter which data model is used, data structures need to be self-describable [8]. For practical reasons

we can generally exclude the naïve approach of forcing every program component to agree on a

unified data structure. The next best thing is to require each program to label its output data, i.e. to

attach a descriptive label to each data structure that would be saved in the database. Such tags can

then be examined by the control structure of other programs and appropriate actions can be taken.

Today, file system remains the most popular approach in managing data storage. The loosely-coupled

systems could talk to each other through the same file system. However, this does not imply that they

speak the same language. In other words, data placed by an application program into the file system

may well not be acceptable to another program because of format incompatibility. To tackle this

problem, Yang [35] defined a standard file format for the analysis data, called the universal file (UF).

Two interfaces have been proposed. The first is a specified set of subroutines to transfer the input or

output files of the programs into UF. The second is a set of subroutines to translate UF into the

database configured to aid FEM modeling operations.

For finite element programs, the post-processing functions need to allow the recovery of analysis

results and provide extensive graphical and numerical tools for gaining an understanding of results. In

this sense, querying database is an important aspect and query languages need to be constructed to

interrogate databases. A free-format data query language has been designed and provided in SADDLE

(Structural Analysis and Dynamic Design Language) [30]. Although the commands to create, edit,

and update the data have been provided, the query language was hard for human to interpret. In order

to manage engineering databases, a data query system should provide query commands that resemble

English, as well as simple data manipulation procedures [11]. Simple natural language interface has

also been attempted in querying the qualitative description of dynamic simulation data [5]. The

commands of this language are easy for human to interpret, but it is difficult to write a parser.

3. DATA ACCESS SYSTEM ARCHITECTURE

Since in the distributed client-server environment, the FEM analysis core is running on a central server

6

as a compute engine, the online data access system needs to be designed accordingly. Figure 2 depicts

the architecture of the online data access system. A multi-tiered architecture is employed as opposed

to the traditional two-tier client-server architecture. The multi-tiered architecture provides a flexible

mechanism to organize distributed client-server systems. Since components in the system are modular

and self-contained, they could be designed and developed separately.

Browser WebServer
Database

AppServer

Java
Servlet

OpenSees

�������

�	
�

��
�

���������

�����

ORACLE
8i

Apache
With

Tomcat
Stored

Procedure

ODBC
JDBC

Presentation
Server

Application
Server

Data
Server

Browser WebServer
Database

AppServer

Java
Servlet

OpenSees

�������

�	
�

��
�

���������

�����

ORACLEApache
With

Tomcat
Stored

Procedure

Remote
Client

Presentation
Server

Application
Server

Data
Server

Browser
MATLAB

Java
Servlets

WebServer

JDBC
ODBC

Database

DB_Datastore
sendSelf()
recvSelf()

AppServer

Apache
Tomcat

OpenSees

�������

�	
�

��
�

���������

�����

ORACLE 8i
or MySQL

Presentation
Server

Application
Server

Data
Server

Browser WebServer
Database

AppServer

Java
Servlet

OpenSees

�������

�	
�

��
�

���������

�����

ORACLE
8i

Apache
With

Tomcat
Stored

Procedure

ODBC
JDBC

Presentation
Server

Application
Server

Data
Server

Browser WebServer
Database

AppServer

Java
Servlet

OpenSees

�������

�	
�

��
�

���������

�����

ORACLEApache
With

Tomcat
Stored

Procedure

Remote
Client

Presentation
Server

Application
Server

Data
Server

Browser
MATLAB

Java
Servlets

WebServer

JDBC
ODBC

Database

DB_Datastore
sendSelf()
recvSelf()

AppServer

Apache
Tomcat

OpenSees

�������

�	
�

��
�

���������

�����

ORACLE 8i
or MySQL

Presentation
Server

Application
Server

Data
Server

Figure 2. Data Access System Architecture

• A standard interface is provided for the Client programs to access the server system. Application

programs, such as web browsers and MATLAB, can access the server core and analysis results

from the client site via the pre-defined interface. Using dynamic HTML pages and JavaScript

code, together with the mathematical manipulation and graphic display capability of MATLAB,

the client can specify the format and views of the analysis results.

• Java Servlet enabled Web Server is employed to receive users’ requests and hand them to the

Application Server. The Web Server also plays the role of re-formatting the analysis results in

certain HTML format for the web-based clients. In the prototype system, Apache HTTP web

server is used to handle the users’ requests, and Apache Tomcat is employed as the Java Servlet

server.

• The Application Server is the middle layer for handling communication between the Web Server

and the Database. The Application Server provides the core functionalities for performing

analysis and generating results. In the prototype system, the analysis core (OpenSees) is situated

in the Application Server. Since OpenSees is a C++ application, the integration of OpenSees with

Java Servlet server needs to be handled with special care. Although Java provides JNI (Java

Native Interface) as an interface to procedures written in native programming language (C, C++,

Fortran, etc.), accessing C++ applications from Java can be a challenging task. In order to keep

7

the design modular, the communication between Java applications and C++ programs is done in

the data access system via a socket connection, instead of directly using JNI. Specific socket

classes written in both Java and C++ are implemented to provide communication support between

Java Servlets and OpenSees.

• A COTS Database system is utilized for the storage and retrieval of selected analysis results.

Both Oracle 8i and MySQL are employed as the database system in the prototype implementation.

The communication between the Application Server and the Database is handled via the standard

data access interfaces that Oracle 8i or MySQL provides. In the original design of OpenSees, the

Channel class is defined to facilitate the communication between core objects and remote

processes (for details of Channel class, see McKenna [22]). The Channel class can be extended to

include a new subclass DB_Datastore and to establish the communication between core objects

and the COTS database. The DB_Datastore class uses Open Database Connectivity (ODBC) to

send and retrieve data between the OpenSees core objects and the database. Partial listing of the

interface for the DB_Datastore class is shown in Figure 3.

class DB_Datastore {
DB_Datastore(char* dbName, Domain &theDomain,

FEM_ObjectBroker &broker);
~DB_Datastore();

