
A Software Framework for Internet-Enabled Nonlinear
Dynamic Structural Analysis

Jun Peng and Kincho H. Law

Department of Civil and Environmental Engineering, Stanford University

This paper describes the research and prototype implementation of an Internet-enabled software framework
that facilitates the utilization and the collaborative development of a finite element structural analysis
program by taking advantage of object-oriented modeling, distributed computing, database and other
advanced computing technologies [1, 2]. This new framework allows users easy access to the analysis
program and the analysis results by using a web-browser or other application programs, such as MATLAB.
In addition, the framework serves as a common finite element analysis platform for which researchers and
software developers can build, test, and incorporate new developments.

The system architecture of the Internet-enabled collaborative framework is schematically depicted in Fig. 1.
A component-based modular architecture is utilized for the design to support multiple parties and
applications and the interaction among these participants. The Analysis Core module is built upon an object-
oriented finite element program, which is named OpenSees (Open System for Earthquake Engineering
Simulation) [3]. New element and material technologies, as well as new analysis strategies and solution
strategies can be brought into the Analysis Core module to enhance the functionalities of OpenSees. The
User-Interaction module provides an interface to facilitate the access to the software platform and the
analysis results. The Registration and Naming Service is provided for on-line services to register to the core
so that these services can be found during an analysis. Two approaches are provided for remote access to
element services residing in different locations. The Distributed Element Service is intended to provide a
communication link to remote element services where the element code is executed. The Dynamic Linked
Element Service is implemented to provide a flexible way of dynamically binding elements to the core in real
time. Last but not least, the Database Interface module can take advantage of a persistent data storage that
further enhances data access and facilitates post-processing of analysis results.

The Internet-enabled collaborative framework can provide greater flexibility and extensibility than traditional
structural analysis programs, which are typically packaged individually. The mechanics of the collaborative
model is illustrated in Fig. 2. In the proposed framework, the users build their structural model by using a
web-based model-building service on the client site. The model then can be sent to the analysis core by
using the Internet as a communication channel. Upon receiving the analysis model and other related
information, the core server authenticates the user’s identity and starts performing a structural analysis on the
received model. During the analysis, elements that are available in the core can be accessed locally from the
static element library, whereas other elements are obtained from online element services. In order to find the
required elements, the registry is queried to find the on-line element services, which have already been pre-
registered with the core platform. After the analysis is completed, part of the results will be returned to the
user by generating a dynamic web page in the user’s web browser.

There is a standard interface/wrapper for communicating the element with the object-oriented analysis core.
To introduce new elements into the analysis core generally composes of creating subclasses of Element class
whose common interface is defined in the analysis kernel. After the development process is finished, the
new element code can be compiled with the core platform and become part of the static element library. In
addition to the traditional way of building element library for new element development, the new elements
can also be developed in the form of on-line element service. We propose two types of on-line element
services: distributed element service and dynamic shared library service respectively. These two services can
be differentiated based on where the actual computation code resides.

User-Interaction
Interface

Registration and
Naming Service

Distributed
Element Service

Dynamic Linked
Element Service

Analysis Core

Database
Interface

REGISTRY

FTPClient

HttpClient

Dynamic
Shared Library

for Element

Real
Element
Objects

Stub
Object

RPC, Java RMI

CORBA

HTTP

H
TT

P

ODBC, JDBC

LAN or
Internet 2

Parallel and/or
Distributed Computing

DATABASE

Web Interface

ServerParallel
Computer

Workstation

Figure 1 – Collaborative System Modules

ANALYSIS
CORE

ANALYSIS
CORE

ON-LINE
ELEMENT
SERVICE

REGISTRY

Query
4

Perform
Analysis

3
SERVER

INTERFACE

Submit
Analysis
Model

2

Re
gis

ter
to

Co
re

1

Collaborative
Computation 6 5

WEB-BASED
CLIENT

Results

8

7

ANALYSIS
CORE

ANALYSIS
CORE

ON-LINE
ELEMENT
SERVICE

REGISTRY

Query
4

Query
4

Perform
Analysis

3

Perform
Analysis

3
SERVER

INTERFACE

Submit
Analysis
Model

2

Submit
Analysis
Model

2

Re
gis

ter
to

Co
re

1

Re
gis

ter
to

Co
re

1

Collaborative
Computation 6 5
Collaborative
Computation 6 5

WEB-BASED
CLIENT

Results

8

7

Results

8

7

Figure 2 – Mechanics of the Framework

The collaborative finite element software framework also includes data and project management
functionalities [4]. A commercial off-the-shelf (COTS) database system is employed to store selected
analysis results and to provide flexible data management and data access. The Internet is utilized as a data
delivery vehicle and a data query language is developed to provide an easy-to-use mechanism to access the
needed analysis results from readily accessible sources in a ready-to-use format for further manipulation. In
the data access system, a selective data storage scheme is introduced to provide flexible support for the
tradeoff between the time used for reconstructing analysis domain and the disk space used for storing the
analysis results. The user has the flexibility to specify storing only the required and needed data, all the other
analysis results can be accessed through OpenSees core with certain re-computation during the
postprocessing phase of an analysis. Data are organized internally within the OpenSees core based on an
object-oriented model. Data saved in the COTS database are represented in three basic data types: Matrix,
Vector, and ID. For external data representation, XML (eXtensible Markup Language) is chosen as the
standard for representing data in a platform independent manner. To support the interaction with both
humans and other application programs, a data query language is defined to provide support for data retrieval
and postprocessing functionalities. The engineering data access system gives great flexibility and
extendibility to the data management in finite element programs and can provide additional features to
enhance the applicability of FEA software. Finally, a simple project management scheme is developed to
allow the users to manage and to collaborate on the analysis of a structure.

References

[1] J. Peng, F. McKenna, G. L. Fenves, and K. H. Law. "An Open Collaborative Model for Development

of Finite Element Program," Proceedings of the Eighth International Conference on Computing in
Civil and Building Engineering (ICCCBE-VIII), Palo Alto, CA, pp. 1309-1316, 2000.

[2] J. Peng and K. H. Law. "A Prototype Software Framework for Internet-Enabled Collaborative
Development of a Structural Analysis Program," Engineering with Computers, 18(1):38-49, 2002.

[3] F. McKenna. Object-Oriented Finite Element Programming: Frameworks for Analysis, Algorithm and
Parallel Computing, Ph.D. Thesis, Department of Civil and Environmental Engineering, University of
California at Berkeley, Berkeley, CA, 1997.

[4] J. Peng, D. Liu, and K. H. Law. "An Engineering Data Access System for a Finite Element Program,"
Advances in Engineering Software, 34(3):163-181, 2003.

	References

