
Software Framework for Collaborative Development of
Nonlinear Dynamic Analysis Program

Jun Peng
Department of Civil and Environmental Engineering

Stanford University

and

Kincho H. Law
Department of Civil and Environmental Engineering

Stanford University

A report on research conducted under
grant no. EEC-9701568 from the National Science Foundation:

PEER Report 2003/02
Pacific Earthquake Engineering Research Center

College of Engineering
University of California, Berkeley

September 2003

ii

iii

ABSTRACT

This report describes the research and prototype implementation of an Internet-enabled software

framework that facilitates the utilization and the collaborative development of a nonlinear

dynamic analysis program by taking advantage of object-oriented modeling, distributed

computing, database, and other advanced computing technologies. This new framework allows

users easy access to the analysis program and the analysis results by using a web browser or

other application programs, such as MATLAB. In addition, the framework serves as a common

finite element analysis platform for which researchers and software developers can build, test,

and incorporate new developments.

The collaborative software framework is built upon an object-oriented finite element

analysis program. The research objective is to enhance and improve the capability and

performance of the finite element program by seamlessly integrating legacy code and new

developments. Developments can be incorporated by directly integrating with the core as a local

module and/or by implementing as a remote service module. There are several approaches to

incorporate software modules locally, such as defining new subclasses, building interfaces and

wrappers, or developing a reverse communication mechanism. The distributed and collaborative

architecture also allows a software component to be incorporated as a service in a dynamic and

distributed manner. Two forms of remote element services, namely the distributed element

service and the dynamic shared library element service, are introduced in the framework to

facilitate the distributed usage and the collaborative development of a finite element program.

The collaborative finite element software framework also includes data and project

management functionalities. A database system is employed to store selected analysis results

and to provide flexible data management and data access. The Internet is utilized as a data

delivery vehicle and a data query language is developed to provide an easy-to-use mechanism to

access the needed analysis results from readily accessible sources in a ready-to-use format for

further manipulation. Finally, a simple project management scheme is developed to allow the

users to manage and to collaborate on the analysis of a structure.

iv

ACKNOWLEDGMENTS

This report is based on a Ph.D. dissertation by Jun Peng at Stanford University. The research

project was conducted at Stanford University from 1998–2002. The authors would like to thank

Dr. Frank McKenna and Professor Gregory L. Fenves of UC Berkeley for their collaboration and

support of this research. They provided not only the source code of OpenSees but also

continuous support throughout the research. The linear sparse solver SymSparse was developed

by Dr. David Mackay of Intel Corporation, and the Lanczos solver for generalized eigenvalue

problem was implemented by Mr. Yang Wang of Stanford University. We are also grateful to

Mr. Ricardo Medina at Stanford University for providing the 18-story one-bay frame analysis

model, and to Dr. Zhaohui Yang, Mr. Yuyi Zhang, Prof. Ahmed Elgamal, and Prof. Joel Conte at

the University of California, San Diego, for providing the Humboldt Bay Middle Channel Bridge

model.

This research was supported in part by the Pacific Earthquake Engineering Research

Center through the Earthquake Engineering Research Centers Program of the National Science

Foundation under award number EEC-9701568, and in part by NSF Grant Number CMS-

0084530. The Technology for Education 2000 equipment grant from Intel Corporation to Prof.

Kincho H. Law of Stanford University provided the computers employed in this research.

v

TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGMENTS..iv

TABLE OF cONTENTS ...v

LIST OF FIGURES..ix

LIST OF TABLES ...xi

1 Introduction 1

1.1 Problem Statement...1

1.2 Related Research ...2

1.2.1 Object-Oriented Finite Element Programming..3

1.2.2 Distributed Object Computing...5

1.2.3 Data Management in FEA Computing ..7

1.3 Report Outline ...9

2 Object-Oriented Finite Element Program and Module Integration 13

2.1 Features of Object-Oriented Finite Element Programs ...14

2.1.1 Object-Oriented Programming ..14

2.1.2 Design and Implementation of Object-Oriented FEA Programs.....................17

2.1.3 OpenSees ...19

2.2 Direct Module Integration ...22

2.2.1 Incorporating New Developments ...23

2.2.2 Linking Software Components ..25

2.2.2.1 Graph Representation of Matrices ...26

2.2.2.2 Linking METIS Routines ..28

2.2.3 Integration of Legacy Applications ...30

2.2.3.1 Procedures of Direct Solver SymSparse..30

2.2.3.2 Integration of Direct Solver SymSparse ..32

2.3 Moudle Integration with Reverse Communication Interface34

2.3.1 Reverse Communication Interface...35

2.3.2 Incorporating Eigensolvers with OpenSees ...36

2.4 Quality and Performance Measurements...40

vi

2.4.1 Comparison of Matrix Ordering Schemes ...40

2.4.2 Performance Comparison of Linear Solvers..42

2.4.3 Comparison of Eigensolvers ..44

2.5 Summary..45

3 Open Collaborative Software Framework 47

3.1 Overview of the Collaborative Framework ...48

3.1.1 System Architecture...49

3.1.2 Mechanics ..51

3.1.3 Modular Design ...52

3.2 User Interfaces...54

3.2.1 OpenSees Tcl Input Interface...54

3.2.2 Web-Based User Interface ...58

3.2.2.1 Web-to-OpenSees Interaction..58

3.2.2.2 Servlet Server-to-OpenSees Interaction ..59

3.2.3 MATLAB-Based User Interface..61

3.2.3.1 Network Communication...62

3.2.3.2 Data Processing ...63

3.3 Example...65

3.3.1 Sample Web-Based Interface...66

3.3.2 Sample MATLAB-Based Interface ...69

3.4 Summary..70

4 Internet-Enabled Service Integration and Communication 73

4.1 Registration And Naming Service...75

4.2 Distributed Element Services ..78

4.2.1 Mechanics ..78

4.2.2 Interaction with Distributed Services ..83

4.2.3 Implementation ..86

4.3 Dynamic Shared Library Element Services ..88

4.3.1 Static Library vs. Shared Library...88

4.3.2 Mechanics ..89

4.3.3 Implementation ..91

4.4 Application ..94

vii

4.4.1 Example Test Case...94

4.4.2 Performance of Online Element Services ..97

4.5 Summary and Discussion ..99

5 Data Access and Project Management 101

5.1 Multi Tiered Architecture..102

5.2 Data Storage Scheme...105

5.2.1 Selective Data Storage ...106

5.2.2 Object Serialization..109

5.2.3 Sampling at a Specified Interval ..112

5.3 Data Representation...114

5.3.1 Data Modeling ...115

5.3.2 Project-Based Data Storage ...117

5.3.3 Data Representation in XML...119

5.4 Data Query Processing ..122

5.4.1 Data Query Language ..123

5.4.2 Data Query Interfaces ..125

5.5 Applications...127

5.5.1 Example 1: Eighteen Story One Bay Frame Model128

5.5.2 Example 2: Humboldt Bay Middle Channel Bridge Model129

5.5.2.1 Project Management ..132

5.5.2.2 Data Storage and Data Access ...134

5.6 Summary and Discussion ..137

6 Summary and Future Directions 139

6.1 Summary..139

6.2 Future Directions ...141

REFERENCES..145

viii

ix

LIST OF FIGURES

Figure 2.1: Class abstraction in OpenSees (courtesy of McKenna)...20

Figure 2.2: Class diagram for OpenSees analysis framework (courtesy of McKenna)22

Figure 2.3: Pseudo-code for getTangentStiff method of QuadEightElement class25

Figure 2.4: Example of CSR storage for matrix structure..27

Figure 2.5: Class interface for the MetisPartitioner class ..28

Figure 2.6: Pseudo-code for partition method of MetisPartitioner class......................................29

Figure 2.7: Pseudo-code for incorporating METIS_NodeND method ..29

Figure 2.8: Interface for SymSparseLinSOE class...33

Figure 2.9: The control flow of integrating the SymSparse linear solver34

Figure 2.10: Class diagram for eigenvalue analysis in OpenSees..37

Figure 2.11: Linking ARPACK through reverse communication interface.................................39

Figure 2.12: Quality comparison of different matrix ordering schemes41

Figure 2.13: Performance comparison for different linear solvers ..43

Figure 3.1: The collaborative system architecture ...50

Figure 3.2: Mechanics of the collaborative framework ...52

Figure 3.3: Modules of the collaborative system ...53

Figure 3.4: Three-truss example (from (McKenna and Fenves 2001))..56

Figure 3.5: The interaction diagram for the web-based interface ..59

Figure 3.6: Interaction diagram for the MATLAB-based interface ...63

Figure 3.7: Array representations in Java and MATLAB..64

Figure 3.8: Example model and Northridge earthquake record ...66

Figure 3.9: Part of Tcl input file for example model ...67

Figure 3.10: Sample web pages generated on the client site..68

Figure 3.11: Sample MATLAB-based user interface ..70

Figure 4.1: Registering and resolving names in RANS ...75

Figure 4.2: Schema of the ServiceInfo table ..76

Figure 4.3: Interface for the RANS class ...77

Figure 4.4: Purpose of JNI (from (Stearns 2002)) ...82

Figure 4.5: Mechanics of the distributed element service..82

x

Figure 4.6: Interface for ElementRemote class..84

Figure 4.7: Interaction diagram of distributed element service ...85

Figure 4.8: Sample ElementClient and sample ElementServer ...87

Figure 4.9: Mechanics of dynamic shared library element service..90

Figure 4.10: Binding of dynamic shared library ..93

Figure 4.11: Web interface for registration and naming service..95

Figure 4.12: Interaction of distributed services..96

Figure 4.13: Graphical response time history of node 1 ..97

Figure 5.1: Online data access system architecture..103

Figure 5.2: Class diagram for FE_datastore...105

Figure 5.3: Interface for DB_Datastore class...106

Figure 5.4: Interface for MovableObject class...111

Figure 5.5: Pseudo code for recvSelf method of the Domain class ...112

Figure 5.6: Pseudo code for converting domain state ..115

Figure 5.7: Database schema diagram for online data access system..118

Figure 5.8: Relation of XML services..120

Figure 5.9: XML representation of matrix-type data ...121

Figure 5.10: XML representation of packaged data...122

Figure 5.11: Interaction diagram of online data access system..126

Figure 5.12: Displacement time history response of node 1 ..130

Figure 5.13: Humboldt Bay middle channel bridge (courtesy of Caltrans)131

Figure 5.14: Finite element model for Humboldt Bay Bridge (from (Conte et al. 2002)).........132

Figure 5.15: List of current Humboldt Bay Bridge projects ..133

Figure 5.16: 1994 Northridge earthquake recorded at Rinaldi station.......................................133

Figure 5.17: Deformed mesh of Humboldt Bay Bridge model (from (Conte et al. 2002))133

Figure 5.18: Web pages of response time histories..136

Figure 5.19: Sample MATLAB-based user interface ..136

xi

LIST OF TABLES

Table 2.1: Number of nonzero entries in the matrix for different ordering schemes...................41

Table 2.2: Solution time (in seconds) for different linear solvers..43

Table 2.3: Eigenvalues and their precision for different eigensolvers...45

Table 2.4: Performance comparison between Lanczos solver and ARPACK solver45

Table 4.1: Comparison between local and remote Java objects...80

Table 4.2: Comparison between static and shared libraries ...89

Table 4.3: Performance of using different element services ..98

Table 5.1: Solution time (in minutes) for nonlinear dynamic analysis134

Table 5.2: Solution time (in minutes) for recomputation...134

xii

1 Introduction

1.1 PROBLEM STATEMENT

It is well recognized that a significant gap exists between the advances in computing

technologies and the state-of-practice in structural engineering software development. Practicing

engineers today typically perform finite element structural analyses on a dedicated computer

using the developments offered by a single finite element analysis program. Typically, a finite

element software package is developed by an individual organization and bundles all the

procedures and program kernels.

As technologies and structural theories continue to advance, structural analysis software

packages need to be able to accommodate new developments in element formulation, material

relations, analysis algorithms, solution strategies, and computing environments. The need to

develop and maintain large complex software systems in a dynamic environment has driven

interest in new approaches to finite element analysis software design and development. Object-

oriented design principles and programming can be utilized in finite element software

development to support better data encapsulation and to facilitate code reuse. However, most

existing object-oriented finite element programs remain rigidly structured. Extending and

upgrading these programs to incorporate new developments and legacy applications remain

difficult tasks. Moreover, there is no easy way to access computing resources and finite element

analysis services distributed in a remote site.

With the advances of computing facilities and the development of communication

networks in which the computing resources are connected and shared, the programming

environment has migrated from relying on a single and local computing environment to

developing software in a distributed and global environment. With the maturation of information

and communication technologies, the concept of building collaborative systems to distribute the

services over the Internet is becoming a reality (Han et al. 1999). Following this idea, we have

2

designed and prototyped an Internet-enabled collaborative framework for the usage and

development of a finite element analysis program. The collaborative software framework is built

upon an object-oriented finite element core program. The collaborative framework is designed

to enhance and improve the capability and performance of the finite element program by

seamlessly integrating legacy code and new developments. Developments can be incorporated

by directly integrating with the core as a local module and/or by implementing as a remote

service module. The Internet provides many possibilities for enhancing the distributive and

collaborative software development and utilization. By means of the Internet as a

communication channel, which supports standard communication protocols and network

transparency, the collaborative framework gives the users the ability to pick and choose the most

appropriate methods and software components for solving a problem.

To support collaboration among software developers and engineering users, the finite

element software framework also includes data and project management functionalities. A

database system is employed to store selected analysis results and to provide flexible data

management and data access. The Internet is utilized as a data delivery vehicle, and a data query

language is developed to provide an easy-to-use mechanism to access the needed analysis results

from readily accessible sources in a ready-to-use format for further manipulation. Finally, a

simple project management scheme is developed to allow the users to manage and to collaborate

on projects. Access control and revision control capabilities are integrated with the project

management system.

1.2 RELATED RESEARCH

The Internet-enabled collaborative software framework is based on an object-oriented finite

element analysis program. Distributed and collaborative computing is utilized in the framework

to allow an element service to be distributed over the Internet. A database is linked with the

software framework to provide persistent data storage and to facilitate data and project

management. This section presents an overview of some work related to this research effort,

including object-oriented finite element programs, distributed object computing, and data

management in finite element programs.

3

1.2.1 Object-Oriented Finite Element Programming

Most existing finite element software packages are developed in procedural-based programming

languages. These packages are normally monolithic and difficult for a programmer to maintain

and extend, though some of them are quite rich in terms of functionality. Extensibility usually

requires access to and manipulation of internal data structures. Due to the lack of data

encapsulation and protection, small changes in one piece of code can ripple through the rest of

the software system. For example, to add a new element to an existing procedural-based finite

element analysis software package, the programmer is usually required to specify, at the element

level, the memory pointers to global arrays. Exposing such unnecessary implementation details

increases the software complexity and adds a burden to a programmer. Even worse, any change

to these global data structures to accommodate new functionalities will require the

implementation of other elements to be changed. Therefore, such access may compromise the

reliability and integrity of the system. Furthermore, these packages do not provide a set of

crisply defined high-level abstraction or software components by which a programmer can

construct new applications to meet new functional requirements. For example, it is very difficult

to extend an existing linear static analysis program to geometric nonlinear or material nonlinear

transit analysis. It is difficult for researchers to test new algorithms in existing structural

engineering software. Few existing structural analysis programs offer the test-bed capabilities

for rapid prototyping due to the lack of high-level reusable components and their severe inherent

limitations in maintainability and extendibility.

Object-oriented design principles and programming techniques can be utilized in finite

element analysis programs to support better data encapsulation and to facilitate code reuse. A

number of object-oriented finite element program design and implementations have been

presented in the literature over the past decade (Commend and Zimmermann 2001; McKenna

1997; Miller 1991; among many others). Object-oriented finite element analysis packages,

particularly those written in C++, have been shown to have comparable performance to their

procedural-based counterparts and still provide the maintainability and extendibility essential for

modern-day software packages (Dubois-Pelerin and Zimmermann 1993; McKenna 1997; Rucki

and Miller 1996). The flexibility and extendibility of these packages are partly due to the object-

oriented support of encapsulation, inheritance, and polymorphism. There are three essential

4

steps in the development of object-oriented systems: identification of the classes, specification of

the class interfaces, and implementation.

Much of the early work concentrated on fairly straightforward implementations of FEM

in an object-oriented programming language – separate objects were created for elements, nodes,

loads, materials, degrees of freedom, etc. (Forde et al. 1990; Mackie 1992; Zimmermann et al.

1992). Some work has been devoted to using object-oriented design to carry out complex

algorithms. The technique has been applied to many application areas including stress analysis

(Dubois-Pelerin and Zimmermann 1993; Kong and Chen 1995; Lu et al. 1994), hypersonic shock

waves (Budge and Peery 1993), structural dynamics (Archer 1996; Pidaparti and Hudli 1993),

shell structures (Ohtsubo et al. 1993), nonlinear plastic strain (Mentrey and Zimmermann 1993),

and electromagnetics (Silva et al. 1994). There are algorithms that are difficult to program using

procedural languages (e.g., Fortran), but have become easier in object-oriented programming

languages because of the richer data structures that can be created. A particularly interesting

application was using objects to represent substructures (Ju and Hosain 1994). The application

was applied to repetitive structures, and this enabled the user to create the mesh easily by using a

series of copy, translation, and reflection operations. Eyheramendy and Zimmermann (1994)

used objects to develop a system that enabled the underlying mathematics of finite element

method to be represented.

There are several popular object-oriented programming languages such as Smalltalk,

C++, and Java. C++ is by far the most popular programming language for implementing object-

oriented finite element analysis programs. C++ was chosen because of its availability,

popularity, efficiency, and built-in libraries. One of the appealing features of C++ is that it

provides object-oriented capabilities as well as C functional elements. This hybrid language

feature helps to make C++ applications efficient. If implemented properly, C++ applications

tend to be more efficient than pure object-oriented languages (e.g., Smalltalk, Java, etc.) and

better suited to solve numerical problems arising in engineering applications. Moreover, most of

the C++ compilers provide easy calls to Fortran routines. This is an important advantage,

because it enables the reuse of many efficient Fortran subprograms. Another powerful feature of

C++ is the concept of dynamic binding of functions. It supports the mechanism of

polymorphism and is activated by adding the keyword virtual in a function definition. This

keyword notifies the compiler to decide during the runtime which function should be called. The

dynamic binding of functions makes the programs more flexible and also facilitates code reuse.

5

Finally, most of the C++ compilers provide an array of class libraries, which can solve many

implementation details at the lower class libraries. They shift the programmer’s efforts to a

higher-level abstraction, focusing on the overall organization and design of the program. Typical

class libraries include classes for string and input/output operations, as well as container classes

for storing and managing data.

1.2.2 Distributed Object Computing

Distributed object computing extends an object-oriented programming system by allowing

objects to be distributed across a heterogeneous network, so that each of these distributed object

components can interoperate as a unified system. These objects may be distributed on different

computers throughout a network, living within their own address space outside of an application,

and yet appear as though they were local to a central application. The basic extension for a

distributed object-oriented system is to provide remote procedure calls from a thread on one

machine to an object on another machine, using the same basic syntax and semantics as a local

call. A key property of distributed object computing is dispatching on the object first, rather than

binding to a particular procedure. Dispatching on the object allows there to be multiple

simultaneous different implementations.