// method to get a database tag.
int getDbTag(void);
// methods to set and get a project tag.
int getProjTag();
void setProjTag(int projectTag);

virtual int sendObj(int commitTag, MovableObject &theObject,
ChannelAddress *theAddress);

virtual int recvObj(int commitTag, MovableObject &theObject,
FEM_ObjectBroker &theBroker, ChannelAddress *theAddress);

virtual int sendMatrix(int dbTag, int commitTag,
const Matrix &theMatrix, ChannelAddress *theAddress);

virtual int recvMatrix(int dbTag, int commitTag,
Matrix &theMatrix, ChannelAddress *theAddress);

virtual int sendVector(int dbTag, int commitTag,
const Vector &theVector, ChannelAddress *theAddress);

virtual int recvVector(int dbTag, int commitTag,
Vector &theVector, ChannelAddress *theAddress);

virtual int sendID(int dbTag, int commitTag,
const ID &theID, ChannelAddress *theAddress);

virtual int recvID(int dbTag, int commitTag,
ID &theID, ChannelAddress *theAddress);

}

Figure 3. Interface for the DB_Datastore Class

8

4. DATA STORAGE SCHEME

A typical finite element analysis generates large volume of data. There are two basic methods to save

and retrieve analysis results. One method is to pre-define all the required data and save the defined

data during the analysis. A problem associated with this method is that a complete re-analysis is

needed when data other than the pre-defined ones are later requested. For nonlinear dynamic analysis

of large structural models, the re-analysis can be expensive in terms of both processing time and

storage space requirement. The other method is simply dumping all the interim and final analysis data

into files, which are then used later to retrieve the required results as a post-processing task. Obvious

drawbacks of this method are the substantial amount of storage space and the potential poor

performance due to the expensive search on the large data files.

To overcome the disadvantages of the traditional post-processing methods, we propose an alternative

to store only selected data into the database, rater than storing all interim and final analysis results.

During the post-processing phase, analysis results are reconstructed based on the stored data. A

request for certain analysis result is submitted to the OpenSees analysis core instead of directly

querying the database. Upon receiving the request, the analysis core will automatically query the

database for saved data to instantiate required new objects. If necessary, these objects are instantiated

to restart the analysis to generate the requested data. Comparing to performing the entire analysis to

obtain the data that are not pre-defined, the re-computation is more efficient since only a small portion

of the program is executed with the goal of fulfilling the request. As opposed to storing all the data

needed to answer all queries, the selective storage strategy can significantly reduce the amount of data

to be stored in the data management system.

There are numerous ways for selecting what kind of data to be stored during analysis. The objective is

to minimize the amount of storage space without severely sacrificing performance. The selected data

also need to be sufficient for the re-computation during post-processing. In the data access system,

we use object serialization [4] to achieve the goal of data selection. Object serialization captures the

state of an object and writes it to a persistent representation, one of such ways is a byte stream. This

technique allows the developer of each class to decide what kind of information needs to be saved in

the database. A simple example is Truss element, where its dimension, number of DOFs, length, area,

and material properties are saved in the database. Based on these stored data, the stiffness matrix of a

Truss element can be easily generated. The object serialization technique can be associated with other

storage management strategies to further reduce the amount of storage space. As an example, for

nonlinear incremental analysis, the storage requirement can be dramatically reduced by adopting a

9

data storage strategy named sampling at a specified interval (SASI).

4.1. Object Serialization

Ordinarily, an object lasts no longer than the program that creates it. In this context, persistence is the

ability of an object to record its state so that the object can be reproduced in the future, even in another

runtime environment. In order to provide persistence for objects, a technique called object

serialization is used where the internal data structures of an object is mapped to a serialized

representation that can be sent, stored, and retrieved by other applications. Through object

serialization, the object can be shared outside the address space of an application by other application

programs. A persistent object might store its state in a file or a database, which is then used to restore

the object in a different runtime environment. There are currently three common forms of

implementing object serialization in C++ [32]:

• Java Model: The Java serialization model stores all non-transient member data and functions for

a serializable object by default. User can change the default behavior by overriding the object’s

readObject() and writeObject() methods, which specify the behaviors for serialization and

deserialization of the object, respectively. This behavior can be emulated in C++ by ensuring that

each serializable object implements two methods: one for serialization and another for

deserialization.

• HPC++ Model: Every serializable object declares a global method to be its friend. The runtime

environment then uses this global method to access an object’s internal state to serialize or

deserialize it. This technique is effectively used in HPC++ [6].

• Template Factory Model: A template is defined for each object type by the template factory.

For serialization, the runtime environment can invoke the serialization method setX() of each

object to write out the state of the object to a stream. For deserialization, the type of an object

needs to be obtained from its stream representation first. A template of the object then is created

by the template factory based on the object type. Subsequently, the internal states of the object

can be accessed from the stream with getX() method. Such template factory based serialization

model is used in Java Beans [18].

In the online data access system, object serialization is supported via a technique that is similar to the

Template Factory Model. In OpenSees system, a Domain object is a container responsible for holding

all the components of the finite element model, i.e. the Node, Element, Constraint, and Load objects.

10

The class that is used for this purpose goes by many different names: NAP [12], LocalDB [24],

Partition [31], FE_Model [19], Model [2], and Domain [36]. The functionality of the Domain class

can be divided into two categories. One is responsible for adding components to the Domain object;

and the other is for accessing the Domain components.

In OpenSees system, all the modeling classes (Domain, Node, Element, Constraint, and Load, etc.),

and Numerical classes (Matrix, Vector, ID, and Tensor, etc.) share a common super-class named

MovableObject. Theses classes also have two member functions: sendSelf() and recvSelf(). The

sendSelf() method is responsible for writing the state of the object so that the corresponding recvSelf()

method can restore it. The typical mechanism for saving the object's state can be invoked by using a

Channel object to send out all its member fields and other selected information. The Channel class is

implemented in OpenSees to take care of the communication with remote processes, which could be a

file system or a database. For instance, the DB_Datastore class (shown in Figure 3), which is a

subclass of Channel, can be utilized to construct a communication channel with a database.

In the data access system, the data query processing involves restoring the domain state. The restoring

process (deserialization) requires the domain state to be saved (serialization) first. During Domain

serialization, the Domain object accesses all its contained components and invokes the corresponding

sendSelf() methods on the components to send out their state as a stream. The stream will then be

piped to certain storage media (file system or database system) by the specified Channel object. For

each object, the first field that it needs to send out is an integer classTag, which is a unique value used

in OpenSees to identify the type of an object.