Three of the most popular distributed object paradigms are Object Management Group’s

(OMG) Common Object Request Broker Architecture (CORBA) (Otte et al. 1996; Pope 1998),

Microsoft’s Distributed Component Object Model (DCOM) (Eddon and Eddon 1998), and Sun

Microsystems’ Java Remote Method Invocation (RMI) (Pitt and McNiff 2001). The following

gives a brief overview of these three distributed object computing technologies. A detailed

comparison of CORBA, DCOM and Java RMI has been discussed in (Raj 1998).

The Common Object Request Broker Architecture (CORBA) is a source interface

standard being promoted by the Object Management Group (OMG), an industry standard

consortium. While the traditional objects reside in a single computer (within a single process or

multiple processes), distributed objects may reside in several nodes in a network. Robust

distributed objects may be written in different languages, and can be compiled by different

compilers while they communicate with each other via standardized protocols embodied by

middleware (Lewandowski 1998). Everything in the CORBA architecture depends on an Object

6

Request Broker (ORB). The ORB acts as a central object registry where each CORBA object

interacts transparently with other CORBA objects located either locally or remotely. CORBA

relies on a protocol called the Internet Inter-ORB Protocol (IIOP) for remote objects. Each

CORBA server object has an interface and exposes a set of methods. To request a service, a

CORBA client acquires an object reference to a CORBA server object. The client can make

method calls on the object reference as if the CORBA server object resides in the client’s address

space. The ORB is responsible for finding the CORBA object’s implementation, preparing it to

receive requests, communicating requests to it, and carrying the reply back to the client. A

CORBA object interacts with the ORB either through the ORB interface or through an object

adapter. Since CORBA is just a specification, it can be used on diverse operating system

platforms as long as there is an ORB implementation for that platform. The distributed objects

in the CORBA environment can be implemented in various programming languages, such as

C/C++ (Henning and Vinoski 1999) or Java (Orfali and Harkey 1998).

The Microsoft DCOM, extended from Component Object Model (COM) and more

recently in COM+, provides a distributed object framework as an extension of the OLE (Object

Linking and Embedding) facility. OLE allows objects to be linked by reference between types of

documents and objects to be embedded in other objects. DCOM supports remote objects by

running on a protocol called the Object Remote Procedure Call (ORPC). The ORPC layer is

built on top of standard remote procedure call (RPC) and interacts with COM’s runtime services.

A DCOM server is a body of code that is capable of serving up objects of a particular type at

runtime. Each DCOM server object can support multiple interfaces each representing a different

behavior of the object. A DCOM client class calls into the exposed methods of a DCOM server

by acquiring a pointer to one of the server object’s interfaces. The client object then starts

calling the server object’s exposed methods through the acquired interface pointer as if the server

object resides in the client’s address space. Since the COM specification is at the binary level, it

allows DCOM server components to be written in diverse programming languages like C++,

Java, and Visual Basic, etc. As long as a platform supports COM services, DCOM can be used

on that platform. DCOM is heavily used on the Microsoft Windows platform.

Java RMI relies on a protocol called the Java Remote Method Protocol (JRMP). Java

relies heavily on Java Object Serialization, which allows objects to be marshaled (or transmitted)

as a byte stream. Since Java Object Serialization is specific to Java, both the Java RMI server

object and the client object have to be written in Java. Each RMI server object defines an

7

interface which can be used to access the server object outside of the current Java Virtual

Machine (JVM) and on another machine's JVM. The interface exposes a set of methods that are

indicative of the services offered by the server object. For a client to locate a server object for

the first time, RMI depends on a registration and naming mechanism called an RMIRegistry that

runs on the Server machine and holds information about available server objects. A RMI client

acquires an object reference to a JRMI server object by doing a lookup for a server object

reference and invokes methods on the server object as if the RMI server object resides in the

client's address space. RMI server objects are named using Uniform Resource Locator (URLs)

and for a client to acquire a server object reference, the client should specify the URL of the

server object similar to the URL for a HTML page. Since RMI relies on Java, it can be used on

diverse operating system platforms from mainframes to UNIX workstations to Windows

machines and handheld devices, as long as there is a Java Virtual Machine (JVM)

implementation for that platform.

The architectures of CORBA, DCOM and Java RMI provide mechanisms for transparent

invocation and accessing of remote distributed objects. Though the mechanisms that they

employ to achieve distributed computing may be different, the approach that each of them takes

is more or less similar.

1.2.3 Data Management in FEA Computing

The importance of a data management system in scientific and engineering computing has been

recognized for over thirty years. Techniques for general data management were gradually

making inroads in scientific computing during the 1970s. This development paralleled in many

ways the rapid acceptance of the centralized database concept in business-oriented processing.

However, engineering data manipulation systems faced a specialized environment with its own

set of operational requirements. To present the specialized environment and operational

requirements of engineering data management systems, Felippa (1979; 1980; and 1982)

published a series of three papers on database usage in scientific computing. These papers

reviewed general features of scientific data management from a functional standpoint, including

the description of a database-linked engineering analysis system, the organization of a database

system, and the program operational compatibility. The general data structures and program

8

architecture were also presented, together with the issues regarding implementation and

deployment. Blackburn et al. (1983) described a relational database (RDB) management system

for computer-based integrated design, including application to the analysis of various structures

to demonstrate and evaluate the ability of an RDB system to store, retrieve, query, modify, and

manipulate data. All these papers emphasized the importance of centralized data management

for large-scale computing. Two factors that determined the favor of centralized scientific data

management were the sheer growth of large-scale engineering analysis codes to the point of

incipient instability as regards to propagation of local program errors, and the appearance of

integrated program networks that share a common project database. Centralized data

management was most effective when used in conjunction with a highly modular, structured

program architecture (Felippa 1980).

The role of databases as repositories of information (data) highlighted the importance of

data structures. The component data elements of data structures could be either atomic (i.e., non-

decomposable) or data structures themselves. The relationships between these component data

elements constitute the structure and have implications for the functions of the data structure

(Anumba 1996). Several general approaches and models for organizing the data have been

developed. They are the hierarchical approach, the network approach, the relational approach,

and the object-oriented approach. The hierarchical approach and the network approach are the

traditional means of organizing data and their relationships. The relational model has been

adopted in several finite element programs (Blackburn et al. 1983; Rajan and Bhatti 1986; Yang

1992). The object-oriented approach is the foundation for many object-oriented database

management systems, such as EXODUS (Carey et al. 1990), which is an extensible database

system to facilitate the fast development of high-performance, application-specific database

systems. No matter which data model is used, data structures need to be self-describable

(Felippa 1979). For practical reasons we can generally exclude the naïve approach of forcing

every program component to agree on a unified data structure. The next best thing is to require

each program to label its output data, i.e., to attach a descriptive label to each data structure that

would be saved in the database. Such tags can then be examined by the control structure of other

programs and appropriate actions can be taken.

Presently, the state-of-practice for data management in finite element analysis (FEA)

programs still mainly rely on file systems. To facilitate the sharing of information, loosely-

coupled systems could talk to each other through the same file system. However, data placed by

9

an application program into the file system may well not be acceptable to another program

because of format incompatibility. To tackle this problem, Yang (1992) defined a standard file

format for the analysis data, called the universal file (UF). Two interfaces have been proposed.

The first is a specified set of subroutines to transfer the input or output files of the programs into

UF. The second is a set of subroutines to translate UF into the database configured to aid FEM

modeling operations. Another effort to address file format compatibility is the neutral file

approach introduced for integrated Computer-Aided Design (CAD) systems (Nagel et al. 1980).

The neutral file approach establishes a standard file format and information structures to be used

for the digital representation and communication of product definition data. Using a neutral

standard for transferring information across systems drastically reduces the requirements for file

format translators.

For finite element programs, the postprocessing functions need to allow the recovery of

analysis results and provide extensive graphical and numerical tools for gaining an understanding

of results. In this sense, querying database is an important aspect and query languages need to be

constructed to interrogate databases. A free-format data query language has been designed and

provided in SADDLE (Structural Analysis and Dynamic Design Language) (Rajan and Bhatti

1986). Although the commands to create, edit, and update the data have been provided, the

query language was hard for human to interpret. In order to manage engineering databases, a

data query system should provide query commands that resemble natural language, as well as

simple data manipulation procedures (Fishwick and Blackburn 1983). Simple natural language

interface has also been attempted in querying the qualitative description of dynamic simulation

data (Chandra 1998). The commands of this language are easy for users to interpret. However,

the drawback is that it is difficult to write a parser for the language.

1.3 REPORT OUTLINE

The objective of this research is to develop an Internet-enabled software framework that

facilitates the utilization and the collaborative development of a finite element structural analysis

program by taking advantage of object-oriented modeling, distributed computing, database and

other advanced computing technologies. The framework is designed to provide users and

developers with easy access to an analysis platform and the selected analysis results.

10

The rest of this report is organized into the following five chapters:

• Chapter 2 reviews the features of object-oriented finite element analysis (FEA) programs

and discusses their support of integrating existing software components and new

developments. The main class abstractions adopted in a typical object-oriented FEA

program are according to the basic steps involved in a finite element analysis. The

flexibility and extendibility of an object-oriented FEA program can be exemplified with

the ease of incorporating new developments and existing software modules. The

software extending process normally requires one or several subclasses of the base

classes to be introduced, and interfaces or wrappers to be constructed. In this chapter,

several approaches of local module integration for an object-oriented FEA program are

discussed with examples, including the incorporation of a new element, a popular graph

partitioning and ordering package, a sparse linear solver, and two eigensolvers. The one

common feature for all these local module integration approaches is that the changes to

the existing code tend to be localized. After the software components are seamlessly

integrated, the capacity and performance of the object-oriented FEA program can be

greatly improved.

• Chapter 3 introduces an Internet-enabled software framework that would facilitate the

utilization and the collaborative development of FEA programs. The objective of this

chapter is to provide an overview of the framework, its modular design, and the

interaction among the modules. A set of Internet-enabled communication protocols is

defined to link external components which can easily be integrated to the collaborative

framework through a plug-and-play environment. Two types of user interaction

interfaces, namely the web-based interface and MATLAB-based interface, are presented

with example usage.

• Chapter 4 describes in detail the development of an application service and its integration

with the Internet-enabled finite element analysis framework. One salient feature of the

Internet-enabled collaborative software framework is to facilitate analysts to integrate

new developments with the core server in a dynamic and distributed manner. A diverse

group of users and developers can easily access the framework and contribute their own

developments to the central core. By providing a modular infrastructure, services can be

added or updated without the recompilation or reinitialization of the existing services.

For illustration purpose, this chapter focuses on the model integration of new elements to

11

the analysis core. There are two types of online element services, which are the

distributed element service and the dynamic shared library element service.

• Chapter 5 presents a prototype implementation of an online data access system for the

Internet-enabled collaborative software framework. The objective of using an

engineering database is to provide the users the needed engineering information from

readily accessible sources in a ready-to-use format for future manipulation. The main

design principle of the system is to separate data access and data storage from data

processing, so that each part of the system can be designed and implemented separately.

In this work, a commercial database system is linked with the central finite element

analysis server to provide the persistent storage of selected analysis results. By adopting

a commercial database system, we can address some of the problems encountered by the

prevailing file system-based data management. Since the Internet is utilized as the

communication channel, the data access system would allow users to query the core

server for useful analysis results, and the information retrieved from the database through

the FEA core server is returned to the users in a standard format.

• Finally, Chapter 6 summarizes this work and outlines future research directions. The

Internet-enabled collaborative software framework is a new paradigm for the design and

implementation of finite element programs. The standard communication protocols and

network transparency of the collaborative framework give users the ability to pick and

choose the most appropriate methods and software components for solving a problem.

Because the Internet environment is utilized in the framework, the security, performance,

and fault-tolerance issues need to be further explored.

12

13

2 Object-Oriented Finite Element Program and
Module Integration

Finite element analysis (FEA) programs are becoming ever more powerful, not just in terms of

the problems they can solve, but also in their pre- and post-processing capabilities. These

software applications are becoming more complex and more difficult to maintain. One serious

concern of traditional procedural-based programming is that even a simple change, especially to

the data structure, can have ripple effects throughout the code. This greatly increases the

chances of errors and program bugs being introduced, and increases maintenance costs. Object-

oriented principles can alleviate some of these burdens as the data are encapsulated in closed

compartments (objects) and are accessed only via methods or functions. The data access is more

tightly controlled, and the effects of code changes tend to be more localized.

One of the challenges in the design and implementation of an object-oriented finite

element analysis program is the integration of a legacy code. The finite element method was

introduced more than forty years ago, and many sophisticated and advanced procedures have

been developed since. Some of these existing procedures (modules or components) can be

reused in an object-oriented FEA program to enhance its analysis capabilities, improve its

performance, and save the redevelopment efforts. This chapter discusses various approaches to

integrate these existing software components and applications into object-oriented FEA

programs.

This chapter is organized as follows:

• Section 2.1 reviews the basic principles and features of existing object-oriented finite

element analysis programs. OpenSees (McKenna 2002) is presented in this section as a

particular example of object-oriented finite element analysis programs.

• Section 2.2 describes the basic procedures for integrating software components into an

object-oriented FEA program. In this work, the approaches to integrate software modules

are illustrated using OpenSees. Several examples are presented to illustrate the

14

integration process, including the integration of an element, a graph partitioning and

ordering package, and a sparse linear direct solver.

• Section 2.3 describes a reverse communication interface for software module integration.

Reverse communication is a mechanism that avoids having to use fixed data structures

through a subroutine with a fixed calling sequence, therefore the user can choose the

most appropriate data structures for the program. The usage of a reverse communication

interface in an object-oriented FEA program is illustrated with the examples of

integrating eigensolvers.

• Section 2.4 gives some qualitative and quantitative performance measurements for the

incorporated software modules described in this chapter. The experimental results

demonstrated that the analysis capability and performance of an object-oriented FEA

program could be greatly enhanced by incorporating existing applications.

2.1 FEATURES OF OBJECT-ORIENTED FINITE ELEMENT PROGRAMS

To facilitate code reuse and to provide a program that is flexible and extendible, object-oriented

design principles have been proposed and applied to the implementation of finite element

analysis programs. The advantages of using object-oriented programming paradigms are (1)

easier to maintain programs; (2) easier to implement complex algorithms; and (3) better

integration of analyses and designs.

2.1.1 Object-Oriented Programming

Object-orientation makes it possible to model systems that are very close in structure to their

real-world analogs. The objective of object-oriented design is to identify accurately the principal

roles in an organization or process, to assign responsibilities to each of those roles, and to define

the circumstances under which roles interact with one another. Each role is encapsulated in the

form of an object. The object-oriented approach is quite different from traditional procedural

methods, whose emphasis is on process. While a process-oriented model focuses on the

sequencing of activities to accommodate chronological dependencies, an object-oriented model

15

is concerned with the policies or conditions that constrain tasks to be performed. The object-

oriented approach was described as follows by Wegner (1987):

“… the pieces of the design are objects which are grouped into classes for

specification purposes. In addition to traditional dependencies between data elements,

an inheritance relation between classes is used to express specializations and

generalizations of the concepts represented by the classes.”

There are several fundamental concepts in object-oriented programming: class and

object, encapsulation, inheritance, and polymorphism. The following gives a brief description of

these concepts. Details of object-oriented programming and its features can be found in many

references (Budd 2002; Page-Jones 1999; Rumbaugh et al. 1991).

An object-oriented program is composed of objects, each with a number of attributes that

define the state of the object. The behavior of an object is defined by its member methods,

which are procedures for changing or returning the state of the object. An object’s method is

invoked when another object sends a message to the object. The function of an object-oriented

program can be viewed as the interactions among the program’s objects by sending and

responding messages. The programming language implementation of certain type of objects is

called a class, which defines the form and behavior of objects. A class typically consists of the

following: a class interface that defines the member methods, private data that represent the

attributes held privately by each object of the class, and member methods which implement the

sequence of operations that can manipulate the private data. An object of a certain class can be

created (also called instantiated) by invoking a special type of member method in the class called

constructor. The relationship between object and class can be viewed analogically in a

procedural language as that of a variable being a particular instance of a predefined type such as

an integer.

Encapsulation in object-oriented programming means keeping the implementation

details of a class private. Encapsulation is the ability to provide users with a well-defined

interface to a set of functions in a way which both encourages and enforces the hiding of internal

implementation details. In most object-oriented programming languages, encapsulation can be

achieved by declaring access control on the member data and member functions of a class. Since

encapsulation can hide complex issues and algorithms away from those that do not need to know

the details about them, it is an effective mechanism to break down a complex system into

16

manageable pieces. Encapsulation also plays an important role in ensuring that the

implementation of a class can be changed without affecting other portions of the program.

To promote code reuse, object-oriented programming languages support class

hierarchies, with data and methods of a superclass being inherited by its subclasses. This

inheritance feature allows a programmer to define the common functions and data used by

several classes at the highest possible level in the hierarchy, which avoids the duplication of data

and methods at the lower levels. The subclasses may add additional attributes and methods, and

can redefine the methods of a superclass if necessary. Inheritance makes it possible to

restructure the information hierarchy so that it is less rigidly compartmentalized. The principal

advantage of inheritance is that all the algorithms defined as part of the superclass are still valid

for the subclasses, which can result in more reusable code, since it is not necessary to rewrite the

algorithms defined in the superclass.

In object-oriented programming, an object is polymorphic if it can be transparently used

as instances of different types. Polymorphism allows the usage of different objects in the same

code segment. The classic example is a group of classes representing different planar shapes:

rectangles, circles, ovals, etc. Although these shapes share the same types of functions, such as

drawing itself and calculating its area, the shapes perform these functions differently.

Polymorphism allows us to write code in terms of generic shape type and have it work correctly

for any actual shape. In object-oriented programming, the inheritance allows an object of a

subclass to be treated as an object of a superclass.

The most widely cited advantage of object-oriented programming is the fact that objects

can be used as software components. Objects embody data and functionalities that can be

adopted by other programmers. The independent, modular nature of objects makes them ideally

suited for reuse in other applications, without modification. At the same time, the ability to

define subclasses means that the features of an object can be revised or added relatively easily.

A well-designed object-oriented programming system enables programmers to independently

develop and validate new code, to maintain and revise existing code, and to be able to modularly

introduce software components.

17

2.1.2 Design and Implementation of Object-Oriented FEA Programs

The basic steps for the design of object-oriented FEA programs are identifying the main tasks

performed in typical finite element analyses, abstracting them into separate classes, and then

specifying interfaces for these classes. It is important that the interfaces specified can facilitate

the classes to work together to perform the requested analyses and allow new developments to be

introduced without the need to dramatically change the existing code.

The classes for an object-oriented FEA program need to be designed to cope with the

basic steps of a finite element analysis, which include the discretization of the model into

elements and nodes, the formulation of element matrices and vectors, the assembly of element

matrices and vectors into the system of equations, the incorporation of the boundary conditions,

the solution of the linear equations and/or eigen systems, and the computation of responses for

each element. Most of the early object-oriented FEA programs (for example, see (Forde et al.

1990; Mackie 1992; Zimmermann et al. 1992)) concentrated on fairly straightforward

implementations of finite element programs in an object-oriented language — separate objects

were created for elements, nodes, loads, constraints, materials, degree of freedoms, and analyses.

The classes introduced in these object-oriented FEA programs can be grouped into three basic

categories:

• Numerical classes to handle the numerical operations in the solution procedure.

• Model classes to create a finite element model to represent the model in terms of

elements, nodes, loads, and constraints, and to store the analysis results.

• Analysis classes to perform the analysis of the finite element model, i.e., form and solve

the system equations.

Finite element analysis involves intensive numerical computations. Therefore, the most

obvious classes in an object-oriented FEA program are defined for the basic numerical quantities

such as vectors and matrices. The matrix and vector classes are employed in an object-oriented

FEA program to store and pass information between the objects in the system and to perform

numerical computations (Archer 1996; Forde et al. 1990; Lu et al. 1994; Mackie 1992;

Ostermann et al. 1995; Zimmermann et al. 1992). A number of researchers have focused on

developing specific software packages for matrix and vector computation (Lu et al. 1995; Scholz

1992; Zeglinski et al. 1994). These packages can be tightly integrated into finite element

analysis programs. A matrix object is defined in terms of its data and functions: the data are the

entries in the matrix and the functions are corresponding to the basic matrix operations of

18

addition, subtraction, multiplication, inversion, and transposition. Subclasses of a matrix class

can be defined for matrices with special structures, such as symmetric, upper triangular, lower

triangular, sparse, band, symmetric band, and profile matrices (Lu et al. 1995; Zeglinski et al.

1994). A vector can also be defined as a subclass of a matrix; however, because of its substantial

usage in finite element programs, a vector is often defined as a separate class.

In most of the work that has been presented, the main class abstractions used to describe

the finite element model are: Node, Element, Constraint, and Load (Archer 1996; Cardona et al.

1994; Dubois-Pelerin and Zimmermann 1993; Forde et al. 1990; Rucki and Miller 1996;

Zimmermann et al. 1992). The abstractions of these objects are similar to those used in

traditional procedural-based finite element programs. The aggregation of these model objects

forms a Domain object, which has many different names in the literature: NAP (Forde et al.

1990), LocalDB (Miller 1991), Assemblage (Rucki and Miller 1993), Partition (Rucki and Miller

1996), FE_Model (Mackie 1995), Model (Archer 1996), and Domain (Cardona et al. 1994;

Zimmermann et al. 1992). The main functionality of the Domain class can be divided into two

categories. One is responsible for adding model components to and removing them from the

Domain object. The other is for accessing the Domain components. One of the prominent

features of most object-oriented finite element analysis programs is the flexibility and

extendibility with which new elements can be easily introduced. The role and functionalities of

elements in a FEA program are well studied, and hence the Element class interface is generally

well defined. The features of object-oriented design, especially encapsulation and inheritance,

can be utilized to facilitate the integration of new elements. In most object-oriented FEA

implementations, a new element can be introduced by directly adding an Element subclass.

A finite element analysis involves forming the system of equations, applying the

boundary conditions, solving the system of equations, and updating the response quantities at the

nodes and elements. A well-designed analysis framework should allow solution algorithms to be

easily modified or added. In an object-oriented finite element analysis program, the flexibility of

modifying analysis types is achieved by the ease of introducing subclasses and the collaboration

among classes. An object-oriented FEA program typically models analysis algorithms in several

coupled classes. For instance, Pidaparti and Hudli (1993) presented a design with EigenSolution

and DirectIntegrator to handle dynamic analysis. Rucki and Miller (1996) provided three base

classes, AlgorithmManager, Algorithm, and AlgorithmicAgent, to perform the analysis. The

AlgorithmManager object is responsible for managing its contained Algorithm objects, and the

19

AlgorithmicAgent acts as an intermediary between the Algorithm object and its associated

Domain object. Archer (1996) presented five classes, which are Analysis, ConstraintHandler,

RecorderHandler, Map, and MatrixHandler, to perform the analysis.

2.1.3 OpenSees

OpenSees (Open System for Earthquake Engineering Simulation) (McKenna 1997) is an object-

oriented software framework to facilitate the simulation of the seismic response of structural and

geotechnical systems. OpenSees is sponsored by the PEER (Pacific Earthquake Engineering

Research) Center, and is intended to serve as the computational platform for research in

performance-based earthquake engineering at the center. The goal of the OpenSees development

is to improve the modeling and computational simulation in earthquake engineering through

open-source development. The following briefly discusses the features of OpenSees. The

discussion will be focused on the object-oriented design of the class interfaces and the interaction

among the classes. Similar to most object-oriented FEA programs, the classes introduced in

OpenSees can also be categorized into numerical classes, model classes, and analysis classes.

OpenSees consists of three types of basic numerical classes, Matrix, Vector and ID.. The

ID class is just a special form of vector for handling integers. The objects of these numerical

classes are used primarily to store and communicate information, e.g., stiffness and load

information. Both Matrix and Vector classes provide a full range of functions to handle

numerical computations, typically in the form of overloaded operator functions. Matrices of

special structures (e.g., band, profile, sparse, etc.) are not defined as subclasses of the Matrix

class in OpenSees. Instead, since the special structured matrices are primarily used during the

solution phase, the SystemOfEqn class is introduced to handle these special matrices.

Similar to the abstractions used in most of the traditional FEA programs and the object-

oriented FEA programs, the main class abstractions adopted in OpenSees to describe a finite

element model are: Node, Element, Constrain, Load, and Domain, etc. Figure 2.1 depicts the

main class abstractions in OpenSees and the relationship among the classes using the Rumbaugh

(Rumbaugh et al. 1991) notation. Details on each class and its interface can be found in

McKenna (McKenna 1997). The Rumbaugh notation uses a rectangle to represent a class, and a

line connecting two classes to represent the relationship between the two classes. There are three

types of relationships:

20

• The association relationship exists between classes when an object of one class knows

about an object of another class. For example, an Element object knows about its Node

objects. The Rumbaugh notation uses a line between two rectangles to represent the

association relationship.

• The inheritance relationship exists between the superclass and its subclasses. The

inheritance allows an instance of a subclass to be treated as an instance of its superclass.

For example, since the Truss class is the subclass of the Element class, a Truss object can

be treated as an Element object. The inheritance relationship is represented by a line with

a triangle between the classes. The subclasses that share a common superclass are shown

by lines connecting to the base of the triangle.

• The aggregation relationship exists when an object of one class is made up of component

objects of other classes. For example, a Domain object is an aggregation of Element,

Node, Load, and Constraint objects. The aggregation relationship is represented with a

diamond at the aggregate class and a line from the diamond to the classes of the

component objects.

Domain AnalysisModelBuilder

Node ElementSP_ConstraintMP_ConstraintLoadCase

Load
Truss FiberElementBeam

creates

populates is analyzed by

ElementalLoadNodalLoad

Class Name

Class2Class1

Class

Class exactly one

many

Class

Association

Mulitplicity of Association

SuperClass

SubClass2SubClass1

Inheritance

Aggregation AssemblyClass

PartClass2PartClass1

Figure 2.1: Class abstraction in OpenSees (courtesy of McKenna)

21

As shown in Figure 2.1, the ModelBuilder class defined in OpenSees is responsible for

creating finite element models, i.e., creating the nodes, elements, loads, and constraints. The

ModelBuilder class defines one pure virtual method, buildFE_Model(), which can be

invoked to create a finite element model. Subclasses of ModelBuilder must provide an

implementation of the method so that different types of finite element models can be created.

The usage of the ModelBuilder class hierarchy keeps OpenSees extendible. Each ModelBuilder

object, as shown in Figure 2.1, is associated with a single Domain object, which acts as a

repository for domain components. When buildFE_Model() is invoked on a ModelBuilder

object, the object builds the components of the model and then adds the component objects to the

Domain object. The manner in which the ModelBuilder object creates the model components

depends on the subclass of the ModelBuildler that is chosen to perform the analysis. This

approach allows an appropriate subclass of ModelBuilder to be used for creating certain type of

finite element models.

In OpenSees, a Domain object is associated with a ModelBuilder object and an Analysis

object, as shown in Figure 2.1. The ModelBuilder object is responsible for populating the

Domain object by creating the model component objects and then adding them to the Domain

object. The Analysis object is responsible for analyzing the populated Domain object.

The basic functionality of an Element object is to provide the current stiffness, mass, and

damping matrices, and the residual force vector due to the current stresses and element loads.

The Element class defined in OpenSees is an abstract base class, which defines the interface that

all subclasses must provide. Normally a new type of element can be introduced by simply

implementing a new Element subclass, which is usually a process that incurs no changes to the

existing code in the program. It should be noted that most finite element analysis programs

written in procedural languages also provide facilities for adding elements. However, the object-

oriented approach can better isolate the element functions from analysis and solution algorithm

functions. The object-oriented approach allows inheritance of common functions, and allows the

Element objects to store as much private data as required by the element. It is this level of

abstraction that facilitates the concurrent development of new elements and makes the

development of distributed element services easier.

For a finite element program, the ability to choose the type of analysis performed on the

analysis model is as important as changing element types. The typical object-oriented approach

that has been taken to the Analysis class design (Archer 1996; Dubois-Pelerin and Zimmermann

22

1993; Forde et al. 1990; Pidaparti and Hudli 1993; Zimmermann et al. 1992) is similar to the

black-box approach of traditional finite element programming. With this approach, a number of

subclasses of Analysis are provided, and each of these Analysis subclasses is associated with one

type of analysis (e.g., linear, transient, etc.). The hierarchy representing the Analysis classes is

very flat, which is not efficient to facilitate code reuse. To provide a design that is more flexible

and extendible than the typical approach, the main tasks performed in a finite element analysis

need to be identified, and separate classes can be abstracted for these tasks. The class diagram of

OpenSees analysis framework is shown in Figure 2.2. As depicted in the figure, OpenSees uses

an aggregation of classes to represent Analysis, which includes SolutionAlgorithm,

AnalysisModel, Integrator, ConstraintHandler, DOF_Numberer and SystemOfEqn.

AnalysisDomain

EigenAnalysisTransientAnalysisStaticAnalysis

SolverSystemOfEqn

SolutionAlgorithm IntegratorAnalysisModel ConstraintHandler DOF_Numberer

FE_ElementDOF_GroupNode Element

GraphNumberer

RCM

Figure 2.2: Class diagram for OpenSees analysis framework (courtesy of McKenna)

2.2 DIRECT MODULE INTEGRATION

As technologies and structural theories advance, finite element analysis software packages need

to be able to accommodate new developments in element formulation, material relations,

analysis strategies, solution strategies, as well as computing environments. For most existing

finite element software packages, modifying or extending the code requires that the developers

have intimate knowledge of the data structures and what procedures affect what portions of the

code. The ability to reuse code from other sources is limited, because data structures vary widely

between programs. Consequently, introducing code from other sources often requires that the

23

code be modified to suit the data structure used in the finite element program. The modification

of one portion of the program may also have a ripple effect that results in dramatic code changes

in other parts of the program.

To support better data encapsulation and to facilitate code reuse, the object-oriented

programming paradigm can be utilized for the finite element program development. A key

feature of object-oriented FEA programs is the interchangeability of components and the ability

to integrate existing libraries and new components into the framework without the need to

change the existing code. The flexibility and extendibility of these programs are based on the

object-oriented support of abstraction, encapsulation, inheritance, and polymorphism. Extending

existing programs by incorporating external modules normally requires one or several subclasses

to be introduced.

In the following, a number of examples of module extension are presented. Several

approaches for incorporating different types of software components are discussed. To illustrate

the principles and ideas without losing generality, we employ OpenSees as the core platform.

Similar techniques can be applied to other object-oriented FEA programs for integrating external

software modules.

2.2.1 Incorporating New Developments

One of the benefits of object-oriented software design is that new developed code can be

incorporated as one or several new classes. Because of the encapsulation and inheritance

features of object-oriented design, the integration process tends to be modular and incurs no

modifications to the existing code. For an object-oriented FEA program, the ease of

incorporating new developments and existing libraries also holds. Since the base classes for a

typical object-oriented FEA program are already defined, new elements, new material types, new

analysis strategies, and new solution strategies can be introduced by creating new subclasses of

the defined classes. This process can be exemplified with the modular integration of a new

element. In this section, we describe the process of modular extension of an object-oriented FEA

program through introducing subclasses, using the integration of an eight-node quadrilateral

element as an example.

24

We illustrate an implementation of an eight-node quadrilateral element. The core of the

element is implemented in Fortran, which remains a popular language for engineers to develop

element routines. The main function of the element routine is to calculate the stiffness matrix of

the isoparametric quadrilateral element for axisymmetric, plan strain, and plain stress conditions.

The interface of the Fortran-based routine is:

SUBROUTINE QUAD8STIFF(Nel, Itype, Nint, Th, E, Pr, Cord, Stiff)

where Nel is the element number in the model; Itype defines whether the element is

axisymmetric, plain strain, or plain stress; Nint defines the Gauss numerical integration order;

Th is the thickness of the element; E is the Young’s modulus and Pr is the Poisson’s ratio;

Cord is the element nodal coordinates; and Stiff is the calculated element stiffness matrix.

To incorporate this element into OpenSees, a new subclass of Element need to be created.

The new class, named QuadEightElement, is implemented in C++, which is the same language

used to implement OpenSees. Since the QuadEightElement class is implemented in C++, two

files are created. The QuadEightElement.h file defines the class interface, and the

QuadEightElement.cpp file provides the implementation. Besides defining the methods

interfaces, the QuadEightElement.h file also defines the private data of the class. In this

case, the private data include the information related to the element such as the element number,

the type of the element, the thickness of the element, Young’s modulus, Poisson’s ratio, and

pointers to the Node and Load objects that associated with the element.

The interface of the QuadEightElement class is similar to the interface of the Element

base class. The getTangentStiff() method is the method that encapsulates the developed

Fortran code and uses the existing code to calculate the element stiffness matrix. Part of the

implementation of the getTangentStiff() method is shown in Figure 2.3. The Fortran

function QUAD8STIFF() is accessed by attaching an underscore at the end of the function

name, which signals the C++ compiler that an external procedure needs to be invoked. Since the

default behavior of function parameters is passing by reference in Fortran and passing by value

in C/C++, the parameters of QUAD8STIFF() need to be references (also called pointers in

C/C++ terminology). This can be achieved by applying the operator & in front of the parameters

to obtain their references.

As illustrated in the example, a new element can be developed and linked rather easily

with an object-oriented FEA program as a subclass. The example also shows that the element

routines can be implemented using most common languages (e.g., Fortran, C, C++, etc.), and can

25

still be integrated with the object-oriented FEA program. Although this example only illustrates

the integration of a new element, other types of new developments can also be introduced to the

object-oriented FEA program as subclasses; for example, new materials, solution strategies, etc.

const Matrix& QuadEightElement::getTangentStiff()
{
 double Stiff[16][16];
 double* Cord = wrapCord();

 QUAD8STIFF_(&Nel, &Itype, &Nint, &Th, &E, &Pr, Cord, Stiff);

 Matrix eleK = new Matrix(Stiff, 16, 16);
 return Matrix;
}

Figure 2.3: Pseudo-code for getTangentStiff method of QuadEightElement class

2.2.2 Linking Software Components

To facilitate and improve a software application in a cost-effective manner, external software

components can be incorporated as building blocks to construct a more sophisticated system.

Software components normally consist of functions with similar interfaces and operations. One

example is BLAS (Basic Linear Algebra Subprograms) (Lawson et al. 1979), which consists of

high quality routines for performing basic vector and matrix operations. Another example is

LAPACK (Anderson et al. 1999), which provides routines for solving systems of simultaneous

linear equations, least-squares solutions of linear systems of equations, eigenvalue problems, and

single-value decomposition problems. These software components, as well as COTS

(commercially off-the-shelf) components, tend to have clear and consistent interfaces, which can

facilitate the integration process. These software components are usually provided in the form of

software libraries or packaged source-code files.

Many popular numerical analysis packages can be integrated with FEA programs to

enhance the analysis capabilities and improve the system performance. These include the linear

algebra packages BLAS and LAPACK the linear solvers SuperLU (Demmel et al. 1999) and

UMFPACK (Davis 2002), the eigensolver ARPACK (Lehoucq et al. 1997), the graph

partitioning and ordering package METIS (Karypis and Kumar 1998b), and other software

components. In the originally developed OpenSees, the packages BLAS, LAPACK, SuperLU,

26

and UMFPACK have already been incorporated (McKenna 1997). In the following, we use the

integration of METIS version 4.0 with OpenSees to illustrate the process of incorporating off-

the-shelf software components.

METIS is a software package for partitioning large irregular graphs, partitioning large

meshes, and computing fill-reducing ordering of sparse matrices (Karypis and Kumar 1998b).

The algorithms in METIS are based on multilevel graph partitioning (Karypis and Kumar 1998a;

Karypis and Kumar 1998c). METIS provides both stand-alone programs (executable files) and

library interfaces (functions). To keep the integration flexible, we choose to use the library

interfaces. We are particularly interested in the usages of two METIS functions:

• METIS_PartGraphVKway(), which is used to partition a graph into k equal-size

parts using the multilevel k-way partitioning algorithm. The objective of the partitioning

is to minimize the total communication volume. This routine can be used for domain

decomposition, which is an important step for parallel finite element analysis.

• METIS_NodeND(), which is a function to compute fill-reducing orderings of sparse

matrices using the multilevel nested dissection algorithm. The nested dissection

paradigm is based on computing a vertex-seperator for the graph corresponding to the

matrix. The nodes in the separator are moved to the end of the matrix, and a similar

process is applied recursively for each one of the other two parts. This routine is very

useful for generating the ordering for sparse linear solver so that the storage of the sparse

matrix can be reduced.

The details of these two functions and their interfaces can be found in METIS manual

(Karypis and Kumar 1998b). Both functions have input parameters xadj and adjncy, which

are two arrays used to represent the adjacency structure of a graph.

2.2.2.1 Graph Representation of Matrices

Graph theory plays a significant role in the study of sparse matrices (George and Liu 1981). A

graph G = (X, E) consists of a finite set of nodes or vertices together with a set of edges, which

are unordered pairs of vertices. The structure of a matrix can be symbolically represented as a

graph, where the row (or column) number of the matrix represents the vertices and the non-zero

27

entries of the matrix corresponds to edges. For example, if a36 is a non-zero entry of the matrix

A, then we have an edge from vertex 3 to vertex 6 in the graph that represents the matrix.

The adjacency structure of a graph can be stored using a compressed storage format

(CSR). In this format, the adjacency structure of a graph with n vertices and m edges is

represented using two arrays xadj and adjncy. The xadj array is of size n+1, and the

adjncy is of size 2m. The size of adjncy is 2m instead of m is because for each edge between

vertices x and y, we actually store both (x, y) and (y, x).

The CSR storage of a graph is as follows. The adjacency list of vertex i is stored in

array adjcny starting at index xadj[i] and ending at (but not including) xadj[i+1]. That

is, for each vertex i, its adjacency list is stored in consecutive locations in the array adjncy,

and the array xadj is used to indicate where the adjacent vertices of i begins and ends. Figure

2.4(a) shows an example of a sparse matrix, with the number and * denoting the nonzero entries.

Figure 2.4(b) is the graph representation of the matrix, and Figure 2.4(c) illustrates the CSR

storage of the adjacency structure of the graph.