During Domain deserialization, the pre-stored data can be used to restore the Domain and its contained

components. For each component, we first need to retrieve its classTag from the stream. The

retrieved classTag then can be passed to the template factory, which is a class named

FEM_ObjectBroker. The main method of FEM_ObjectBroker is

MovableObject* getObjectPtr(int classTag);

A template of the class corresponding to the classTag can be created by calling the constructor without

arguments. The returned value is a pointer to an object with the generic MovableObject type. Since

each object knows its own type, the returned MovableObject can be further cast to create a specific

template of the object. After a template for the object has been created, the remaining task of creating

a replica of the object is to fill in the member fields. This can be achieved by calling the member

method recvSelf() of the object, which is responsible for reading the member fields from the Channel.

The restored component objects can then be added to the Domain. Figure 4 illustrates the process of

11

invoking recvSelf() on Domain to restore its state to a specific step.

Domain::recvSelf(int savedStep, Channel &database, FEM_ObjectBroker &theBroker)
{

// First we receive the data regarding the state of the Domain.
ID domainData(this->DOMAIN_SIZE);
database.recvID(this->INIT_DB_TAG, savedStep, domainData);

// We can restore Nodes based on saved information.
int numNodes = domainData(this->NODE_INDEX);
int nodeDBTag = domainData(this->NODE_DB_TAG);

// Receive the data regarding type and dbTag of the Nodes.
ID nodesData(2*numNodes);
database.recvID(nodeDBTag, savedStep, nodesData);

for (i = 0; i < numNodes; i++) {
int classTagNode = nodeData(2*i);
int dbTagNode = nodeData(2*i+1);
// Create a template of the Node based on its classTag.
MovableObject *theNode = theBroker.getPtrObject(classTagNode);
// The Node itself tries to restore its state.
theNode->recvSelf(savedStep, database, theBroker);
// Add this Node to be a component of the Domain.
this->addNode(theNode);

}

// Same as Nodes above, we rebuild Elements, Constraints, and Load
...

}

Figure 4. Pseudo Code for Domain recvSelf()

4.2. Sampling at a Specified Interval

We illustrate the selective storage strategy in this section by sampling the results at specified intervals

(SASI), which is a data storage strategy for nonlinear incremental analysis. The incremental analysis

method is commonly used in nonlinear structural analysis [21]. For numerical analysis of structures,

formulation of equilibrium on the deformed geometry of a structure, together with nonlinear behavior

of materials, will result in a system of nonlinear stiffness equations. One method for solving these

equations is to approximate their non-linearity with a piecewise segmental fit. For example, the

single-step incremental method employs a strategy that is analogous to solving systems of linear or

nonlinear differential equations by the Runge-Kutta methods. In general, the incremental analysis can

be cast in the form

}{d∆}{∆}{∆ i1ii += −

where {∆i-1} and {∆i} are the total displacements at the end of the previous and current load

increments, respectively. The increment of unknown displacements {d∆i} is found in a single step by

solving the linear system of equations

12

}{dP}]{d∆K[iii =

In contrast to the single-step schemes, the iterative methods need not use a single representative

stiffness in each load increment. Instead, increments can be subdivided into a number of steps, each of

which is a cycle in an iterative process aimed at satisfying the requirements of equilibrium within a

specified tolerance. The displacement equation thus can be modified to

∑
=

− ∆+∆=∆
im

j

j
iii d

1
1 }{}{}{

where mi is the number of iterative steps required in the ith load increment. In each step j, the

unknown displacements are found by solving the linear system of equations

}{}{]][[11 −− +=∆ j
i

j
i

j
i

j
i RdPdK

where][1−j
iK is the stiffness evaluated using the deformed geometry and corresponding element

forces up to and including the previous iteration, and][1−j
iR represents the imbalance between the

existing external and internal forces. This unbalanced load vector can be calculated according to

}{}{}{ 111 −−− −= j
i

j
i

j
i FPR

where }{ 1−j
iP is the total external force applied and }{ 1−j

iF is a vector of net internal forces produced

by summing the existing element end forces at each global degree of freedom. Note that in the above

equations, the subscript is used to indicate a particular increment and the superscript represents an

iterative step.

From the above equations, it can be seen that the state of the domain at a certain step is only dependent

on the state of the domain at the immediate previous step. This is true for both incremental single-step

methods and some of the incremental-iterative methods (such as Newton-Raphson scheme). Based on

this observation, a discrete storage strategy can be employed in nonlinear structural analysis. More

specifically, instead of storing all the analysis results, the state information of a nonlinear analysis is

saved at a specified interval (e.g. every 10 steps or other appropriate number of steps, instead of every

step). The saved state information needs to be sufficient to restore the domain to that particular step.

As discussed earlier, object serialization can be used to guarantee this requirement.

During the post-processing phase, as indicated in Figure 2, the requests will be forwarded from the

client site to the analysis core. After receiving the requests, the analysis core will search the database

to find the closest sampled point that is less than or equal to the queried step. The core then fetches

the data from the database to obtain the necessary state information for that step. These fetched data

13

will be sufficient to restore the domain to that sampled step. At this point, the core can progress itself

to reach the queried time or incremental step. The details of this process are illustrated in the pseudo

code shown in Figure 5. Once the state of the queried step has been restored, the data query regarding

the domain at that step can be processed by calling the corresponding member functions of the

restored domain objects. Since the domain state is only saved at the sampled steps, the total storage

space is dramatically reduced as opposed to saving the domain state at all the steps. Comparing with

restarting the analysis from the original step, the processing time needed by using SASI (i.e. restarting

the analysis from a sampled step) can potentially be much less. The same strategy can also be

designed for other types of analyses (such as time dependent problems).

Domain* convertToState(int requestStep, char* dbName, double convergenceTest)
{

Domain* theDomain = new Domain();
FEM_OjbectBroker *theBroker = new FEM_ObjectBroker();
DB_Datastore *database = new DB_Datastore(dbName, *theDomain, *theBroker);

// Find the sampled largest time step that is <= requestStep.
int savedStep = findMiniMax(*database, requestStep);

// The domain restores itself to the state of savedStep.
theDomain->recvSelf(savedStep, *database, *theBroker);

// The first parameter is dLamda, the second is numIncrements.
Integrator *theIntegrator = new LoadControl(0.1, 10);
SolutionAlgorithm *theAlgorithm = new NewtonRaphson(convergenceTest);

// Set the links to theAlgorithm with theDomain and theIntegrator.
theAlgorithm->setLinks(theDomain, theIntegrator);

// Progress the state of theDomain to the requestStep.
for (int i = savedStep, i < requestStep; i++) {

theIntegrator->newStep();
theAlgorithm->solveCurrentStep();
theIntegrator->commit();

}

return *theDomain;
}

Figure 5. Pseudo Code for Converting the Domain State

5. DATA REPRESENTATION

5.1. Data Modeling

A relational COTS database system, ORACLE 8i or MySQL, is used as the backend data management

system. A relational database can be perceived by the users to be a collection of tables, with operators

allowing a user to generate new tables and retrieve the data from the tables. The term schema most

often refers to a description of the tables and fields along with their relationships in a relational

14

database system. An entity is any distinguishable object to be represented in the database. While at

the conceptual level a user may perceive the database as a collection of tables, this does not mean that

the data in the database is stored internally in tabular form. At the internal level, the DBMS can

choose the most suitable data structures necessary to store the data. This allows the DBMS to look

after issues such as disk seek time, disk rotational latency, transfer time, page size, and data placement

to obtain a system which can response to user requests much more efficiently than if the users were to

implement the database directly using the file system.