(b) Graph Representation

(c) CSR Format

0

8

7

6

5

4

3
2

1*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

xadj 0 2 5 7 10 14 17 19 22 24

adjncy 1 3 0 2 4 1 5 0 4 6 1 3 5 7 2 4 8 3 7 4 6 8 5 7

210

7

543

6 8

(a) A Sample Matrix

Figure 2.4: Example of CSR storage for matrix structure

28

2.2.2.2 L ink ing METIS Routines

The linkage of the routines to OpenSees depends on the usage of individual routines in the

software package. For the integration of METIS_PartGraphVKway(), which is the routine

to partition a graph into k equal-size parts, a new class is introduced to OpenSees. The new class

is named MetisPartitioner, whose interface is shown in Figure 2.5. Besides the constructor and

destructor, the class interface defines three methods: setOptions() is used to set certain

options for the METIS partitioning routine; setDefaultOptions() is used to set the default

option values; and partition() is the method that uses the METIS routine to partition the

input graph. The pseudo code for the implementation of partition() method is presented in

Figure 2.6, which shows the usage of the METIS routine.

The METIS_NodeND() method is incorporated into OpenSees using a different

approach. Since METIS_NodeND() is used to compute the fill-reducing orderings of sparse

matrices, it is more appropriate to combine this method with sparse linear solvers than

encapsulate it in a new class. For most linear sparse solvers, e.g., SymSparse (Mackay et al.

1991), the nodes of the finite element model are reordered first to reduce the bandwidth or the

fill-in of the matrix factors. This procedure is called symbolic factorization, in which graph

ordering routines play an important role. One of the ordering routines integrated with OpenSees

is called multind() and the METIS_NodeND() method is incorporated in this routine, as

shown in Figure 2.7. The inputs to the multind() method are the xadj and adjncy pair,

and the outputs are perm and invp arrays, which store the computed ordering of the input

graph.

class MetisPartitioner : public Partitioner
{
 public:
 Metis(int numParts =1);
 ~Metis();

 bool setOptions(int wgtflag, int numflag, int* options);
 bool setDefaultOptions(void);

 int partition(Graph &theGraph, int numParts);
}

Figure 2.5: Class interface for the MetisPartitioner class

29

int MetisPartitioner::partition(Graph &theGraph, int numParts)
{
 // set up the data structures that METIS need
 int numVertex = theGraph.getNumVertex();
 int numEdge = theGraph.getNumEdge();
 int *xadj = new int [numVertex+2];
 int *adjncy = new int [2*numEdge];
 int numflag = 0; // use C-stype numbering for arrays
 int wgtflag = 0; // no weights on the graph

 // build (xadj, adjncy) from the input Graph
 buildAdj(theGraph, xadj, adjncy);

 // we now access the METIS routine
 METIS_PartGraphVKway(&numVertex, xadj, adjncy, vwgt, vsize,
 &wgtflag, &numflag, &numParts, options, &volume, part);

 // set the vertex corresponding to the partitioned scheme
 for (int vert =0; vert<numVertex; vert++) {
 vertexPtr = theGraph.getVertexPtr(vert+START_VERTEX_NUM);
 vertexPtr->setColor(part[vert]+1);
 }
}

Figure 2.6: Pseudo-code for partition method of MetisPartitioner class

void multind(int *neq, int* xadj, int* adjncy, int* perm, int* invp)
{
 int numflag = 0;
 int options[10];
 options[0] = 0;

 METIS_NodeND(neq, xadj, adjncy, &numflag, options, perm, invp);
}

Figure 2.7: Pseudo-code for incorporating METIS_NodeND method

When the software components have clearly defined interfaces, which are the case for

most off-the-shelf software packages and components, these components can easily be integrated

with an object-oriented FEA program as illustrated in this example. The key step is to identify

the inputs and outputs to the software components. The routines in the components can then be

incorporated by defining the option variables and converting the data format properly according

to the requirements of the routines.

30

2.2.3 Integration of Legacy Applications

The difference between a legacy application and an off-the-shelf component is that a legacy

application is usually not originally designed for adoption, that is, not for combination with other

libraries or routines. Thereby, the interfaces are not necessarily clearly defined. To integrate a

legacy application into an object-oriented FEA program, the most important step is to identify

the main procedures of the legacy application. The identified procedures can then be packaged

by adding clearly defined interfaces. In this section, we will use the integration of a sparse linear

direct solver (SymSparse) with OpenSees to illustrate the process of incorporating legacy

applications to an object-oriented FEA program.

2.2.3.1 Procedures of Direct Solver SymSparse

A typical finite element analysis often requires the solution of a linear system of equations.

There are many numerical strategies for solving the system of equations, which fall into two

general categories, iterative and direct. A typical iterative method involves the initial selection

of an approximated solution, and the determination of a sequence of trial solutions that approach

to the solution. Direct solvers are normally categorized by the data structure of the global matrix

and the numerical algorithm used to perform the factorization. A variable bandwidth solver (also

called profile solver) is perhaps the most commonly used direct solution method in structural

finite element analysis programs (Bathe 1995; Hughes 1987). There are also a number of sparse

direct solvers, including, SuperLU (Demmel et al. 1999), UMFPACK (Davis 2002), and

SymSparse (Mackay et al. 1991), etc.

This work focuses on integrating SymSparse solver into OpenSees. SymSparse is a

generalized sparse/profile linear direct solver for symmetric positive definite systems.

SymSparse was originally implemented in C language and integrated with DLEARN (Hughes

1987), a linear static and dynamic finite element analysis program. SymSparse can be used as a

profile solver as well as a sparse solution solver, depending on the physical model and the

ordering scheme used. SymSparse can be used in a finite element program to solve a linear

system of equations fKu = , where u and f are the displacement and loading vectors,

respectively. K is the global stiffness matrix which is often symmetric, positive definite and

31

sparse in finite element analysis. The solution method is based on a numerical algorithm known

as Cholesky’s method, which is a symmetric variant of Gaussian elimination tailored to

symmetric positive definite matrices. During the solution process, the symmetric matrix A is

first factored into its matrix product, TLDLK = , where D is a diagonal matrix and L is the lower

triangular matrix factor. The displacement vector u is then computed by a forward solve,

fDLz T 1)(−= , followed by a backward substitution, zLu 1−= .

One important fact about the Cholesky factorization of a sparse matrix is that the matrix

usually suffers fill-in. That is, the matrix factor L has nonzeros in positions which are zero in the

lower triangular part of the matrix K. Therefore, in order to save storage requirement, the data

structure needs to be set up for the matrix factor L before the numerical calculation; and the same

data structure can be used to store the lower triangular part of matrix K. The SymSparse solver

includes a symbolic factorization procedure that determines and sets up the data structure for the

sparse matrix factor L directly. Dynamic memory allocation is used extensively in SymSparse to

set up the data structure. This one-step approach to establish the data structure for the matrix

factor is generally more efficient than the two-step approach adopted in (Liu 1991), which uses

symbolic factorization to determine the structure of the Cholesky factor first and then set up the

data structure based on the Cholesky structure.

Since SymSparse was originally developed to use with DLEARN (Hughes 1987), a

procedural finite element analysis program, we first need to identify the major procedures in

SymSparse in order to integrate it with an object-oriented FEA program. There are three main

tasks identified for the SymSparse solver, and these three main procedures are packaged with

clearly defined interfaces. For the interfaces shown in the following functions, the matrix factor

L and its data structure Ls are defined only for illustration purposes. The details regarding the

data structure are presented in Mackay et al. (Mackay et al. 1991).

• symbolicFact(neq, xadj, adjncy, invp, Ls)

Given the number of equations (neq) and the adjacency structure (xadj, adjncy) of a

matrix, this symbolic factorization routine determines the matrix ordering invp and a

data structure for the matrix factor, indicated as Ls. The input graph is first ordered by a

graph fill-reducing ordering routine. Currently, the ordering routines included are RCM

(George 1971), Minimum Degree (Tinney and Walker 1967), Generalized Nested

Dissection (Lipton et al. 1979), and Multilevel Nested Dissection (Karypis and Kumar

1998a). After the ordering, an ordered elimination tree can be established, and then a

32

topological postordering strategy is used to re-order the nodes so that the nodes in any

subtree of the elimination tree are numbered consecutively (Liu 1986). The last step of

this function is to set up the appropriate data structure Ls for the matrix factor.

• assemble(ES, LM, invp, Ls, L)

Once the data structure for the matrix factor has been set up, the assemble() routine

can be invoked to assemble the element stiffness matrices. The same data structure for

the matrix factor can be used to store the assembled matrix. In the assembly process,

each entry of the element stiffness matrix is summed into the appropriate location directly

into the data structure of the matrix factor. The process is repeated for each element and

until all elements in the domain are assembled. The inputs to the function are element

stiffness matrix (ES), the element-node incidence array (LM), the ordering (invp), and

the data structure of matrix factor (Ls). The output of the function is the assembled

matrix (L).

• pfsfct(L) and pfsslv(L, force, disp)

These two functions are used to perform the numerical calculation. The function

pfsfct() performs the numerical factorization of the input matrix L. The same data

structure is used to save both the matrix and its factor. Given the matrix factor L and the

force vector force, the function pfssslv() performs the forward and backward

substitutions to compute the displacement solution (disp).

2.2.3.2 Integration of Direct Solver SymSparse

Since different linear solvers are developed with different data structures, the base classes for

integrating solvers into an object-oriented FEA program need to be extendible. There are two

classes defined in OpenSees to store and solve the system of equations used in the analysis. The

SystemOfEqn class is responsible for storing the systems of equations, and the Solver class is

responsible for performing the numerical operations. To seamlessly integrate the SymSparse

solver into OpenSees, two new subclasses are introduced: SymSparseLinSOE and

SymSparseLinSolver.

The SymSparseLinSOE class, whose interface is shown in Figure 2.8, provides the

following methods:

33

class SymSparseLinSOE : public SystemOfEqn
{
 public:
 LinearSOE(LinearSOESolver &theSolver, int classTag);
 virtual ~LinearSOE();

 virtual int solve(void);

 // pure virtual functions
 virtual int setSize(Graph &theGraph);

 virtual int addA(const Matrix &ES, const ID &LM, double fact);
 virtual int addB(const Vector &f, const ID &LM, double fact);
 virtual int setB(const Vector &, double fact)=0;

 virtual void zeroA(void);
 virtual void zeroB(void);

 virtual int getNumEqn(void) const;
 virtual const Vector &getX(void);
 virtual const Vector &getB(void);
 virtual double getDeterminant(void);
 virtual double normRHS(void);

 virtual void setX(int loc, double value);
 virtual void setX(const Vector &X);
}

Figure 2.8: Interface for SymSparseLinSOE class

• setSize(): This method is used essentially to perform the symbolic factorization,

which is a process to determine the data structure of matrix factor A. The function

symbolicFact()from SymSparse is incorporated in this method to determine the data

structure of matrix factor based on the input Graph object.

• addA() and addB() are provided to assemble the global stiffness matrix A and force

vector b. The addA() invokes the function assemble() from SymSparse to

assemble the element stiffness matrices. The input parameters to addA() are element

stiffness matrix and the element-node incidence array.

• solve() is provided to perform the numerical solution of the systems of equations.

The default behavior of this method is to invoke the solve() method on the associated

SymSparseLinSolver object.

• Several methods are provided to return the information of the system and the computed

results, such as the number of equations, the right-hand-side vector b, and the solution

vector x.

34

The SymSparseLinSolver object is responsible for performing numerical operations on

the systems of equations. The SymSparseLinSolver class defines one method solve(), which

invokes the pfsfct() and pfsslv() from SymSparse to factor the global stiffness matrix

and to perform the forward and backward substitutions. The matrix A and vector b used in the

solver are accessed from the associated SymSparseLinSOE object and the solution x is stored

back to the SymSparseLinSOE object. The control flow of the integrated linear solver is

depicted in Figure 2.9, where the numbers indicate the chronological sequences of function

invocations.

Analysis

3

SymSparseLinSOE SymSparseLinSolver

 setSize(Graph &)

 solve()

 addA()

 solve()

1

symbolicFact()

Ordering schemes:
1. Natural Ordering
2. Reverse Cuthill-Mckee
3. General Nested Dissection
4. Minimum Degree
5. Multilevel Nested Dissection

pfsfct()

 Numerical factorization

2

4

5

LinearSOE LinearSolver

pfsslv()

 Forward and backward
 substitutions

6

assemble()
 Assembly of element
 stiffness matrices

8

7

Figure 2.9: The control flow of integrating the SymSparse linear solver

2.3 MOUDLE INTEGRATION WITH REVERSE COMMUNICATION INTERFACE

Another mechanism for software component integration is reverse communication, which is an

interface that allows the users to freely choose any convenient data structure for part of the

operations. The reverse communication technique has been implemented within the eigensolver

package ARPACK (Lehoucq et al. 1997) to allow users to provide the matrix computation

through subroutine calls or code segments. An object-oriented FEA program can also take

advantage of such mechanism to integrate software components. This section shows the

35

example of extending the OpenSees core for eigenvalue analysis, and the examples of

incorporating eigensolvers through reverse communication interface.

2.3.1 Reverse Communication Interface

For certain special function libraries and linear algebra libraries for dense matrices (e.g., BLAS

(Lawson et al. 1979) and LAPACK (Anderson et al. 1999)), the data structures are simple and

natural for the applications. However, this is hardly the case for the modern generation of

sophisticated numerical applications, where the problem is large and complex, and a significant

amount of design and coding are related to data structures. For instance, there are a large

number of different data structures developed for sparse matrices, which makes it difficult to

develop a numerical application that accommodates all possible cases. One obvious solution

would be to limit the number of possible data storage schemes and to transform the data

structures to a few possible supported choices, using transformation routines from libraries such

as SPARSKIT (Saad 1990). However, limiting the number of possible data storage schemes is

not convenient for the user, and may incur performance penalties because the data transformation

can be expensive to perform.

Another approach to handle the diverse application data structures is by using a reverse

communication interface as implemented in ARPACK (Lehoucq et al. 1997). In this approach,

routines that need to use the application data structures set a flag and return to the users. For the

applications involved with sparse matrices, reverse communication means that a data storage

scheme is not enforced on the matrices. The matrix itself is not needed in the main drive of the

application, but rather the matrix operations are required to be provided by the users.

The reverse communication mechanism can be applied to many types of applications; one

of such is the eigensolver. A typical generalized eigensolver requires vector-only operations and

matrix-dependent operations, such as matrix-vector multiplication xM ⋅ and the solution of

linear equations bxA =⋅ . Since the vectors are usually stored as contiguous arrays of bytes, the

vector-only operations are implemented within the eigensolver. The matrix-dependent

operations, on the other hand, are handled in a user-defined way. The main loop of the

eigensolver can set up several flags and ask the user to provide appropriate matrix-dependent

operations whenever needed. The reverse communication allows the user to choose any

36

appropriate data storage structure for matrices, as well as the implementations of the key matrix-

dependent operations.

Reverse communication does impose a slight overhead to the program because of the

increased number of function calls required. However, as can be expected for large problems,

this overhead is likely to be small compared to the cost of the numerical operations. Another

concern is that reverse communication shifts the responsibility of performing the matrix

dependent operations to the users. As a result, it is difficult for the iterative routines to check

whether a failure resides in the method itself or in the user’s implementation of the matrix

operations. Therefore, the error detection and error handling are the key design factors for a

reverse communication interface. A properly designed reverse communication interface needs to

provide a means to trace the progress of the computation as it proceeds, and to report to the user

the error types by different error flags.

2.3.2 Incorporating Eigensolvers with OpenSees

Linear structural stability and dynamic analysis problems involve the solution of linear

eigenvalue problems. In this work, we focus on the solution of the generalized eigenvalue

problem MxAx λ= . The generalized eigenvalue problem is often encountered in structural

dynamic analysis, where the stiffness matrix A is symmetric positive definite and the mass

matrix M is symmetric positive definite or semi-definite. The eigenpair λ and x provide

approximations to the natural frequencies and vibration modes of the structure. Details of the

eigenvalue problems can be found in standard books on matrix computation (for example, see

Golub and Van-Loan 1996).

The original OpenSees core can be extended to incorporate eigen analysis. The class

diagram for the extended framework is shown in Figure 2.10. The introduced classes are

EigenAnalysis, EigenAlgorithm, EigenIntegrator, EigenSOE and EigenSolver.

37

EigenAnalysis EigenSOE EigenSolver

BandArpackSOE SparseArpackSOE

BandArpackSolver SparseArpackSolver

BandLinSolver SymSparseLinSolver
EigenIntegrator

OpenSees
Domain

ARPACK ARPACK

EigenAlgorithmOther
OpenSees

classes

GeneralizedAlgoStandardAlgo

LanczosSOE

LanczosSolver

SymSparseLinSolver

Lanczos

Original OpenSees Class

Existing Eigensolver Component

Extended New Class

Figure 2.10: Class diagram for eigenvalue analysis in OpenSees

Two eigensolvers, ARPACK and Lanczos eigensolver, are integrated with OpenSees to

facilitate structural stability and dynamic analyses. Three new subclasses of EigenSOE and three

new subclasses of EigenSolver are implemented in OpenSees. The BandArpackSOE and

BandArpackSolver classes are developed to integrate ARPACK and a band solver, the

SparseArpackSOE and SparseArpackSolver classes are introduced to integrate ARPACK by

using the SymSparse solver as linear solver, and the LanczosSOE and LanczosSolver are

developed to integrate the Lanczos eigensolver by using the SymSparse solver. The

relationships of these classes with other OpenSees classes are depicted in Figure 2.10.

ARPACK (Lehoucq et al. 1997) stands for Arnoldi PACKage, which is a collection of

Fortran subroutines designed to solve large-scale eigenvalue problems. ARPACK software is

capable of solving non-Hermitian standard and generalized eigenvalue problems. The software

is designed to compute a few eigenvalues with user-specified features such as those of largest

real part or smallest magnitude. The corresponding eigenvectors can also be obtained upon the

users’ requests. ARPACK is based upon an algorithmic variant of the Arnoldi process called the

Implicitly Restarted Arnoldi Method (IRAM). The shift and invert spectral transformation is

used in ARPACK to enhance convergence to a desire portion of the eigenvalue spectrum. If (x,

λ) is a generalized eigenpair and λσ ≠ then

38

νσ xMxMA =− −1)(where
σλ

ν
−

= 1

This transformation is effective for finding eigenvalues near σ.

One of the salient features of ARPACK is the reverse communication, which allows the

user to provide matrix-dependent operations. In order to use ARPACK to solve generalized

eigenvalue problems, two operations need to be provided by the user: one is matrix-vector

multiplication Mxz ← , and the other is a linear equation solver yMAx 1)(−−← σ .

• If the operation of matrix-vector multiplication is performed in the global level, the

operation requires the assembly of element mass matrices, which is an expensive

operation in terms of both processing time and extra storage space. To improve

performance and minimize storage requirement, the operation Mxz ← can be performed

using an element-by-element strategy. The mass matrix stored in each element is

retrieved to multiply with part of the vector x. The generated result vector can then be

assembled to obtain z. Compared with global matrix (two-dimensional) assembly, this

global vector (one-dimensional) assembly is much cheaper.