The typical approach in using relational databases for FEA is to create a table for each type of object

that needs to be stored (for example, Yang [35]). This approach, while straightforward, would require

that a table be created for each type of object in the domain. Furthermore, in nonlinear analysis, two

tables would have to be created, one for the geometry and the other for the time step related state

information. Since data structures grow with the incorporation of new element and material types for

finite element programs, the static schema definition of most DBMS is incompatible with the

evolutionary nature of FEA software. Because of their static structure, commercial DBMS have

difficulties in coping with changes and modification in the evolving design – inconsistencies could be

introduced into the database and they are expensive to eliminate.

Since OpenSees is designed and implemented using C++, the internal data structure is organized in an

object-oriented fashion. The data structure cannot be easily mapped into a relational database. As

discussed in the last section, object serialization can be employed efficiently as linear stream to

represent the internal state of an object. The linear stream can simply be a byte stream, or it can be a

combination of matrix-type data, namely ID (array of integers), Vector (array of real numbers), and

Matrix. The byte stream can be stored in the database as a CLOB in order to achieve good

performance for data storage and searching. A CLOB is a built-in type that stores a Character Large

Object Block as an entity in a database table. Two methods (sendObj() and recvObj()) are provided in

the interface of DB_Datastore for the storage and retrieval of byte streams. The matrix-type data (ID,

Vector, and Matrix), on the other hand, can be directly stored in a relational database. The

corresponding methods for accessing the matrix-type data are also provided in DB_Datastore interface

(for details, see Figure 3). In the current implementation of the online data access system, we focus on

using the matrix-type data to represent and store the state of an object.

By using matrix-type data for storing object states, the database schema can be defined statically. The

advantage of this approach is that new classes can be introduced without the creation of new tables in

the relational database. The layer of abstraction provided by DB_Datastore can alleviate the burden of

15

the FEA software developers, who in this case are typically finite element analysts, for learning

database technologies. As long as the new classes (new element, new material types, etc.) follow the

protocols of sendSelf() and recvSelf(), they can communicate with the database through the

DB_Datastore object. The disadvantage of this approach is that no information regarding the meaning

of the data will exist within the database. Therefore, users cannot query the database directly to obtain

analysis results, e.g. the maximum stress in a particular type of elements. However, as discussed

early, the data can be retrieved from the database by the objects in the core that placed the data there;

that is, the semantic information are embedded in the objects themselves.

5.2. Project Management

As shown in Figure 1, a database is provided as the backend data storage to facilitate online data

access. Since potentially many users can access the core server to perform structural analysis and to

query the analysis results, a project management scheme is needed. The basic premise is that most

researchers and engineers typically work independently, while sharing information necessary for

collaboration. More importantly, they wish to retain control over the information they make

accessible to other members [15]. In the prototype online data access system, a mechanism to perform

version control and access control in order to cope with project evolution is implemented. The overall

database schema is depicted as shown in Figure 6. The schema includes a user table and a project

table. A user is identified by name and a project is identified by both its name and version. We use a

hierarchical tree structure to maintain the version set of the projects. To simplify the design, each

project has a primary user associated with it. This super-user has the privilege to modify the access

control of a project. Only the authorized users who have the ‘write’ permission of a project will be

allowed to make changes on the project and to perform online simulation with the analysis model.

Other registered users have only ‘read’ access, in that any manipulation of analysis data is to be done a

posteriori (for example, using other external programs such as MATLAB).

For the storage of nonlinear dynamic simulation results of a typical project, a hybrid storage strategy is

utilized. As mentioned early, the state information saved in the database follows the SASI strategy.

This strategy is very convenient and efficient for servicing the queries related to a certain time step,

e.g. the displacement of Node 24 at time step 462. For obtaining a response time history, however,

using the state information alone to reconstruct the domain will not be efficient. This is because a

response time history requires the results from all time steps, and the state information from all time

steps needs to be reconstructed. The performance in this case could be as expensive as a complete re-

analysis. To alleviate the performance issue, the data access system has an option to allow the users to

16

specify their interested response time histories in the input file. During the nonlinear dynamic

simulation, these pre-defined response time histories will be saved in files together with certain

description information. These response time histories can then be accessed directly during post-

processing phase without involving expensive re-computation.

For the storage of Domain state information at the specified intervals, three tables are needed to store

the basic data types. They are ID, Vector, and Matrix. Figure 6 depicts the schema design of the

database and the relations among different tables. For ID, Vector, and Matrix tables, the attribute

projTag identifies the project that an entry belongs to; dbTag is an internal generated tag to identify

the data entry; and commitTag flags the time step. Together, the set of attributes (projTag, dbTag,

commiTag) forms a key for these relations. This set of attributes is also used as an index for the

database table. An index on a set of attributes of a relation table is a data structure that makes it

efficient to find those tuples that have a fixed value for the set of attributes. When a relation table is

very large, it becomes expensive to scan all the tuples of a relation to find those tuples that match a

given condition. In this case, an index usually helps with queries in which their attribute is compared

with a constant. This is the most frequently used case for the database usage.