• For the solution of linear equations yMAx 1)(−−← σ , an efficient linear solver can be

used. Since the matrix)(MA σ− generated from dynamic analyses is normally sparse,

symmetric and positive definite, the SymSparse solver can be integrated to provide the

linear equation solving operation.

We will use the SparseArpackSolver class to illustrate the usage of reverse

communication. Figure 2.11 shows part of the pseudo-code for the implementation of the

solve() method in the SparseArpackSolver class. The pfsfct() and pfsslv() functions

are provided by the SymSparse solver to solve linear equations, and the myMv() is a subroutine

performing matrix-vector multiplication. The dsaupd() and dseupd() are ARPACK

subroutines to compute approximations to a few eigenpairs. For the main loop shown in Figure

2.11, different matrix-dependent operation is taken with different flag (ido) value, which is a

control indicator generated by ARPARCK subroutine dsaupd(). By setting the value of this

flag, ARPACK tells the client code the required operation or the status of the analysis. After the

main loop returns and no fatal errors have occurred, the dseupd() is invoked to obtain the

eigenvalues and the corresponding eigenvectors if desired. The dseupd() method performs

39

eigenvector purification, which is a process to recover eigenvectors when the M matrix is ill-

conditioned.

Besides ARPACK routines, a Lanczos eigensolver is also integrated with OpenSees. The

implementation of the Lanczos eigensolver mainly follows the spectral transformation Lanczos

method developed by Ericsson and Ruhe (1980), the Lanczos vector reorthogonalization scheme

proposed by Grimes et al. (Grimes et al. 1994), and some refinements developed by Mackay et

al. (Mackay 1992). The linking with the Lanczos eigensolver takes the same strategy as

incorporating ARPACK. The solve() method of the LanczosSolver class uses a similar

reverse communication loop as the one shown in Figure 2.11.

// call a routine to factor the matrix (A-sigma*M).
factor = pfsfct(n, diag, penv, nblks, xblk, begblk, first, rowblks);

while (true) {
 // repeatedly call the routine DSAUPD from ARPACK and take
 // corresponding actions indicated by flag ido.
 dsaupd_(&ido, &bmat, &n, which, &nev, &tol, resid, &ncv, v, &ldv,
 iparam, ipntr, workd, workl, &lworkl, &info);

 if (ido == -1) {
 // perform y <-- M*x
 // perform y <-- inv[A-sigma*M]*M*x.
 // pfsslv() is a routine for solving linear equations.
 // x = workd[ipntr[0]-1]
 // y = workd[ipntr[1]-1]
 myMv(n, &workd[ipntr[0]-1], &workd[ipntr[1]-1]);
 pfsslv(n, diag, penv, nblks, xblk, &workd[ipntr[1]-1], begblk);
 continue;
 } else if (ido == 1) {
 // perform y <-- inv[A-sigma*M]*M*x
 // M*x = workd[ipntr[2]-1]
 // y = workd[ipntr[1]-1]
 myCopy(n, &workd[ipntr[2]-1], &workd[ipntr[1]-1]);
 pfsslv(n, diag, penv, nblks, xblk, &workd[ipntr[1]-1], begblk);
 continue;
 } else if (ido == 2) {
 // perform y <-- M*x
 // x = workd[ipntr[0]-1]
 // y = workd[ipntr[1]-1]
 myMv(n, &workd[ipntr[0]-1], &workd[ipntr[1]-1]);
 continue;
 }
 break;
}

// if no fatal errors occur, use DSEUPD for post processing
// requested eigenvectors may be computed and extracted.
dseupd_(&rvec, &howmy, select, d, v, &ldv, &sigma, &bmat, &n,
 which, &nev, &tol, resid, &ncv, v, &ldv, iparam,
 ipntr, workd, workl, &lworkl, &info);

Figure 2.11: Linking ARPACK through reverse communication interface

40

2.4 QUALITY AND PERFORMANCE MEASUREMENTS

We evaluated the quality and performance of the software components presented in this chapter.

We conducted analyses on a number of structural models. All the experiments were performed

on a Sun Ultra60 workstation with 256Mbytes of memory and two 450MHz Sun UltraSPARC

processors. All the time measurements are wall clock time and are expressed in seconds.

2.4.1 Comparison of Matrix Ordering Schemes

Various ordering schemes, including Reverse Cuthill-McKee (RCM), minimum degree ordering

(MinD), and generalized nested dissection (GenND), have been implemented in the SymSparse

linear solver and integrated with OpenSees through the SymSparse. After METIS has been

integrated with SymSparse solver, the METIS ordering routine, which uses a multilevel nested

dissection (MultiND) algorithm, is also introduced to OpenSees. To evaluate the effectiveness

of different ordering schemes, we can compare the size of the matrix factor after the ordering

routine is applied. A good ordering is one that results in the smaller number of nonzero entries

in the matrix factor, and fewer nonzero entries usually require fewer numerical operations.

We have used ten finite element models for the experiments. These example models can

be categorized into four groups: (1) the brick models (brick10x10x10, brick6x8x50, and

brick10x10x20) are three-dimensional beams modeled with eight-node standard brick elements;

(2) the Humboldt models (Humboldt1, and Humboldt2) are two-dimensional finite element

models for the Humboldt Bay middle channel bridge, which is modeled with quadrilateral

elements for the foundation soils and beam-column elements for the bridge; (3) the square

models (square40, and square100) are two-dimensional square plates modeled by four-node

quadrilateral elements; and (4) the plate models (plate100x20, plate200x20, and plate50x50) are

two-dimensional plates modeled by four-node elements MITC4 (Brezzi et al. 1989). Table 2.1

summarizes the numbers of nonzero entries in the matrix factor by using different ordering

schemes. Figure 2.12 graphically shows the comparisons of the results by using different

ordering schemes.

41

Table 2.1: Number of nonzero entries in the matrix for different ordering schemes

 Model Neq MultiND MinD GenND RCM

1 brick10x10x10 3630 805245 966318 1006290 1642245
2 brick6x8x50 9450 2170458 2127843 2774373 2060523

3 brick10x10x20 7260 2084565 2428959 2744325 3442044

4 humboldt1 5206 187126 177895 187126 408851

5 humboldt2 7294 302612 291268 428270 897269

6 40square 3354 151271 185895 168571 355959

7 100square 20394 1294407 1928819 1519895 5423959

8 plate100x20 12516 1552542 1311337 1816373 1746871

9 plate200x20 25116 3262326 2689381 3805151 28871177

10 plate 50x50 15096 2218923 2167669 2586553 4522121

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10

Test Models

N
o

n
ze

ro
s

(M
in

D
 a

s
1)

MultiND MinD GenND RCM

Figure 2.12: Quality comparison of different matrix ordering schemes

The heuristic minimum degree ordering is the most widely used fill-reducing algorithm

that is applied to the factorization of sparse matrices. The minimum degree ordering has been

found to produce very good orderings (George and Liu 1989). As shown in Table 2.1 and Figure

2.12, the quality of the orderings produced by multilevel nested dissection algorithm is

comparable to that of the minimum degree ordering. Another observation from the experiments

42

is that the multilevel nested dissection algorithm generates better orderings than the generalized

nested dissection ordering. Since the reverse Cuthill-McKee ordering is used to generate

orderings for the profile storage of matrices, the number of nonzero entries is often substantially

larger than other ordering algorithms.

2.4.2 Performance Comparison of Linear Solvers

The same finite element models used for testing ordering schemes were also used for the

performance comparison of different linear solvers. We tested the following linear solvers:

SymSparse with multilevel nested dissection ordering (MultiND), SymSparse with minimum

degree ordering (MinD), SymSparse with generalized nested dissection ordering (GenND),

profile solver (Profile), SuperLU solver (SuperLU), and UMFPACK solver (UmfPack). The

solution time for various linear solvers is summarized in Table 2.2 and depicted in Figure 2.13.

The solution time is the wall clock time for performing symbolic factorization, numerical

factorization, and forward and backward substitutions. The time for assembling element

stiffness matrices is not included. The value NA in Table 2.2 indicates that the solution time is

substantially larger than when using other solvers. The long solution time is primarily due to the

large number of page faults. In a paged virtual memory operating system (e.g., Windows, Unix,

etc.), a page fault usually occurs when the physical memory is consumed. In this case, an access

to a page (block) of memory cannot be mapped to physical memory, thus the operating system

has to fetch the page into memory from secondary storage (usually disk). Since accessing disk is

much slower than accessing physical memory, page faults can substantially degrade the system

performance.

The experimental results clearly show that the performance of a linear solver is directly

related to the matrix storage requirement. The more nonzero entries in the matrix factor for a

linear solver, the more numerical operations are needed for factorization. In this sense, the

ordering algorithms and data structures are very important for sparse matrix computation and the

solution of linear systems, as they can minimize the matrix storage requirement and facilitate the

data element access.

43

Table 2.2: Solution time (in seconds) for different linear solvers

 Matrix MultiND MinD GenND Profile SuperLU UmfPack

1 brick10x10x10 3.82 6.21 5.67 13.9 32.42 52.17

2 brick6x8x50 11.38 11.15 18.53 6.07 20.02 26.79

3 brick10x10x20 13.62 21.17 23.61 25.82 47.15 73.2

4 Humboldt1 0.28 0.26 0.36 1.02 2.28 1.42

5 Humboldt2 0.60 0.78 2.61 5.12 6.51 11.34

6 square40 0.19 0.28 0.22 0.42 0.63 0.91

7 square100 2.51 5.08 3.69 15.82 23.70 34.64

8 plate100x20 4.53 3.49 5.48 56.02 266.28 NA

9 plate200x20 10.21 6.33 12.24 95.81 NA NA

10 plate 50x50 8.28 8.33 10.63 16.87 72.74 NA

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10

Tested Models

P
er

fo
rm

an
ce

 (
P

ro
fi

le
 a

s
1)

SymSparse::MultiND SymSparse::MinD SymSparse::GenND
Profile SuperLU UmfPack

Figure 2.13: Performance comparison for different linear solvers

Since finite element programs usually deal with symmetric sparse matrices, using general

linear solvers are usually not appropriate. The general linear solvers, such as SuperLU and

UMFPACK, store both the lower and upper factors. For a symmetric matrix, only the lower or

upper factors are needed. Our experimental results clearly showed that specific solvers, such as

the SymSparse and profile solver, have better performance than general linear solvers. In terms

44

of choosing ordering schemes, the experimental results showed that both the multilevel nested

dissection and the minimum degree ordering are generally better than the RCM and the

generalized nested dissection orderings.

The SysmSparse solver outperforms other solvers currently implemented and linked with

OpenSees, and the solution time saved by using the SymSparse solver is quite dramatic. The

experimental results demonstrated that the system performance could be greatly improved by

incorporating the most appropriate software components. Keeping the finite element program

core flexible and extendible is very important because it facilitates the integration of software

modules.

2.4.3 Comparison of Eigensolvers

We have tested the accuracy of the eigensolvers by performing dynamic analyses. The example

finite element model is a two-dimensional 18-story one-bay frame structure. All the beams and

columns are modeled as ElasticBeamColumn elements and the hinging is modeled with zero-

length elasto-plastic rotational element. The first ten smallest eigenvalues of the model are

calculated by using both ARPACK and Lanczos eigensolvers. MATLAB is also used to

calculate the eigenvalues. To verify the precision of the eigenvalues, the norms of MxKx λ− are

calculated. Table 2.3 summarizes the calculated eigenvalues and their precisions. As

demonstrated from the experimental results, both ARPACK and Lanczos solvers are able to

produce results with very good precision.

To compare the performance of the ARPACK solver with the Lanczos solver, we have

conducted dynamic analyses on another finite element model. The example model is a two-

dimensional finite element model for the Humboldt Bay middle channel bridge, which is

modeled with quadrilateral elements for the foundation soils and beam-column elements for the

bridge. A detailed description of this bridge model will be presented in Section 5.5.2 of Chapter

5. We used the SymSparse linear solver for both the eigensolvers, and the user-specified matrix-

vector multiplication Mxz ← is handled in the element level. Table 2.4 shows the solution time

of using both eigensolvers by specifying different number of eigenpairs to be calculated. The

experiment results in Table 2.4 demonstrate that the performance of the Lanczos eigensolver is

better than the version of ARPACK implemented.

45

Table 2.3: Eigenvalues and their precision for different eigensolvers

MATLAB ARPACK LANCZOS
λ n(Kx-λMx) λ n(Kx-λMx) λ n(Kx-λMx)

1 3.036 7.89E-07 3.036 9.26E-08 3.036 9.32E-08

2 18.632 3.44E-07 18.632 1.09E-07 18.632 9.46E-08

3 49.278 4.66E-07 49.278 1.43E-07 49.278 1.04E-07

4 99.838 6.37E-07 99.838 1.19E-07 99.838 9.28E-08

5 176.606 2.33E-06 176.606 1.03E-07 176.606 8.63E-08

6 287.300 6.83E-07 287.300 1.49E-07 287.300 1.04E-07

7 441.317 6.58E-07 441.317 1.24E-07 441.317 1.40E-07

8 649.752 2.31E-06 649.752 1.30E-07 649.752 1.61E-07

9 925.217 3.00E-06 925.217 1.42E-07 925.217 1.51E-07

10 1281.542 7.38E-07 1281.542 2.41E-07 1281.542 8.63E-08

Table 2.4: Performance comparison between Lanczos solver and ARPACK solver

Number of required
Eigenpairs EigenSolver Number of used

Lanczos vectors Time (secs)

ARPACK 60 25.9
40

Lanczos 100 13.18

ARPACK 150 80.4
100

Lanczos 250 40.72

ARPACK 225 151.25
150

Lanczos 375 75.33

2.5 SUMMARY

This chapter reviewed the object-oriented program modeling and the fundamental features of

object-oriented FEA programs. The main class abstractions adopted in a typical object-oriented

FEA program are according to the basic steps involved in a finite element analysis. OpenSees

(McKenna 2002) is used as an example to present some important issues in the design and

implementation of object-oriented FEA programs. For some important base classes, the class

interfaces were presented. It has been pointed out that the flexibility and extendibility were the

main design principles and major benefits of object-oriented FEA programs. The flexibility and

extendibility of object-oriented FEA programs are partly due to the object-oriented support of

abstraction, encapsulation, inheritance, and polymorphism. A sound object-oriented design of a

46

FEA program facilitates the integration of external modules, making the integration process

modular and component-based.

The flexibility of extending object-oriented FEA programs to incorporate new

developments and existing modules has been illustrated with several examples. While the

technique described can be applied to any object-oriented FEA software program, the discussion

and implementation were focused on the OpenSees platform (McKenna 2002). We used

OpenSees as a testing platform to incorporate a new element (eight-node quadrilateral element),

a popular graph partitioning and ordering package (METIS (Karypis and Kumar 1998b)), a

sparse linear direct solver (SymSparse (Mackay et al. 1991)), and two eigensolvers (ARPACK

(Lehoucq et al. 1997) and Lanczos eigensolver). Because the characteristics of these software

components are different, they need to be incorporated by means of different approaches. The

software extending process normally requires introducing one or several subclasses of the

existing base classes. In the case of integrating well-defined components, black-box approach

can be applied. For some legacy applications, tight integration may be unavoidable because the

interfaces of these legacy applications are not well defined. Reverse communication, which is a

flexible mechanism to allow users to choose the most appropriate data structures for the

problems, can also be applied to object-oriented FEA programs to facilitate the integration of

external components. Although there are a number of approaches to extend the existing object-

oriented FEA programs, one common feature is that for the changes to the existing code tend to

be localized. The localized code change is very important as it substantially reduces the efforts

of integrating components and minimizes the potentials of bugs being introduced.

After the software components are seamlessly integrated with an object-oriented FEA

program, the capability and performance of the program can be greatly improved. As shown

from the experimental results presented in this chapter, the incorporation of eigensolvers has

provided dynamic analyses capabilities to the OpenSees core. The usage of the SymSparse

solver can substantially reduce the solution time for solving linear system of equations, which in

turn improves the solution of eigenvalue problems and nonlinear structural analyses. Well-

defined interfaces and extendable modules are important for the design of object-oriented FEA

programs, since these features can facilitate the integration of external components. The

incorporating of different types of components allows the user to pick and choose the most

appropriate components to solve a finite element problem.

47

3 Open Collaborative Software Framework

This chapter describes an Internet-enabled open software framework that would facilitate the

utilization and the collaborative development of structural analysis programs by taking

advantage of the Internet, distributed computing, database, and other advanced computing

technologies (Peng and Law 2000; Peng and Law 2002; Peng et al. 2000). A collaborative

system is one where multiple users or agents engage in a shared activity, usually from remote

locations. By utilizing the Internet as a communication avenue, the framework makes the

structural analysis programs more easily accessible to the end users, and also facilitates the

integration of new developments. As illustrated in the previous chapter, the ability to easily

incorporate new solution algorithms and strategies, especially new sparse solvers and

eigensolvers, greatly improves the capabilities and performances of structural analysis programs,

making the software platform more efficient for large-scale engineering simulations. In this

open collaborative framework, we focus on accessing a software platform and testing and

incorporating new developments from a remote site. The framework also adopts a commercial

off-the-shelf (COTS) database system, which can address the data management problems

encountered by the prevailing file-system-based engineering analysis software applications. The

Internet-enabled collaborative framework can potentially provide greater flexibility and

extendibility than traditional structural analysis software packages, which are typically packaged

individually.

The objective of this chapter is to provide an overview of the framework, its modular

design, and the interaction between the modules. The user interaction interfaces are then

presented with example usage. Details of core component modules will be described in

subsequent chapters. This chapter is organized as follows:

• Section 3.1 gives an overview of the collaborative framework. The architecture and the

mechanics of the collaborative framework are described in this section.

48

• Section 3.2 introduces the modular design of the collaborative framework. The

collaborative framework consists of six distinct component modules. The functionality of

the component modules and the interaction among them are briefly discussed.

• Section 3.3 describes the user interfaces to the collaborative software framework. The

details on two types of user interfaces, namely a web-based interface and a MATLAB-

based interface, are presented.

• Section 3.4 presents a simple but typical structural model that will be used as an

illustrative example to facilitate the discussion. The sample web-based interface and

MATLAB-based interface for analyzing the model are presented.

3.1 OVERVIEW OF THE COLLABORATIVE FRAMEWORK

The collaborative software framework is designed to provide researchers and engineers with easy

access to an analysis platform and to incorporate new element technologies, new algorithms, and

solution strategies for nonlinear dynamic analyses. Users and engineers can have direct access to

the analysis core and the analysis results by using a web browser or other application programs,

such as MATLAB. Researchers and developers can utilize the collaborative framework as a

common finite element analysis tool to build, test, and incorporate new developments. A set of

Internet-enabled communication protocols is defined to link external new components which can

be easily integrated into the collaborative framework through a plug-and-play environment.

For the utilization and development of the Internet-enabled collaborative framework,

many participants from different organizations are involved. There are end users whose main

purpose is to use the core platform as an analysis tool. There are analysts and researchers whose

focus is to develop new element and material technologies to enhance the framework. There are

also core developers who are working to incorporate new analysis and solution strategies and to

expand the analysis core. Since the participants of the collaborative framework play different

roles with different perspectives, the focus of the collaborative framework is to support the

communication and cooperation of users and researchers, and to facilitate the incorporation of

their developments into the framework.