Name
PassW ord
NameTag
LastName
FirstName
Email
Organization
Misc
CTime

USER

Name
Version
ProjTag
UserName
Description
Misc
CTime

PROJECT

ProjTag
DBTag
CommitTag
ValueTag

MATRIX

ProjTag
DBTag
CommitTag
ValueTag

VECTOR

ProjTag
DBTag
CommitTag
ValueTag

ID

ValueTag
Position
Value

IDValue

ValueTag
Position
Value

VECValue

ValueTag
Position
Value

MATValue

ProjName
ProjVersion
UserName
Control

ACCESS_CTRL

Figure 6. Database Schema Diagram

5.3. Data Representation in XML

Software applications collaborate by exchanging information. For example, a finite element program

needs to be able to obtain an analysis model from CAD programs and send the analysis results to

17

design tools. The lack of a reliable, simple, and universally deployed data exchange model has long

impaired effective interoperations among heterogeneous software applications. The integration of

scientific and engineering software is usually a complex programming task. Achieving data

interoperability is often referred to as ‘legacy integration’ or ‘legacy wrapping’, which has typically

been addressed by ad-hoc means. There are several problems associated with this approach. First,

every connection between two systems will most likely require custom programming. If many

systems are involved, a lot of programming effort will be needed. Furthermore, if there are logic or

data changes in one system, the interface will probably need to change – again, more need for

programming. Finally, these interfaces are fragile: if some data are corrupted or parameters do not

exactly match, unpredictable results can occur. Error handling and recovery are quite difficult with

this approach.

XML can alleviate many of these programming problems. XML is a textual language quickly gaining

popularity for data representation and exchange on the Web [13]. XML is a meta-markup language

that consists of a set of rules for creating semantic tags used to describe data. An XML element is

made up of a start tag, an end tag, and content in between. The start and end tags describe the content

within the tags, which is considered the value of the element. In addition to tags and values, attributes

are provided to annotate elements. Thus, XML files contain both data and structural information. For

more comprehension description of XML, see [14]. An application that adopts XML parsers and

generators needs to build an XML Document Object Model (DOM), which is a tree-like data structure

that closely resembles the structure of a hierarchical XML object. Internal data structures of the

application need to be translated into the DOM.

In the data access system, XML is adopted as the external data representation for exchanging data

between collaborating applications. Since the internal data of OpenSees is organized as matrix-type

data (Matrix, Vector, and ID) and basic-type data (integer, real, and string, etc.), a mechanism to

translate between internal data and external XML representation is needed. The translation is achieved

by adding two services: matrix services and XML packaging services. The matrix services are

responsible for converting matrix-type data into an XML element, while the XML services can

package both XML elements and basic-type data into XML files. The relation of these two types of

services is shown in Figure 7.

The translation between matrix-type data and XML elements is achieved by adding two member

functions to Matrix, Vector, and ID classes to perform data conversion:

18

void XMLToObj(char* inputXML);

char* ObjToXML();

The function XMLToObj() is used to populate a matrix-type object with an input XML stream; the

function ObjToXML() is responsible for converting the object member data into XML representation.

In order to represent data efficiently, matrix-type entity sets can be divided into two categories: sparse

matrices and full matrices. Figure 8 shows the XML representation of a full matrix (for example, the

stiffness matrix of a 2D truss element) and a sparse matrix (for example, the lumped mass matrix of a

2D truss element). Since Vector and ID are normally not sparse, they can be represented in a similar

way as full matrix.

Matrix
Vector, ID

Output

Matrix Services
Generating XML

representation by Matrix
and Vector classes

XML Services
Formatting and buidling

XML documents by
XML classes

XML
Packaging

XML
Element

Integer
Real, String

Figure 7. The Relation of XML Services

After matrix-type data are converted into XML elements, the next step is packaging them with other

related information. This can be achieved by adding a new class XMLService to OpenSees, which is

responsible for formatting and building XML documents, as well as interpreting and parsing input

XML documents.

Two data models have been used in the data access system for XML representation. The relational

model is used with tabular information, while the list model is defined for matrix-type entity sets. The

relational model is different in implementation from the list model, because of the mechanism

involved in locating a record of information. The tabular data essentially has two parts, one is the

metadata that is the schema definition and the other is the content. An example of the tabular data is

the displacement time history response of a node in nonlinear analysis. The list model is essentially

provided for packaging all the related information into a single XML file. An example of the list

model is the description of an element. Figure 9 shows the typical XML representations for both

19

tabular data and list data.

(a) Full Matrix (b) Sparse Matrix

Figure 8. XML Representation of Matrix-Type Data

(a) Tabular Data (b) List Data

Figure 9. XML Representation of Packaged Data

Since XML is a text format, and it uses tags to delimit the data, XML files are nearly always larger

than comparable binary formats. That was a conscious decision by the XML developers. The

advantages of a text format are evident, and the disadvantages can usually be compensated at a

different level. Programs like zip and gzip can compress files very well and very fast. Those

programs are available for nearly all platforms (and are usually free). In addition, communication

protocols such as modem protocols and HTTP/1.1 (the core protocol of the Web) can compress data

on the fly, thus saving bandwidth as effectively as a binary format.

20

6. DATA QUERUY PROCESSING

6.1. Data Query Language

The data access system supports both programmed procedures and high-level query languages for

accessing domain models and analysis results. A query language can be used to define, manipulate,

and retrieve information from a database. For instance, for retrieving some specific result of an

analysis, a query can be formed in the high-level and declarative query language that satisfies the

specified syntax and conditions. In our data access system, a query language is provided to query the

analysis result. This DQL (data query language) is defined in a systematic way and it is capable of

querying the analysis results together with invoking certain post-processing computation. Combining

general query language constructs with domain-related representations provides a more problem-

oriented communication [26]. The defined DQL and the programmed procedures have at least two

features:

• It provides a unifying data query language. No matter what kind of form the data is presented

(whether a relation or a matrix), the data is treated in the same way. It is also possible to make

query on specific entries in a table or individual elements of a matrix.

• It provides language with the same syntax for both terminal users (from command lines) and for

those using them from a programmed procedure. This leads to the ease of communication

between client and server, and can save programming efforts when linking the data access system

with other application programs.

As discussed earlier, a hybrid storage strategy is utilized for storing nonlinear dynamic simulation

results. For different type of stored data (results regarding a certain time step or time history

responses), different query commands are needed and different actions are taken. Several commonly

used features of the DQL are illustrated below.

First, we will illustrate the queries related to a certain step. In order to query the data related to a

certain time step, the state of the domain needs to be restored to that time step. For example, we can

use command RESTORE 462, which will trigger the function Domain::convertToState() (shown

in Figure 5), to restore domain state to time step 462.

After the domain has been initialized to certain time step, queries can be issued for detailed

information. As an example, we query the displacement from node number 4,

21

SELECT disp FROM node=4;

The analysis result can also be queried from Element, Constraint, and Load. For example,

SELECT tangentStiff FROM element=2;

returns the stiffness matrix of element 2.