49

3.1.1 System Architecture

As discussed earlier, the software framework is designed to support multiple parties and

applications and the interaction among these participants. To integrate and link multiple

computer applications and parties, a suitable architecture is needed to define how the

components (applications or parties) are connected (Smith and Scherer 1999). The proposed

distributed and collaborative system architecture is a versatile, message-based, and modular

infrastructure that is intended to improve usability, flexibility, interoperability, and scalability as

compared to centralized computing.

The overall system architecture of the Internet-enabled collaborative framework is

schematically depicted in Figure 3.1. OpenSees (McKenna 1997) is employed as the finite

element software analysis core engine for the prototype implementation of the framework. The

architecture defines the dependency and the interaction among the participants.

• In this framework, the structural analysis core program is running on a central server as a

compute engine. A compute engine is a remote software program that takes a set of tasks

from clients, runs them, and returns the result. A parallel and distributed computing

environment can be employed in the central server to improve the system performance

and make it more suitable for large-scale engineering simulations. New analysis

strategies and solution strategies can be incorporated to improve the capabilities and

performance of the server, as illustrated in the previous chapter for the integration of

modules such as the sparse direct solver and the eigensolvers.

• In this collaborative system, users play the role of clients to the central finite element

compute engine. The users can have direct or remote access (one such avenue is the

Internet) to the core program through a web-based user interface or another application

program, such as MATLAB. The users can specify desirable features and methods

(element types, efficient solution methods, and analysis strategies) that have been

developed, tested, and contributed to the framework by other participants.

• For element developers, a standard interface/wrapper is defined for communicating the

element(s) with the analysis core. The element code can be written in languages such as

Fortran, C, C++ and/or Java as long as it conforms to the standard interface, which is a

set of predefined protocols to bridge the element code with the central server. If the

developer and the system administrator agree, the new element can be merged into the

50

analysis core and become part of the static element library. Moreover, the developer can

also choose to be an online element service provider. In this case, the element developer

needs to register the element code and its location to the core, and the element service can

then be accessed remotely over the Internet. Details of the remote element services will

be shown in Chapter 4.

• A COTS database system is linked with the central server to provide the persistent

storage of selected analysis results. A customized interface to link the OpenSees core

with the database system is implemented. Project management and version control

capabilities are also provided for the system. The users can query the core server for

useful analysis results, and the data retrieved from the database through the core server is

returned to the users in a standard format. The data management will be discussed in

Chapter 5.

Workstation Parallel ComputerParallel Computer

Database

Element Server 2

Element Server 1

Registry

Finite Element
Compute Engine

(OpenSees)

Internet
Internet

LAN (Local Area Network)

Internet

Server Interface

Client Client

Workstation

Figure 3.1: The collaborative system architecture

51

3.1.2 Mechanics

The mechanics of the open collaborative model are illustrated in Figure 3.2, which shows the

essential procedures to access the finite element compute engine and to perform structural

analyses over the Internet. First, a user of the system builds a structural model on the client site

and then submits it to the analysis core via a web-browser or an application program, using the

Internet as a communication channel. Upon receiving the model and other related information,

the core server authenticates the user’s identity and starts performing a structural analysis based

on the received model. Depending on the underlying hardware and system of the server core, the

analysis may be performed in a distributed and collaborative manner. During the analysis,

elements that are available in the core can be accessed locally from the static element library

(this is the case for most prevailing finite element packages), whereas other elements are

obtained from online element services. In order to find the required elements not existing in the

local element library, the registry is queried to find the location of the online element services,

which have been previously registered to the core platform. Once the online element services

have been identified and bound, the analysis core can access these element services in the same

way as they are located locally within the core. After the analysis is completed, part of the

results will be returned to the user by generating a dynamic web page displayed in the user’s web

browser.

The user can also query and view the analysis results using a web browser. The process

of analysis result query (postprocessing) follows almost the same procedures as performing an

analysis. Instead of submitting a structural model, the user submits a query to the server

platform. The core platform answers the query by returning certain results to the user, and this

process may involve database query and certain recomputation.

This section describes the use of a web browser for user interface to illustrate the

mechanics of the collaborative system. Besides the illustrated web-based interface, the user can

also interact with the core platform by using other application programs, such as MATLAB.

52

ANALYSIS
CORE

ANALYSIS
CORE

ON-LINE
ELEMENT
SERVICE

REGISTRY

Query
4

Perform
Analysis

3
SERVER

INTERFACE

Submit
Analysis
Model

2

R
eg

is
te

r
to

 C
or

e

1

Collaborative
Computation 6 5

WEB-BASED
CLIENT

Results

8

7

ANALYSIS
CORE

ANALYSIS
CORE

ON-LINE
ELEMENT
SERVICE

REGISTRY

Query
4

Query
4

Perform
Analysis

3

Perform
Analysis

3
SERVER

INTERFACE

Submit
Analysis
Model

2

Submit
Analysis
Model

2

R
eg

is
te

r
to

 C
or

e

1

R
eg

is
te

r
to

 C
or

e

1

Collaborative
Computation 6 5
Collaborative
Computation 6 5

WEB-BASED
CLIENT

Results

8

7

Results

8

7

Figure 3.2: Mechanics of the collaborative framework

3.1.3 Modular Design

The open collaborative design is focused on systems where complex groupings of components

interact in diverse ways, and in which introducing components would result in lower cost (e.g.,

due to lower maintenance costs) as well as giving the system a plug-and-play character (Carney

and Oberndorf 1997). Generally speaking, a component can be viewed as a black-box entity that

provides and/or requires a set of services (via interfaces) (Plasil et al. 1999). For a finite element

program, the element code can be treated as a component. Since there are continuing new

developments in element technologies, building an element as a separate component can

facilitate the concurrent development and the eventual incorporation of the new element into the

core. In the prototype framework, a database is used for efficient data storage and flexible

postprocessing. Since the database module is loosely coupled with the core program, it is also a

good candidate for building as a component. As presented in Figure 3.3, the Internet-enabled

structural analysis platform consists of six distinct modules:

• The Analysis Core module is the part that consists of a set of basic functional units of a

finite element structural analysis program. Element and material models, solvers, as well

as analysis strategies and solution strategies, are brought into this module to improve the

functionality of the core.

53

• The User-Interaction Interface module provides an interface to facilitate the access to

the software platform for the users and developers. The platform can be accessed from

either a web-based interface or other application programs.

• The Registration and Naming Service is provided for online application services to

register to the core so that these services can be found and accessed during analysis. The

users can obtain references to certain online application services by querying the

Registration and Naming Service.

• Two approaches are provided for remote access to element services residing in different

locations. The Distributed Element Service is intended to provide a communication

link to remote element services where the element code is executed. The Dynamic

Linked Element Service is implemented to load the element code, which is built as a

dynamic shared library, from a remote element service site and to link and bind the code

with the core at runtime.

• The Database Interface module is built to link with a COTS database, which can

provide efficient data access, and to facilitate postprocessing tasks. Project management

and version control are also supported by the data management system.

User-Interaction
Interface

Registration and
Naming Service

Distributed
Element Service

Dynamic Linked
Element Service

Analysis Core

Database
Interface

REGISTRY

FTPClient

HttpClient

Dynamic
Shared Library

for Element

Real
Element
Objects

Stub
Object

RPC, Java RMI

CORBA

HTTP

H
T

TP

ODBC, JDBC

LAN or

Internet 2

Parallel and/or
Distributed Computing

DATABASE

Web Interface

ServerParallel
Computer

Workstation

Figure 3.3: Modules of the collaborative system

54

3.2 USER INTERFACES

As shown in Figure 3.1, the collaborative framework can offer users access to the analysis core,

as well as the associated supporting services via the Internet. This client/server computing

environment consists of two logical parts: a server that provides services and a client that

requests services from the server. Together, the two parts form a complete computing

framework with a very distinct division of responsibility (Lewandowski 1998). One benefit of

this model is the transparency of software services. From a user’s perspective, the user deals

with a single service from a single point of contact — even though the actual structural analysis

may be performed in a distributed and collaborative manner. The other benefit is that this

framework can widen the reach of the analysis core to the users and external developers. The

core platform offering the finite element analysis service stays at the provider’s site, where the

software core is developed, kept securely, operated, maintained, and updated. Users can easily

access the software platform without the associated cost and maintenance challenges.

In the collaborative framework, the server core is based on a finite element analysis

program and a server interface is built to provide the network communication and data wrapping.

Java Servlet (Hunter and Crawford 2001) technology is employed to implement the server

interface, which serves as the wrapper to the OpenSees core. For the client application, COTS

software packages would be preferred as the user interface. There are two reasons for favoring

COTS software packages as user interfaces than developing a new GUI. First, COTS software

packages generally provide a friendly and easy-to-use interface to the users. Users are familiar

with the interfaces of popular and widely used software packages. Furthermore, many COTS

software packages normally have built-in facilities for developers to customize them. This

makes the development process more economical in terms of development time and efforts. In

the current collaborative framework, two types of user interfaces are provided: one is web based

and the other is MATLAB based.

3.2.1 OpenSees Tcl Input Interface

Since OpenSees is employed as the analysis core for the prototype implementation of the

collaborative framework, a brief review is given in the following for the input features of

55

OpenSees. However, the input features of OpenSees are not crucial to the building of the web-

based and MATLAB-based interfaces.

In order to conduct an analysis using the current version of OpenSees, most users need to

set up an input file. The input file can be parsed and interpreted by the OpenSees interpreter,

which is based on an extension of the scripting language Tcl (Tool Command Language)

(Ousterhout 1994). Tcl is a string-based procedural command language that supports

substitution, loops, mathematical expressions, and procedures. Besides defining a programmable

language, Tcl also has a library package. First, Tcl is a simple textual language, intended

primarily for issuing commands to interactive programs such as text editors, debuggers, and

shells. It has a simple syntax and is also programmable, so users can write command procedures

to provide more powerful commands than those in the built-in set. Second, Tcl is a library

package that can be embedded in application programs. The Tcl library consists of a parser for

the Tcl language, routines to implement the Tcl built-in commands, and procedures that allow

each application to extend Tcl with additional commands specific to that application. The

application program generates Tcl commands and passes them to the Tcl parser for execution.

When the Tcl library receives commands it parses them into component fields and executes

built-in commands directly. For commands implemented by the application, Tcl calls back to the

application to execute the commands.

For the implementation of the OpenSees interpreter, a Tcl library package is embedded in

OpenSees. The OpenSees interpreter adds commands to the standard Tcl for finite element

analysis. The OpenSees interpreter comprises a set of commands to create finite element

models, to specify an analysis procedure, to perform the analysis, and to output the results. Each

of these commands is associated (bound) with an OpenSees procedure or class. Thus the users

can use these commands to create an OpenSees object and invoke methods on that object. Most

of the classes in OpenSees have their corresponding Tcl commands, the details of which have

been described by McKenna and Fenves (McKenna and Fenves 2001).

Based on the defined Tcl commands, an input file can be created. A typical input file is

composed of a sequence of Tcl commands that controls the flow of a finite element analysis.

After the input file is submitted to the OpenSees interpreter, the commands in the file are parsed

and interpreted, and corresponding methods are invoked on OpenSees to execute the commands.

For example, once the interpreter receives the command element, it forwards the parameters of

56

the command to OpenSees and informs OpenSees to create an element object with the properties

defined by the input parameters.

To illustrate the usage of Tcl input interface, a simple linear-elastic three-bar truss

structure is employed. A sketch of the model is shown in Figure 3.4, which consists of four

nodes, three truss elements, nodal loads acting at node number 4, and fixed constraints at the

three supporting nodes.

The Tcl script for the three-truss example is illustrated as the following. To conduct a

finite element analysis on the model, the first step is defining the type of model to be

constructed. In this example, a BasicBuilder object is created for a two-dimensional problem

with two degree-of-freedoms at each node. The BasicBuilder is a subclass of the ModelBuilder

class.

72 ''

96 ''

24 ''72 ''

50 kip

100 kip

1

4

32

(1)
(3)

(2)

E = 3,000 ksi
A1 = 10 in2

A2 = A3 = 5 in2

Figure 3.4: Three-truss example (from (McKenna and Fenves 2001))

Create ModelBuilder (with two dimensions and 2-DOF/node)
model BasicBuilder -ndm 2 -ndf 2

After defining a ModelBuilder for the example, the next step is to construct the model.

The model can be constructed by creating all the domain components, which include four Node

objects, three Constraint objects, a Material object, three Element objects, and a LoadCase that

containing a single NodalLoad object.

Create nodes - node nodeId xCrd yCrd
node 1 0.0 0.0
node 2 144.0 0.0
node 3 168.0 0.0
node 4 72.0 96.0

Set the boundary conditions - fix nodeID xResrnt? yRestrnt?

57

fix 1 1 1
fix 2 1 1
fix 3 1 1

Define material type
uniaxialMaterial Elastic 1 3000

Create truss elements
element truss 1 1 4 10.0 1
element truss 2 2 4 5.0 1
element truss 3 3 4 5.0 1

Create a Plain load pattern
pattern Plain 1 "Linear" {
 load 4 100 -50
}

After the domain component objects have been created, they are added to the Domain

object. At this stage, the types of analysis strategies and solution strategies need to be specified.

As we discussed earlier, an Analysis object in OpenSees is an aggregation of several other types

of objects. In order to construct an Analysis object, all the analysis component objects need to

be created a priori. In this example, the component objects include a SparseSPD (linear system

of equations and a SymSparse solver), a ConstraintHandler (which deals with homogeneous

single point constraints), an Integrator (which is of type LoadControl with a load step increment

of one), and an Algorithm (which is of type Linear). Once these objects have been created, the

Analysis object can be constructed to set up the links among these objects.

Create the system of equation, a SPD using a band storage scheme
system SparseSPD
constraints Plain
integrator LoadControl 1.0 1 1.0 1.0
algorithm Linear

create the analysis object
analysis Static

At this point, we may define Recorder objects to record the output results during the

analysis. In this example, a NodeRecorder is created to record the load factor and the two nodal

displacements at Node 4. The last portion of the input file is the command that informs

OpenSees to start performing the analysis.

create a Recorder object for the nodal displacements at node 4
recorder Node example.out disp -load -nodes 4 -dof 1 2

Perform the analysis
analyze 1

58

3.2.2 Web-Based User Interface

Client browser programs such as Microsoft Internet Explorer and Netscape Navigator allow

users to navigate and access data across machine boundaries. Web-browser programs can access

certain contents from the web servers via HTTP (hypertext transfer protocol). The forms in the

browsers can provide interactive capabilities and make dynamic content generation possible.

Java effectively takes the presentation capabilities at the browser beyond simple document

display and provides animation and more complex interactions.

For the collaborative system, a standard World Wide Web browser is employed to

provide the user interaction with the core server. Although the use of a web browser is not

mandatory for the functionalities of the collaborative framework, using a standard browser

interface leverages the most widely available Internet environment, as well as being a convenient

means of quick prototyping.

3.2.2.1 W eb-to-OpenSees Interaction

In order for the server to process the HTTP requests from the client, Apache Tomcat 4.0

(Goodwill 2001), which is built on Java Servlet based technologies, is employed as the entry point

of the server’s process. Java Servlets are designed to extend and to enhance web servers.

Servlets provide a component-based, platform-independent method for building web-based

applications, without the performance limitations of CGI (Common Gateway Interface)

programs. Servlets have access to the entire family of Java APIs (application programming

interface), including the JDBC API to access COTS databases. Thus Servlets have all the

benefits of the mature Java language, including portability, performance, reusability, and crash

recovery.

The architecture of the collaborative system with a web-based interface is depicted in

Figure 3.5, which shows the interaction between the web browser and OpenSees. Apache

Tomcat is customized to serve as the Servlet server, which is a middleware to enable the virtual

link between the web browser and OpenSees. Since Servlets have built-in supports for web

applications, the communication between the web browser and the Servlet server follows the

HTTP protocol standards, which is a fairly straightforward process. However, the interaction

between the Servlet server and OpenSees may cause some inconvenience because OpenSees is a

59

C++ application and the Servlet server is Java-based. For the database access, OpenSees utilizes

ODBC (Open Database Connectivity) to connect the database, and the Servlet server uses JDBC

(Java Database Connectivity) to connect the database. The details of database integration and

usage will be presented in Chapter 5.

The user of the collaborative system can build a structural analysis model on the client

site and then submit the analysis model to the server through the provided web interface.

Whenever Apache Tomcat receives a request for an analysis, it will start a new process to run

OpenSees. The Servlet server monitors the progress of the simulation and informs the user

periodically. After the analysis is complete, some prerequested (defined and specified in the

input Tcl file) analysis results are returned from OpenSees to Tomcat. The Servlet server then

packages the results in a properly generated web page and sends the web page back to the user’s

web browser. One feature of this model is that Java Servlet supports multithreading, so that

several users can send requests for analysis simultaneously and the server is still able to handle

them without severe performance degradation.

Web Browser ServletServer

OpenSees

Interface

Internet

Virtual Link

Database

HTTP Protocol

ODBC JDBC

Java -- C++
Interface

Figure 3.5: The interaction diagram for the web-based interface

3.2.2.2 Servlet Server-to-OpenSees Interaction

As we mentioned earlier, the communication between OpenSees (a C++ application) and the

Servlet server (implemented in Java) takes more effort to construct. This is because of the

intrinsic complexity of integrating Java and C++ applications. There are currently three common

mechanisms to integrate Java with C++:

60

• External process: Every Java application has a single instance of class Runtime that

allows the Java application to interface with an external process in which a C++

application can be running. This is the most straightforward way for a Java application to

interact with a stand-alone application written in other languages. The Java API provides

methods for performing input from the process, performing output to the process, waiting

for the process to complete, checking the exit status of the process, and destroying the

process.

• JNI: The Java Native Interface (Liang 1999) is the native programming interface for Java

that allows Java code running within a Java Virtual Machine (VM) to operate with

applications and libraries written in other languages, such as C, C++, Fortran, or

assembly. In addition, the Invocation API allows the embedding of a Java Virtual

Machine into native applications. The JNI framework supports native objects to utilize

Java objects in the same way that Java code uses these objects. Thus, both the

application written in native languages and Java application can create, update, and

access Java objects and then share these objects between them.

• Sockets: For each network communication pair, the source and destination processes can

be uniquely identified by their IP addresses and port numbers. The combination of an IP

address and a port number is called a “socket.” Both Java and C++ have socket classes to

construct communication with external processes, which can be on the same computer or

on a different computer that connected with some sort of network. The integration

between Java and C++ applications can be achieved by utilizing socket classes to build a

communication channel.

All the three modes of integrating Java and C++ applications are utilized in the

collaborative framework because each of them has certain advantages and can be applied in

different situations. The External Process method is the easiest to implement and is relatively

robust, but the communication between Java and external process is limited to standard

Input/Output. This mode is applied for the Servlet server to invoke an OpenSees process and to

submit an analysis model to OpenSees. The JNI framework provides fairly complete, but tightly

coupled connection between Java and external processes. The distributed element service relies

on the support of JNI, and the details of distributed element service will be explained in Chapter

4. The Sockets connection has a clear distinction between source and destination, and thus it

helps to keep the connection between Java and C++ applications clear and loosely coupled.

61

For a typical structural analysis software package, the user interface needs to support at

least two types of operations. One is invoking the analysis and the other is postprocessing,

which is mainly dealing with analysis results query. The collaborative framework can also

provide these two types of operations. For invoking an OpenSees process and transferring the

analysis model, the Servlet server utilizes the External Process mode to communication with

OpenSees core. For the support of postprocessing, the Servlet server exchanges data with

OpenSees via a Socket connection.

3.2.3 MATLAB-Based User Interface

For web-based services, all too often the analysis result is downloaded from the computational

server as a file, and then put manually (cut and paste plus maybe some cumbersome conversions)

into another program, e.g., a spreadsheet, to perform postprocessing. For example, if we want to

plot a time history response from a dynamic analysis, we might have to download the response in

a data file and then use MATLAB, Excel, or other software packages to generate the graphical

representation. This ad hoc manual process might also involve data format conversion and

software system configuration. It would be more convenient to directly utilize some popular

application software packages to enhance the user interaction with the collaborative system core,

eliminating the cumbersome interim manual procedures. In the collaborative system framework,

besides the web-based user interface, a MATLAB-based user interface is developed as an

alternative and enhancement for the user interaction. The combination of the intuitive MATLAB

interface, language, and the built-in math and graphics functions makes MATLAB the preferred

platform for scientific computing compared to C, Fortran, and other applications.

The client-side MATLAB service is very flexible and very powerful, and it allows

customization for the users. In the current implementation, some extra functions are added to the

standard MATLAB for handling the network communication and data processing. These

functions are sufficient to perform basic finite element analysis together with certain

postprocessing capabilities. These add-on functions can be directly invoked from either the

standard MATLAB prompt or a MATLAB-based GUI (graphical user interface). The add-on

functions can be categorized in the following groups:

• submitfile, submitmodel: Analysis model submission and analysis invocation;

62

• dataquery: Analysis results query;

• modelplot, deformedplot, res2Dplot: Postprocessing.

In the prototype system, we chose MATLAB because of its build-in support and its

popularity and availability. However, MATLAB is not the only candidate for building a user

interface. Similar network communication protocols and data processing tools can be built for

other application programs, such as FEA postprocessing packages or Excel.

3.2.3.1 Network Communication

As stated previously, a Java Servlet-enabled server is employed as the middleware between

clients and the OpenSees core. The Servlet server supports protocols that are specified as rules

and conventions for communication. Although the protocols are originally defined for web

browser-based clients, they are applicable to any software system that speaks the same language.

To incorporate MATLAB as a client to the collaborative software framework, a wrapper is

needed to handle the network communication for MATLAB. The wrapper can be implemented

to conform to the defined Servlet server protocols; thus the same Servlet server can interoperate

with both web client and MATLAB client. This approach eliminates the modifications to the

existing Servlet server.

Figure 3.6 shows the interaction between MATLAB and OpenSees. The server

implementation and configuration are the same as those of the server for a web-based client.

MATLAB and MATLAB-enabled GUI (graphical user interface) interact with the ServletServer

through a Java client, which is provided to make the network communication conform to the

existing server protocol. The communication channel between the JavaClient and the

ServletServer can be any popular network media, preferably the Internet. Through this layered

architecture, a virtual link is established between MATLAB and OpenSees.

The link between MATLAB and the JavaClient is supported by the MATLAB Java

Interface, which is a new built-in component of MATLAB to interface with Java classes and

objects. Every installation of MATLAB includes a Java Virtual Machine (JVM), so that we can

use the Java interpreter via MATLAB commands, and we can create and run programs that

create and access Java objects. This MATLAB capability enables us to conveniently bring Java

classes into the MATLAB environment, to construct objects from those classes, to call methods

63

on the Java objects, and to save Java objects for later reloading — all accomplished with

MATLAB functions and commands. More information about the MATLAB Java Interface can

be found elsewhere (The-Mathworks-Inc. 2001).

JavaClient ServletServer

OpenSeesMATLAB
Interface

Internet

Virtual Link

DatabaseGUI

ODBC

HTTP Protocol

JDBC

MATLAB
Java Interface

Java -- C++
Interface

Figure 3.6: Interaction diagram for the MATLAB-based interface

3.2.3.2 Data Processing

Since a finite element analysis program, such as OpenSees, uses matrix-type objects (Matrix,

Vector, and ID) to represent numerical data, a convenient mechanism is needed to wrap and

transmit Matrix-type data. This is handled by using Java arrays. An array in the Java language

is strictly a one-dimensional structure because it is measured only in length. To work with a

two-dimensional array (a matrix), we can create an equivalent structure using an array of arrays.

Such multilevel arrays are used in the Java programs to represent numerical data. Although Java

API class packages provide other types of collections (such as Vector, Set, List, and Map, etc.),

the multilevel arrays are chosen to work with MATLAB. This is because multilevel arrays work

more naturally with MATLAB, which is a matrix- and array-based programming language.

MATLAB makes it easy to work with multilevel Java arrays by treating them like the

matrices and multidimensional arrays that are a part of the language itself. We can access

elements of an array of arrays using the same MATLAB syntax as if we were handling a matrix.

If we were to add more levels to the array, MATLAB would be able to access and operate on the

structure as if it were a multidimensional MATLAB’s array.

64

However, the representations of arrays in Java and in MATLAB are different. The left

side of Figure 3.7 shows Java arrays of one, two, and three dimensions. To the right of each

array is the way the same array is represented in MATLAB. In Figure 3.7, a single-dimensional

array is represented as a column vector. Java’s array indexing is also different from indexing in

MATLAB’s array. Java’s array indices are zero-based, while MATLAB’s array indices are one-

based. In Java programming, we access the elements of array A of length N using A[0] through

A[N-1]. When working with this array in MATLAB, we access the same element using

MATLAB indexing style of A(1) through A(N).

Figure 3.7: Array representations in Java and MATLAB

65

The MATLAB javaArray function can be used to create a Java array structure that is

handled in MATLAB as a single multidimensional array. To create a Java array, we can use the

javaArray function by specifying the number and size of the array dimensions along with the

class of objects. For example, to create a 10 by 5 Java array containing double precision data

elements, we can issue the command:

A = javaArray(‘lang.java.Double’, 10, 5);

Using the one-dimensional Java array as the primary building block, MATLAB then

builds an array structure that satisfies the dimensions requested in the javaArray command.

3.3 EXAMPLE

This section presents a nonlinear dynamic analysis example that will be used to illustrate the

usage of the collaborative software framework. The structural model is an 18-story, two-

dimensional one-bay frame. The story heights are all 12 feet and the span is 24 feet. Figure 3.8

shows a sketch of the structural model. As illustrated in the figure, all the beams and columns

are modeled as ElasticBeamColumn elements and the hinging is modeled with zero-length

elasto-plastic rotational element. The model is fine-tuned so that beam hinging occurs

simultaneously at the ends of the beams and at the bottom of the first-story column. The Tcl

input file of the model is partially listed in Figure 3.9.

A nonlinear dynamic analysis is performed on the model using Newton-Raphson analysis

algorithm. The input earthquake record is from the 1994 Northridge earthquake recorded at the

Saticoy Street station, California. A time history plot of the earthquake record is shown in

Figure 3.8.

66

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 5 10 15 20 25

Time (second)

A
cc

el
er

at
io

n
(g

)

12'

24'

zero-length
element

ElasticBeamColumn

1994 Northridge Earthquake Record
(Recorded at the Saticoy St. Station)

Figure 3.8: Example model and Northridge earthquake record

3.3.1 Sample Web-Based Interface

In the web-based user interface, two modes of inputting a Tcl script are accepted. Users can

directly submit Tcl command lines to the server; or they can first edit a Tcl script file and then

submit the input file to the central server. Figure 3.10(a) shows the web form for the submission

of the example Tcl script (listed in Figure 3.9). After the user submits an analysis model, the

model is forwarded to OpenSees by the Servlet server. This process will also automatically

invoke OpenSees to start the analysis.

During the structural analysis, some selected analysis results are saved in the database or

in the server file system to facilitate future postprocessing. Some user prerequested data

(specified in the input Tcl script) are returned to the user whenever they are generated by

OpenSees. The Servlet server can properly wrap the data in certain formats and return the

dynamically generated web pages to the user’s browser. These data can be used to indicate the

progress of the analysis, as shown in Figure 3.10(b).

67

Create ModelBuilder (with two-dimensions and 3 DOF/node)
model basic -ndm 2 -ndf 3

Create nodes
tag X Y
node 1 0.0 2592.0 -mass .2589 0.0 0.0
... ...
node 39 0.0 2592.0
... ...
node 75 0.0 0.0
node 76 288.0 0.0

Fix supports at base of columns (hinged columns)
tag DX DY RZ
fix 75 1 1 1
fix 76 1 1 1

Define moment-rotation relationship for beam springs
tag Ke rotp
uniaxialMaterial ElasticPP 1 239781.1 0.008674579
... ...

Define beam-column elements
tag ndI ndJ A E Iz transfTag
element elasticBeamColumn 1 39 40 1e06 2.9e04 396.879 1
element elasticBeamColumn 20 2 4 1e06 2.9e04 396.879 1
... ...

set outfile nr-saticoy
set accelSeries "Path -filePath $outfile -dt 0.01 -factor 1545.6"

pattern UniformExcitation 2 1 -accel $accelSeries
integrator Newmark 0.5 0.25 0.148603 0.0 0.0 0.008512

Create the system of equation, a symmetric sparse solver
system SparseSPD 3

Create the constraint handler, the transformation method
constraints Penalty 1e14 1e14

Convergence test
tol maxIter printFlag
test NormDispIncr 1.0e-8 20 0

Create the solution algorithm, a Newton-Raphson algorithm
algorithm Newton

analysis Transient
numStep timeStep
analyze 2000 0.01

Figure 3.9: Part of Tcl input file for example model

The web-based user interface also supports postprocessing. It allows the user to query

the analysis results and to download certain results into files. Figure 3.10(c) shows the web

interface for downloading time history response files. Besides transmitting the analysis results in

data file format, the server can also automatically generate a graphical representation of the

68

result and send the graph to the user. Figure 3.10(d) shows the graphical representation of the

time history response of Node 19, which is the left node on the 9th floor in the structural model.

The plotting is performed by a stand-alone MATLAB service that is connected with the

collaborative framework. Although the MATLAB service can conveniently take a data file as

input and generate a graph file as output, it is not flexible enough to support customization, i.e.,

allow the user to add new functions.

(a) Analysis Model Submission

(b) Analysis Progress Report

(c) Analysis Result Query

(d) Time History Response of Node 19

Figure 3.10: Sample web pages generated on the client site

69

3.3.2 Sample MATLAB-Based Interface

To perform a nonlinear dynamic analysis on the example model (shown in Figure 3.8) using the

MATLAB-based interface, we need to first issue the command: submitfile nr-saticoy.

The command submits the earthquake record file to the server without invoking OpenSees to

conduct an analysis. After the earthquake record is saved on the server, the following command,

submitmodel 18-story-th.tcl, then can be issued to submit the input Tcl file. Once

the server receives the Tcl file, it starts a new process to perform the requested analysis.

After the analysis is complete, the dataquery command can be issued to bring up an

interaction window for the user to query analysis results. For illustrative purpose, the following

shows only a typical data query session. First, we can use the query command, RESTORE 550,

to restore the analysis domain state to time step 550. After the domain is initialized to time step

550, we then can issue a query to save the nodal displacement in a file named disp.out.

SELECT node disp FROM node=*

SAVEAS disp.out;

As discussed earlier, some predefined commands can be invoked directly to generate

graphical representations, taking advantage of mathematical and graphic functions of MATLAB.

For instance, the command modelplot can be invoked to generate a plot of the model, as

shown in Figure 3.11(a). There are two steps involved in this process. The first step is that the

MATLAB client automatically contacts the server for the information about nodes and elements.

The returned data from the server are saved in two files: node.out and element.out.

Based on these two files, the second step is generating the graph. At this stage, since the client

already has information about nodes, elements, and nodal displacement, the deformed model can

be plotted. Figure 3.11(b) presents the plot of the deformed shape using the command:

deformedplot(10), where 10 is an amplification factor to make the visualization easier.

70

(a) modelplot

(b) deformedplot(10)

Figure 3.11: Sample MATLAB-based user interface

3.4 SUMMARY

This chapter provided an overview of the Internet-enabled open collaborative software

framework for engineering analyses and simulations. The framework follows a component-

based modular design which allows each component to be designed and implemented

independently and still be able to work together. The focus of the open collaborative software

framework is to support the communication and cooperation of users and researchers, and to

facilitate the incorporation of their research developments into the framework.

The collaborative framework can offer users access to the analysis core, as well as the

associated supporting services via the Internet. In the prototype implementation, both the web

browser and MATLAB are utilized to provide the users with the interactions to the core server.

By leveraging the standard and widely used software packages, the interfaces are easier to

implement and more familiar for the users.

71

The Internet-enabled open collaborative engineering software for analysis and simulation

has at least three benefits. First, the platform provides a means of distributing services in a

modular and systematic way. The modular service model helps the integration of legacy code as

one of the modular services in the infrastructure. Users can select appropriate services and can

easily replace a service by another one, without having to recompile the existing services being

used. Secondly, the client-server nature of the framework makes it possible for the end users to

take advantage of the server computing environment, where the distributed and parallel

computing environment can be utilized to facilitate large-scale engineering simulations. Finally,

the framework alleviates the burden of managing a group of developers and their source code.

Once a common communication protocol is defined, participants can develop the code in

compliance with the protocol. The need to constantly merge the code written by different

participants can be alleviated.

72

73

4 Internet-Enabled Service Integration and
Communication

One of the salient features of the open collaborative software framework is to facilitate analysts

to integrate new developments with the core server so that the functionalities of the analysis core

can be enhanced. The Internet-enabled collaborative service architecture would allow new

application services to be incorporated with the analysis core in a dynamic and distributed

manner. A diverse group of users and developers can easily access the platform and contribute

their own developments to the central core. By providing a modular infrastructure, services can

be added or updated without the recompilation or reinitialization of the existing services. For

illustration purposes, this chapter focuses on the model integration of new elements to the

analysis core of OpenSees. There are two types of online element services: namely, distributed

element service and dynamic shared library element service. The infrastructure for supporting

the integration of these two types of online element service is presented. Similar infrastructure

and communication protocol can be designed and implemented to link other types of online

modular services, e.g., material services, solution algorithms services, and analysis strategies

services, etc. OpenSees is employed as the finite element analysis core in the prototype

implementation.

In order to build an Internet-enabled service framework for an object-oriented FEA

program such as OpenSees, a standard interface/wrapper needs to be defined for communicating

the online element services with the analysis core. The standard interface can facilitate the

concurrent development of new elements, and allow the replacement of an existing element code

if a superior one becomes available. The encapsulation and inheritance features of object-

oriented programming are utilized to define the standard interface for the element. As discussed

in Chapter 2, a super-class Element is provided in an object-oriented FEA program kernel (for

details about the Element class in OpenSees, see (McKenna 1997)), which defines the essential

74

methods that an element needs to support. The traditional way of introducing a new element into

the object-oriented FEA program is to create a subclass of the Element class and possibly useg

the new class to encapsulate the code related to the new element. The new element code, once

tested and approved for adoption, becomes part of the core’s static element library. For the

Internet-enabled collaborative framework, the code developer can also choose to be an online

element service provider. Two forms of online element services, namely distributed element

service and dynamic shared library element service, are introduced in the collaborative

framework. Which form of service to be used for linking the element with the core is up to the

developers for their convenience and other considerations. As long as the new element conforms

to the standard interface, it will be able to communicate with the analysis core. As opposed to

the traditional statically linked element library, the online element services will not expose the

source code to the core. Therefore, the collaborative platform allows the building of proprietary

element services and facilitates the linking of legacy applications.

The online element service can be released to public use by registering itself to the

Registration and Naming Service (RANS) with its name, location, service type (whether a

distributed service or a dynamic shared library service), and other pertinent information. During

a structural analysis, the RANS can be queried to find the appropriate type and location of the

requested element service. Although there are three types of element services (static element

library and two forms of online element services), the selection and binding of element services

are automatic and completely transparent to the users. The end users do not need to know the

type of element service to choose, nor do they need to be aware of the location of the service.

In this chapter, we describe in detail the development of an application service and its

integration with the Internet-enabled finite element analysis framework. This chapter is

organized as follows:

• Section 4.1 describes the registration and naming service (RANS) for the Internet-

enabled collaborative framework. The design and the implementation of the RANS

server are presented.

• Section 4.2 provides a detailed description of the distributed element service. The

mechanics of the distributed element service, the interaction of distributed applications

with the analysis core, and the implementation of the distributed element service are

presented in this section.

75

• Section 4.3 describes the dynamic shared library element service. The comparison

between static libraries and shared libraries is presented. The mechanics and the

implementation of the dynamic shared library element service are also described.

• An example scenario of applying online services to perform structural analysis is

presented in Section 4.4. Some potential performance optimization techniques for online

element services are discussed in this section.

4.1 REGISTRATION AND NAMING SERVICE

To support distributed services with many participants, the core server must be able to

differentiate the services and locate appropriate services for specific tasks. One approach to

resolve this problem is to create a Registration and Naming Service (RANS), where an agent or

participant could register its service to the RANS with a unique service name and address for the

service. The RANS allows names to be associated with object references, and would be

responsible for mapping the named services to the physical locations. With the RANS, the users

can obtain references to the objects (services) they wish to use. Clients may query the RANS to

obtain the associated object reference and the description of the service. Figure 4.1 shows a

distributed service registering its name and property to the RANS server. Clients can then query

the RANS using a predetermined name to obtain the associated distributed service.

<name_1, property_1>
. . .

<name_n, property_n>

<name_1, property_1>
. . .

<name_n, property_n>

RANS

Client

Distributed
Service

register(name, property)

query(name)

property

Figure 4.1: Registering and resolving names in RANS

The architecture of the RANS server is almost the same as that of the core collaborative

framework, which is depicted in Figure 3.5. The RANS is a service located on the central server,

the Java Servlet server is employed to handle the user requests, and a COTS database system is

utilized to store the persistent information related to registered services. In the prototype system,

the RANS is implemented in Java, which allows an application to use JDBC to communicate

76

with the database to store and retrieve data. To differentiate different services, a unique identity

(name) is needed to associate with each service. A relational table ServiceInfo is defined in the

database to store the information related to the registered services. Figure 4.2 shows the schema

design of the ServiceInfo table. Since the service name is used to identify a service, the name

field in the table is declared as the primary key, which guarantees the uniqueness of the name

and facilitates the queries based on this key.

CREATE TABLE ServiceInfo (
 name CHAR(31) PRIMARY KEY,
 type CHAR(31),
 IP VARCHAR(255),
 port CHAR(31),
 creator CHAR(31),
 misc VARCHAR(255),
 ctime DATE
);

Figure 4.2: Schema of the ServiceInfo table

In the prototype implementation, a Java class Identity is defined to record the service

identity. Each service is identified by a name property and an id property. The string name

property is a descriptive name that can be used to specify the service. The integer id is an

internal identifier generated to uniquely tag each service. We have designed the Identity class to

implement the Java Serializable interface, so that Identity objects can be passed back and forth

on the network as a data stream. One important method of the Identity class is equals(),

which can be used to identify if two identities are the same. Besides the name and id fields, the

Identity class also stores other service-related information, for example, the service type, IP

address, the port number, and the creator of the service, etc.