Besides the general queries, two wildcards are provided. One is the wildcard ‘*’ that represents all

values. For instance, if we want to obtain the displacement from all the nodes, we can use

SELECT disp FROM node=*;

The other wildcard ‘?’ can be used on certain object to find out what kind of queries it can support.

For example, the following query

SELECT ? FROM node=1; returns
Node 1::
numDOF crds disp vel accel load mass *

Another class of operations is called aggregation. By aggregation, we mean an operation that forms a

single value from the list of values appearing in a column of a database table. In the current

implementation, five operators are provided that apply to a column of the relation table and produce a

summary or aggregation of that column. These operators are:

SUM, the sum of the values in the column;

AVG, the average of values in the column;

MIN, the least value in the column;

MAX, the greatest value in the column;

COUNT, the number of values.

The second type of queries is used to access the pre-defined analysis results, especially the time

history responses. The queried time history responses can be saved into files in the client site. These

files can then be processed to generate graphical representation. For instance, if we want to save the

displacement time history of a particular node for a nonlinear analysis, the following query can be

issued to the server

SELECT time disp FROM node=1 AND dof=1

SAVEAS node1.out;

If the data are pre-defined in the input file and saved during the analysis phase, the query can return

the corresponding saved analysis results. Otherwise, a complete re-computation is triggered to

generate the requested time history response.

22

6.2. Data Query Interfaces

The collaborative framework can offer users access to the analysis core, as well as the associated

supporting services via the Internet. One of the supporting services is to query analysis results. Users

can compile their query in the client site and then submit it to the central server. After the server

finishes the processing, queried results will return to the users in a pre-defined XML format. It is up

to the program in the client site to interpret the data and present in a specific format desirable to the

users. In the prototype system, two types of data query interfaces at the client site are provided. They

are web-based interface and MATLAB-based interface. This client-server computing environment

forms a complete computing framework with a very distinct division of responsibilities. One benefit

of this model is the transparency of software services. From a user’s perspective, the user is dealing

with a single service from a single point-of-entry – even though the actual data may be saved in the

database or re-generated by the analysis core.

For the data access system, a standard World Wide Web browser is employed to provide the user

interaction with the core platform. Although the use of a web browser is not mandatory for the

functionalities of the data access system, using a standard browser interface leverages the most widely

available Internet environment, as well as being a convenient means of quick prototyping. Figure 10

shows the interaction between the web-based client and the data access server. A typical data query

transaction starts with the user supplying his/her data query intention in a web-based form. After the

web-server receives the submitted form, it will extract the useful information and packaging it into a

command that conforms to the syntax of the DQL. Then the command will be issued to the core

analysis server to trigger the query of certain data from the database and to perform some re-

computation by the analysis core. After the queried data is generated, it will be sent back to the client

site and presented to the user as a web page.

The web-based client is convenient and straightforward for the cases when the volume of the queried

data is small. When the data volume is big, especially if some post-processing is needed on the data,

the direct usage of web-based client can bear some inconvenience. All too often the queried analysis

results need to be downloaded from the server as a file, and then put manually into another program to

perform post processing, e.g. a spreadsheet. For example, if we want to plot a time history response of

a certain node after a dynamic analysis, we might have to download the response in a data file and

then use MATLAB, Excel, or other software packages to generate the graphical representation. It

would be more convenient to directly utilize some popular application software packages to enhance

the interaction between client and server. In our prototype system, a MATLAB-based user interface is

23

available to take advantage of the flexibility and graphical processing power of MATLAB. In the

implementation, some extra functions are added to the standard MATLAB in order to handle the

network communication and data processing. Theses add-on functions can be directly invoked from

either the MATLAB prompt or a MABLAB-based graphical user interface.

Database

OpenSees
CORE

Web Server

4

0

1

5

6

2
7

3

Figure 10. Interaction Diagram of On-line Data Access System

7. EXAMPLES

Example 1: An Eighteen Story One Bay Frame

The first example is an eighteen story two-dimensional one bay frame. The story heights are all 12

feet and the span is 24 feet. A nonlinear dynamic analysis is performed on the model using the 1994

Northridge earthquake recorded at the Saticoy St. station, Van Nuys, California. Newton-Raphson

algorithm is utilized for performing the structural analysis and SASI strategy is chosen to store the

selected analysis results. In the example, the specified interval is ten time steps. Details of the model

and the analysis have been described in Peng and Law [29]. After the analysis, the results regarding a

certain time step can be queried by using DQL commands. The following will illustrate example

usage of some of the DQL commands. We use C: for the command and R: for the queried results.

C: RESTORE 462

This command is used to restore the Domain state to the time step 462. The command first triggers

the analysis core to fetch from the database the saved Domain state of the time step 460, which is the

closest time step stored before the requested step. The core then progresses itself to reach the time

24

step 462 by using Newton-Raphson algorithm. After the Domain has been initialized to the step of

462, the wildcard ‘?’ can be used to find what kind of queries that node 1 (which is the left node on the

18th floor) can support

C: SELECT ? FROM node=1;

R: Node 1::
numDOF crds disp vel accel load trialDisp trialVel trialAccel mass *

The attribute information of node 1 can be queried, for example

C: SELECT disp FROM node=1;

R: Node 1::
disp= -7.42716 0.04044

The analysis result can also be queried from Element, Constraint, and Load. For instance, we can

query the information related to element 19, which is the left column on the 18th floor.

C: SELECT ? FROM element=19;

R: ElasticBeam2D 19::
connectedNodes A E I L tangentStiff secantStiff mass damp

C: SELECT L E FROM element=19;

R: ElasticBeam2D 19::
L=144 E= 29000

As mentioned earlier, five aggregation operators are provided to produce summary or aggregation

information. For instance, the following command produces the maximum displacement of nodes.

Note that both positive and negative maximum values are presented.

C: SELECT MAX(disp) FROM node=*;

R: MAX(disp)::
Node 1: –7.42716
Node 21: 4.93986

Example 2: Humboldt Bay Middle Channel Bridge

The second example is an ongoing research effort within PEER that employs OpenSees to investigate

the seismic performance of the Humboldt Bay, Middle Channel Bridge. The Middle Channel Bridge

is located at Eureka, northern California. The river channel has an average slope from the banks to the

center of about 7% (4 degrees). The foundation soil is composed of mainly dense fine-to-medium

sand and organic silt and/or stiff clay layers. In addition, thin layers of loose sand and soft clay were

25

also seen near ground surface. The bridge piers are supported on eight pile groups, each of which

consists of five to sixteen pre-stressed concrete piles. A four-node quadrilateral element is used to

discretize the soil domain. The soil below the water table is modeled as an undrained material, and the

soil above as dry.

Approximately sixty ground motion records are applied to the bridge model for damage simulation in

order to conduct probability analysis. The ground motion records are divided into three hazardous

levels based on their probability of occurrence, which are 2%, 10%, and 50% in fifty years

respectively. Since the bridge will perform differently under each ground motion level, the projects

can be grouped according to the applied ground motion records. Figure 11 is a list of some of the

Humboldt Bay Bridge projects. This web page is a single point-of-entry for all the project related

background information, documents, messages, and simulation results. The detailed information of a

particular project can be accessed by clicking on the project name. We will use project X1 (see Figure

11) as an illustration. The ground motion applied to this project is a near-field strong motion record

(PGA = 0.8g) with a probability of 2% occurrence in fifty years. Figure 12 shows the deformed mesh

after the shaking event by applying the strong earthquake motion record. A main characteristic in this

figure is that the abutments and riverbanks moved towards the center of the river channel. This is a

direct consequence of the reduction in soil strength due to pore-pressure buildup.

Figure 11. The List of Current Humboldt Bay Bridge Projects

As mentioned earlier, a hybrid storage strategy is used to save some selected analysis results in the

database during the nonlinear dynamic simulation. The saved analysis results include both Domain

state information at sampled time steps and user pre-defined response time histories. To query results

regarding a certain time step, the DQL commands are similar to what have been used for the previous

example; and this process involves restoring the domain to that time step together with certain re-

26

computation. For obtaining a pre-defined response time history, on the other hand, no re-computation

is needed. Figure 13 shows a typical session, where all the pre-defined response time histories are

listed, and the certain response results can be searched and downloaded.

Figure 12. Deformed Mesh of Humboldt Bay Bridge Model

Figure 13. Web Pages of the Response Time Histories

Besides the web-based user interface, a MATLAB-based user interface is also available to take

advantage of the mathematical manipulation and graphic display capabilities of MATLAB. Some

functions are added to the standard MATLAB for handling the network communication and data

processing. These commands can be executed from either the standard MATLAB prompt or

MATLAB-based graphical interfaces. We can issue the command submitmodel humboldtX1.tcl

to submit the input file to the analysis core server for performing the online simulation (see [23] for

details about input format for OpenSees). After the analysis, the command queryresult can be

issued to bring up an interactive window. The user can enter DQL commands in this window to query

27

the analysis results related to a certain time step. To access the pre-defined response time histories, the

command listResults can be used to generate the list of response time history files (shown in

Figure 14(a)). In order to generate a graphical representation of a particular response time history, two

steps are needed: one for downloading the file and the other for plotting. For example, we can issue

the command getFile press1315_2.out to download the response time history file and

res2Dplot(‘press1315_2.out’) to invoke the plotting of the results. The plot is shown in

Figure 14(b).

(a) listResults (b) res2Dplot(‘press1315_2.out’)

Figure 14. Sample MATLAB-Based User Interface

8. CONCLUSIONS

Scientific and engineering database systems have several special requirements compared with their

business counterparts. The dataflow of a finite element analysis program is tightly coupled with

expensive numerical computation. This is one of the main reasons for the lacking of a generic purpose

data management system for finite element programs. When a number of programs are required for

engineering simulation or design, the absence of standardization and the lack of coordination among

software developers can result in difficulty in data communication from one program to another. The

result is often manual transfer of data with the associated manpower loss, time delay, and potential

error. In the effort of trying to alleviate some of the problems, this paper has introduced an online data

access system for a finite element structural analysis program. The main design principle of the

system is to separate data access and data storage from data processing, so that each part of the system

can be designed and implemented separated. By introducing standard data representation and a

28

modular infrastructure, each component of the system can be added or updated without substantial

amount of modification to the existing system. By storing abstract data types (ID, Vector, and Matrix)

into the database, it is not necessary to re-implement low-level dedicated data structures or to re-define

new database tables for each added new element or other components. The utilization of standard

query language and popular query interfaces, as well as the deployment of the Internet for delivering

data, is another factor that makes the system flexible and extendible. Although this work has focused

on data access system for a finite element program, the design principles and techniques can be

applied to other similar types of engineering and scientific applications.

In the prototype data access system, the performance may be a concern. This is partly because of the

unstable performance of the Internet, and partly due to the design decision of sacrificing certain degree

of performance for better flexibility and extendibility. However, compared with the direct usage of

file systems, using relational database systems normally improves the overall performance of the

system. By utilizing the selective storage strategy, especially SASI, the amount of storage space in our

system is substantially smaller than the storage requirement of simply dumping all the analysis data

into files. Comparing to the traditional way of redoing the entire analysis to obtain the results that are

not pre-defined, the re-computation technique used in the data access system could be more efficient

because only a small portion of the program is executed with the goal to fulfill the request. Where the

performance issue does exist, it may be alleviated by efficient optimization of generated code, and

possibly, by hashing techniques. These methods have been used in the prototype data access system,

while the transparency of the physical data access paths is still maintained. The performance may also

be improved by establishing keys for attributes that are frequently referenced during queries.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Frank McKenna and Prof. Gregory L. Fenves of UC, Berkeley for

their collaboration and support of this research. The authors are also grateful to Dr. Zhaohui Yang,

Mr. Yuyi Zhang, Prof. Ahmed Elgamal, and Prof. Joel Conte for providing the Humboldt Bay Bridge

example and valuable suggestions.

This work was supported in part by the Pacific Earthquake Engineering Research Center through the

Earthquake Engineering Research Centers Program of the National Science Foundation under Award

number EEC-9701568, and in part by NSF Grant Number CMS-0084530. The authors would also

like to acknowledge the Technology for Education 2000 equipment grant from Intel Corporation.

29

REFERENCES

1. Anumba, C. J. (1996) Data Structures and DBMS for Computer-Aided Design Systems. Advances
in Engineering Software, 25(2-3), 123-129.

2. Archer, G. C. (1996) Object-Oriented Finite Element Analysis. Ph.D. thesis, Department of Civil
and Environmental Engineering, University of California, Berkeley, CA.

3. Blackburn, C. L., Storaasli, O. O., Fulton, R. E. (1983) The Role and Application of Data Base
Management in Integrated Computer-Aided Design. Journal of Aircraft, 20(8), 717-725.

4. Breg, F., Polychronopoulos, C. D. (2001) Java Virtual Machine Support for Object Serialization.
ISCOPE Conference on ACM 2001 Java Grande, Palo Alto, CA173 - 180.

5. Chandra, S. (1998) Information Extraction and Qualitative Descriptions from Dynamic Simulation
Data. Computers and Structures, 69(6), 757-766.

6. Diwan, S. (1999) Open HPC++: An Open Programming Environment for High-Performance
Distributed Applications. Ph.D. thesis, Computer Science Department, Indiana University,
Bloomington, IN.

7. DuBois, P., Widenius, M. (1999) MySQL, 1st Ed. New Riders Publishing, Indianapolis, IN.

8. Felippa, C. A. (1979) Database Management in Scientific Computing -- I. General Description.
Computers and Structures, 10(1-2), 53-61.

9. Felippa, C. A. (1980) Database Management in Scientific Computing -- II. Data Structures and
Program Architecture. Computers and Structures, 12(1), 131-146.

10. Felippa, C. A. (1982) Database Management in Scientific Computing -- III. Implementation.
Symposium on Trends and Advances in Structural Mechanics, Washington, DC.

11. Fishwick, P. A., Blackburn, C. L. (1983) Managing Engineering Data Bases: The Relational
Approach. Computers in Mechanical Engineering, 1(3), 8-16.

12. Forde, B. W. R., Foschi, R. O., Stiemer, S. F. (1990) Object-Oriented Finite Element Analysis.
Computers and Structures, 34(3), 355-374.

13. Goldman, R., McHugh, J., Widom, J. (1999) From Semistructured Data to XML: Migrating the
Lore Data Model and Query Language. The Second International Workshop on the Web and
Databases (WebDB '99), Philadelphia, PA25-30.

14. Hunter, D., Rafter, J., Pinnock, J., Dix, C., Cagle, K., Kovack, R. (2001) Beginning XML, 2nd Ed.
Wrox Press Inc, Chicago, IL.

15. Krishnamurthy, K. (1996) A Data Management Model for Change Control in Collaborative
Design Environments. Ph.D. thesis, Department of Civil and Environmental Engineering, Stanford
University, Stanford, CA.

16. Kyte, T. (2001) Expert One on One: Oracle, 1st Ed. Wrox Press, Chicago, IL.

17. Lopez, L. A., Dodds, R. H., Rehak, D. R., Urzua, J. L. (1978) Application of Data Management to
Structures. ASCE Conference on Computing in Civil Engineering, Atlanta, GA.477-488.

18. Lunney, T. F., McCaughey, A. J. (2000) Component based distributed systems - CORBA and EJB
in context. Computer Physics Communications, 127(2), 207-214.

19. Mackie, R. I. (1995) Object-Oriented Methods -- Finite Element Programming and Engineering
Software Design. International Conference on Computing in Civil and Building Engineering
(ICCCBE-VI), Berlin, Germany133-138.

30

20. Mackie, R. I. (1997) Using Objects to Handle Complexity in Finite Element Software.
Engineering with Computers, 13(2), 99-111.

21. McGuire, W., Gallagher, R. H., Ziemian, R. D. (2000) Matrix Structural Analysis, 2nd Ed. John
Wiley & Sons, Inc., New York, NY.

22. McKenna, F. (1997) Object-Oriented Finite Element Programming: Frameworks for Analysis,
Algorithm and Parallel Computing. Ph.D. thesis, Department of Civil and Environmental
Engineering, University of California, Berkeley, CA.

23. McKenna, F., Fenves, G. L. (2001). The OpenSees Command Language Manual, Version 1.2.
<http://opensees.berkeley.edu/OpenSees/OpenSeesCommands.pdf>.

24. Miller, G. R. (1991) An Object-Oriented Approach to Structural Analysis And Design. Computers
and Structures, 40(1), 75-82.

25. OpenSees. (2002). Open System for Earthquake Engineering Simulation.
<http://opensees.berkeley.edu>.

26. Orsborn, K., Risch, T. (1994) Applying Next Generation Object-Oriented DBMS for Finite
Element Analysis. The Fourth IDA Conference, Linköping, Sweden.

27. Peng, J., Law, K. H. (2000) Framework for Collaborative Structural Analysis Software
Development. Structural Congress & Expositions ASCE, Philadelphia, PA.

28. Peng, J., McKenna, F., Fenves, G. L., Law, K. H. (2000) An Open Collaborative Model for
Development of Finite Element Program. The Eighth International Conference on Computing in
Civil and Building Engineering (ICCCBE-VIII), Palo Alto, CA1309-1316.

29. Peng, J., Law, K. H. (2002) A Prototype Software Framework for Internet-enabled Collaborative
Development of a Structural Analysis Program. Engineering with Computers (accepted).

30. Rajan, S. D., Bhatti, M. A. (1986) SADDLE: A Computer-Aided Structural Analysis and
Dynamic Design Language -- Part II. Database Management System. Computers and Structures,
22(2), 205-212.

31. Rucki, M. D., Miller, G. R. (1996) Algorithmic Framework for Flexible Finite Element-Based
Structural Modeling. Computer Methods in Applied Mechanics and Engineering, 136(3-4), 363-
384.

32. Slominski, A., Govindaraju, M., Gannon, D., Bramley, R. (2001) Design of an XML based
Interoperable RMI System: SoapRMI C++/Java 1.1. The International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA'2001), Las Vegas, NV1661-1667.

33. Tuel, W. G., Berry, C. J. (1978) Data Bases for Geographic Facility Design and Analysis. ASCE
Conference on Computing in Civil Engineering, Atlanta, GA449-464.

34. van-Engelen, R., Gallivan, K., Gupta, G., Cybenko, G. (2000) XML-RPC Agents for Distributed
Scientific Computing. IMACS World Congress on Scientific Computation, Applied Mathematics
and Simulation (IMACS'2000), Lausanne, Switzerland.

35. Yang, X. (1992) Database Design Method for Finite Element Analysis. Computers and Structures,
44(4), 911-914.

36. Zimmermann, T., Dubois-Pelerin, Y., Bomme, P. (1992) Object-Oriented Finite Element
Programming: I. Governing Principles. Computer Methods in Applied Mechanics and
Engineering, 98(2), 291-303.