The core functionalities of the RANS server is defined in a class named RANS, which

serves as a broker for registering and binding services. The class interface of RANS is shown in

Figure 4.3. There are three important methods provided by the RANS class:

• register() can be invoked by online services to register themselves to the core. This

method gathers the data related to a service and sends them to the database. If the name

entry is not saved in the database (which indicates that a service with the same name has

not been registered yet), a new entry will be inserted into the ServiceInfo table.

Otherwise, an error message is returned to the invoker of the register() method.

77

• update() has the same function signature as register(). It is also used to gather

and save the service information. However, instead of inserting a new entry into the

database ServiceInfo table, the update() method is invoked to update an existing

registered service. If a database entry with the input name does not exist, an error

message is returned.

• query() is invoked by the analysis core to find the requested services and to bind them.

This process may involve a database query; and the queried data is represented as an

Identity object, which is returned to the invoker of this method.

public class RANS {
 // used for temporarily store Identity objects.
 Hashtable curIdentities = new Hashtable();

 // online service registers to the core.
 String register(String name, String type, String IP,
 int port, String creator);

 // online service updates the information
 String update(String name, String type, String IP,
 int port, String creator);

 // query the information of a service.
 Identity query(String name);
}

Figure 4.3: Interface for the RANS class

In the RANS class implementation, a hash table is used to store the recently queried

Identity objects. The hash table serves as a cache for the ServiceInfo table. During the process

of querying a service, the hash table is first searched to find a matching service. It is only when

the service cannot be found in the hash table that the database is queried. In this case, the

Identity of the queried service will be saved in the hash table to facilitate further queries. Since

most likely a recently used service will be accessed again, keeping a cache of recently accessed

services can potentially improve the performance of the query() method.

In the open collaborative framework, after an online element service is developed and

tested, the author of the element may release the element for other users. To make the element

accessible to others, the first step the developer needs to perform is to register the element

service to the RANS server. The registration can be done through a web-based interface, which

78

sends the service information to the Java Servlet server, and in turn invokes a certain method of

RANS class.

4.2 DISTRIBUTED ELEMENT SERVICES

A key feature of an object-oriented FEA program such as OpenSees is the interchangeability of

components and the ability to integrate existing libraries and new components into the analysis

core without the need to dramatically change the existing code. Introducing a new type of

element into an object-oriented FEA program generally consists of creating a new subclass of

Element class. This local object-computing paradigm can be extended to support distributed

services. Instead of using only the objects that reside exclusively on the local computer, the

collaborative framework also utilizes distributed (remote) objects, which allows the building of a

distributed application to facilitate new element development.

Distributed applications normally comprise two separate programs: a server and a client.

A typical server application creates some remote objects, makes references to them as accessible,

and waits for clients to invoke methods on these remote objects. A typical client application

obtains a remote reference to one or more remote objects in the server and then invokes methods

on them.

4.2.1 Mechanics

The essential requirements in a distributed object system are the ability to create and invoke

objects on a remote host or process, and interact with them as if they were objects within the

same local process. To do so, some kind of message protocol is needed for sending requests to

remote agents to create new objects, to invoke methods on these objects, and to delete the objects

when they are done. Assorted tools and standards for assembling distributed computing

applications have been developed over the years. They started as low-level data transmission

APIs and protocols, such as TCP/IP and RPC (Birrell and Nelson 1984) and have recently begun to

evolve into object-oriented distribution schemes, such as OpenDoc (MacBride et al. 1996),

CORBA (Otte et al. 1996; Pope 1998), DCOM (Eddon and Eddon 1998), and Java RMI (Pitt and

79

McNiff 2001). These programming tools essentially provide a protocol for transmitting structured

data (and, in some case, actual running code) over a network connection.

In the prototype implementation, Java’s Remote Method Invocation (RMI) is chosen to

handle communication for the distributed element services over the Internet. Java RMI enables a

program in one Java Virtual Machine (VM) to make method calls on an object located on a

remote server machine. RMI allows distributing computational tasks across a networked

environment and thus enables a task to be performed on the machine most appropriate for the

task (Farley 1998). The skeleton, which is the object at the server site, receives method

invocation requests from the client. The skeleton then makes a call to the actual object

implemented on the server. The stub is the client’s proxy representing the remote object and

defines all the interfaces that the remote object supports. The RMI architecture defines how

remote objects behave, how and when exceptions can occur, how memory is managed, and how

parameters are communicated with remote methods.

There are many fundamental differences between a local Java object and a remote Java

object, which are summarized in Table 4.1. Because the physical copy of a remote object is

existed in a remote server instead of in the local computer, and is accessed by the clients through

stubs, the behaviors (definition, implementation, creation, and access) of the remote object are

different from a regular local object. In Table 4.1, we also compare the references, finalization,

and exception-handling characteristics between a local object and a remote object. The

references are also called pointers in certain programming languages. The references are like

jumps, which can be used to point to a data structure. If an object is no longer needed by the

system, the object becomes a candidate for finalization, which is a process that the memory and

other computer system resources allocated for the object are reclaimed by the system. Java

automatically reclaims memory used by an object when no object variables refer to that object, a

process known as garbage collection. An exception is an abnormal condition that disrupts

normal program flow. There are many cases where abnormal conditions happen during program

execution, such as the file that the program trying to open may not exist, the network connection

may be disrupted, or a number is divided by zero. If these abnormal conditions are not prevented

or at least handled properly, either the program will be aborted abruptly or incorrect results or

status will be carried on, causing more abnormal conditions. In Java, the exceptions need to be

handled to ensure the correctness and robustness of the program.

80

Table 4.1: Comparison between local and remote Java objects

 Local Object Remote Object

Object
Definition

A local object is defined by
a class.

A remote object’s exported behavior is
defined by an interface that extends the
Remote interface.

Object
Implementation

A local object is
implemented by its defined
class.

A remote object’s behavior is executed by
a class that implements the remote
interface.

Object
Creation

A new instance of a local
object is created by the new
operator.

A new instance of a remote object is
created on the server computer with the
new operator. A client cannot directly
create a new remote object.

Object
Access

A local object is accessed
directly via an object
reference variable.

A remote object is accessed via an object
reference variable which points to a proxy
stub implementation of the remote
interface.

References An object reference points
directly at an object in the
local heap.

A remote reference is a pointer to a proxy
stub object in the local heap. That stub
contains information that allows it to
connect to a remote object, which contains
the implementation of the methods.

Finalization The memory of an object is
reclaimed by the garbage
collector when there is no
reference to the object.

When all remote references to an object
have been dropped, the object becomes a
candidate for garbage collection.

Exceptions Exceptions are enforced and
handled locally.

RMI forces programs to deal with any
possible RemoteExcpetion objects that
may be thrown. This can ensure the
robustness of distributed applications.

The design goal for the RMI architecture is to create a Java distributed object model that

integrates naturally into the Java programming language and the local object model. The

language features in the Java help programmer to write client/server components that can

interoperate easily. Besides Java RMI, the Java API has other facilities for building distributed

applications. Low-level sockets can be established between agents, and data communication

protocols can be layered on top of the socket connection. The object serialization feature of Java

allows an object to be converted into a byte stream, and the byte stream can be reassembled back

81

into an identical copy of the original object. Thus, an object in one process can be serialized and

transmitted over a network connection to another process on a remote host. APIs built on top of

the basic networking support in Java provide higher-level networking capabilities, such as

distributed objects, remote connections to database servers, directory services, etc. Java also

provides a high level of security and reliability in developing a distributed environment.

Although the Java environment is powerful and convenient in building distributed

services, there is still one challenge for building a distributed element service in the collaborative

framework: incorporating legacy systems in the Java infrastructure. The original FEA core

system is written in C++, and partly written in C and Fortran (referred to as native languages in

Java terminology). The core of the distributed element services may also be written in native

languages. Thus, a communication support between Java and other languages is needed for

building distributed element services. As we discussed in Section 3.2, there are three ways to

link Java applications with native methods. Since the communication is tightly coupled in this

case, the Java Native Interface (JNI) is utilized. JNI (Liang 1999) is the native programming

interface for Java that allows Java code running within a Java Virtual Machine to operate with

applications and libraries written in other languages, such as C, C++, Fortran, or assembly.

The purpose of JNI is shown in Figure 4.4. Both the codes written in the native language

and Java can create, update, and access Java objects and then share these objects between them.

By programming through the JNI, we can use Java objects to access native methods and

libraries. The JNI framework also supports native objects to utilize Java objects in the same way

that Java code uses these objects. For instance, the native methods can create, inspect and update

Java objects, and then call Java methods. Furthermore, the native methods can load Java classes

and obtain class information. The native methods are even allowed to perform runtime type

checking. Details about the mechanics of JNI can be found in Liang (Liang 1999).

Figure 4.5 illustrates the mechanics of the distributed element services infrastructure.

Within the infrastructure, an element service can be written in any popular programming

language: Java, C, C++, or Fortran. As long as the element service conforms to the defined

protocol, the service can participate in the framework. For the distributed element service, the

actual element code resides in the service provider’s site. For implementation with OpenSees as

the analysis core, the developed element service communicates with the analysis core through a

communication layer, which consists of a stub and a skeleton. A remote method call initiated by

the OpenSees core tunnels over the communication channel can invoke a certain method on the

82

element service. For example, the OpenSees core issues a remote method invocation to send the

input data of an element (e.g., geometry, nodal coordinates, Young’s modulus, and Poisson ratio,

etc.) to the element service. Later on, when the core needs certain element data, for example a

stiffness matrix, the OpenSees core requests the service provider through a sequence of remote

method invocations. The computation (e.g., the forming of the stiffness matrix of an element) is

performed at the service provider’s site and the results are then sent back to the core as the return

value of the remote method invocation.

Figure 4.4: Purpose of JNI (from (Stearns 2002))

USERS

ElementClient
(STUB)

ElementServer
(SKELETON)

RMI communication

Distributed
Element Service

(written in Java, C,
C++ or Fortran)

JNI

JNI

Requests Data

Returns Data

Analysis Core
(OpenSees)

RMI: Remote Method Invocation

JNI: Java Native InterfaceHTTP

TCL / TK

Method calls on ElementClient (stub)
tunnel over to ElementServer (skeleton)

Figure 4.5: Mechanics of the distributed element service

83

4.2.2 Interaction with Distributed Services

A typical distributed service conceptually can be viewed as a black box — it takes certain inputs

and then generates data as outputs. The key item in the distributed service computing is the

interface, which defines what types of functions the service supports. A set of interfaces should

be fully defined, available to the public, and appropriately maintained. Following the object-

oriented paradigm, the “exposed” methods of the interface are the points-of-entry into the

distributed services, but the actual implementation of these methods is dependent on the

individual service. To standardize the implementation of a new distributed element, we define a

common interface named ElementRemote in the collaborative framework, as presented in Figure

4.6. Note that the ElementRemote interface is almost the same as the standard Element interface

that is provided by the core OpenSees program (shown in (McKenna 1997)). The difference lies

in the following four aspects:

• The ElementRemote interface introduces two additional methods that are not defined in

the original Element interface. One is formElement() that is used by the client to

send the input data (geometry, nodal coordinates, etc.) to the actual element service. The

other is clearElements(), which can be called to perform the “house-cleaning” task

once the analysis is completed.

• Most methods defined in the ElementRemote interface have two more parameters

compared with their counterparts in the Element interface. One parameter is an integer

value that identifies the referred element object. The other parameter is an Identity

object, which is used to identify the source of the request.

• Several methods defined in the Element interface are not included in the ElementRemote

interface. The reason is that these methods can directly be processed locally on the core

server. For instance, the methods getNumExternalNodes(), getNumDOF(), and

getExternalNodes() are not defined in the ElementRemote interface because they

do not need to be processed by a distributed element service.

• Although it is not shown in Figure 4.6 for the purpose of clarity, exception handling is

included in the implementation for all the methods. Java RMI requires all the remote

methods to handle RemoteExcpetion. Some exceptions related to I/O need to be taken

care of as well.

84

public class ElementRemote extends Remote {
 // This is the service name for publishing.
 public static final String SERVICE = "ElementService";
 // This is the port number, could be changed as needed.
 public static final int PORT = 5432;

 // This function is used to send the element data to server.
 public int formElement(int tag, Identity src, char[] input);
 // This function is used to perform house cleaning.
 Public int clearElements(Identity src);

 public int commitState(int tag, Identity src);
 public int revertToLastCommit(int tag, Identity src);
 public int revertToStart(int tag, Identity src);
 public int update(int tag, Identity src);

 // Form element stiffness, damping and mass matrix.
 public MyMatrix getTangentStiff(int tag, Identity src);
 public MyMatrix getSecantStiff(int tag, Identity src);
 public MyMatrix getDamp(int tag, Identity src);
 public MyMatrix getMass(int tag, Identity src);

 public void zeroLoad(int tag, Identity src);
 public MyVector getResistingForce(int tag, Identity src);
 public MyVector getTestingForceIncInertia(int tag, Identity src);
}

 Figure 4.6: Interface for ElementRemote class

For a typical distributed element service, there is a pair of classes that implement the

ElementRemote interface, namely the ElementSever and the ElementClient. Every distributed

element service implements an ElementServer, which serves as a wrapper for the actual code of

the element service. The core of the collaborative framework has a corresponding ElementClient

class to communicate with the ElementServer class. In the Java RMI infrastructure, the

ElementClient object plays the role of a stub that forwards the core server’s requests to the

element service. The ElementServer object is a skeleton that defines the entry point of this

element service.

Once the ElementServer and the ElementClient classes are implemented and installed, the

interaction between the distributed element service and the OpenSees or other core server can be

established by conforming to the defined protocol. When the core of the collaborative

framework wants to access a distributed element service, it calls on the methods defined in the

ElementClient. It is up to the ElementClient to access the ElementServer and to obtain the

requested data. Figure 4.7 shows the interaction diagram of a typical linear distributed element

service. For the OpenSees core, a StubElement is provided because C++ application cannot

directly access Java methods — the StubElement is needed to forward the requests to the

85

ElementClient. The StubElement is implemented in C++, which makes it possible to be directly

invoked by the OpenSees core. For the remote element service, an ElementImpl is implemented

to serve as a wrapper for the methods of the element service. The actual element service itself

may be a legacy application, which can be written in C++, C, and/or Fortran. Once wrapped and

conformed to the protocol, the legacy application can be integrated into the distributed service

architecture.

Figure 4.7 illustrates the invocation of two remote methods. The formElement() is

called when the OpenSees core is building the finite element model. The element input data is

forward to the element service during this phase. After the element service receives all the

necessary input data, it starts generating output data (stiffness, mass, damping, etc.). The

getStiff() method is invoked to request the stiffness matrix of an element during the

analysis phase of the OpenSees core. Other type of output data of each element can also be

obtained by calling the corresponding remote methods.

ModelBuilder

(C++)
ElementServer

(java)
ElementImpl

(java)
Stiff

(C, Fortran)
ElementClient

(java)
StubElement

(C++)
OpenSees

(C++)

buildFE_Model()
formElement()

formElement()
formElement()

new() calculateStiff()

calculateStiff()

getStiff() getStiff() getStiff()

return

getStiff()

OpenSees Core Element Service

ModelBuilder
(C++)

ElementServer
(java)

ElementImpl
(java)

Stiff
(C, Fortran)

ElementClient
(java)

StubElement
(C++)

OpenSees
(C++)

buildFE_Model()
formElement()

formElement()
formElement()

new() calculateStiff()

calculateStiff()

getStiff() getStiff() getStiff()

return

getStiff()

OpenSees Core Element Service

Figure 4.7: Interaction diagram of distributed element service

86

4.2.3 Implementation

As we discussed earlier, the remote communication of a distributed element service is

implemented by using Java RMI. Figure 4.8 shows partial sample code of an ElementClient

class and an ElementServer class. The ElementClient class resides on the OpenSees core

server’s site, while the ElementServer class locates on the service provider’s site. The

ElementClient and the ElementServer together provide a communication channel and make the

network traffic transparent to both the server core and the element service. When the analysis

core needs to access the distributed element, it instantiates and makes method calls to the remote

element service in the same way as it treats a local element object.

In order to use a distributed element service, the core server first needs to locate the

corresponding ElementServer object. This process is implemented in the constructor of the

ElementClient class. As shown in Figure 4.8, the location of an ElementServer object can be

found through the RANS server and Java RMI naming service. The Java naming service is

supported by the Naming class, which is a Java API class that provides methods for storing and

obtaining references to remote objects in the remote object registry. Since a distributed service is

identified by its name, the name can be used as an input to query the RANS sever to find the

related information about the service. After we obtain the service information (server IP, port

number, and service type), the method lookup() on the Java Naming class is called to find a

local reference to the ElementServer object.

Once the analysis core establishes a reference to the ElementServer object, it may invoke

remote methods on the object. Figure 4.8 illustrates the usage of two sample remote methods:

formElement() and getTangentStiff(). One parameter of the formElement()

method is a character array, which is used to represent the element input data. The representation

of the element data is achieved by a technique called object serialization, whose details will be

presented in Chapter 5. Upon receiving a formElement() request from the ElementClient,

the ElementServer will instantiate a new Element object and start a new thread to compute the

element data (stiffness matrix, mass matrix, etc.). After the computation is complete, the

element can be saved in an ElePool object, which is implemented using a hashtable for

temporarily holding element data. The key to this hashtable is the Identity src and the integer

tag. The reason that the ElementServer needs the Identity object from the ElementClient object

is that the ElementServer may serve multiple clients, and thus a mechanism is needed to identify

87

the source of the remote requests. During a structural analysis, when the OpenSees core needs

the stiffness matrix, it issues a call getTangentStiff() to ElementServer for the stiffness

matrix. At this stage, the ElePool object is searched for by the requested Element object and the

stiffness matrix can be sent to the ElementClient as return of the function.

public class ElementClient {

 // based on the server name and port number, creates stub object.
 public ElementClient(String serverName)
 {
 Identity server = theRANS.query(serverName);
 System.setSecurityManager(new RMISecurityManager());
 String name = "//" + server.IP + ":" + server.PORT +
 "/" + server.SERVICE;
 theStub = (ElementRemote)Naming.lookup(name);
 }

 // the stub is a proxy to the real server object.
 public void formElement(int tag, Identity src, char[] input)
 {
 theStub.formElement(tag, src, input);
 }

 public MyMatrix getTangentStiff(int tag, Identity src)
 {
 MyMatrix result = new MyMatrix(4, 4);
 result = theStub.getTangentStiff(tag, src);
 return result;
 }
}

public class ElementServer extends UnicastRemoteObject
 implements ElementRemote {

 // the ElePool provides functions similar to that of a hashtable.
 private ElePool allElements = new ElePool();

 public void formElement(int tag, Identity src, char[] input)
 {
 ElementImpl newElement = new ElementImpl(tag, input);
 allElements.put(tag, src, newElement);
 }

 public MyMatrix getTangentStiff(String tag, Identity src)
 {
 ElementImpl oneElement=(ElementImpl)allElements.get(tag, src);
 result = oneElement.getTangentStiff();
 return result;
 }
}

Figure 4.8: Sample ElementClient and sample ElementServer

88

After the communication is initiated, the core analysis program treats the distributed

element in the same way as a local element. Again, the searching and the binding of an online

remote element service are automated — the user of the collaborative framework is not aware of

the difference between a local element and an online element.

4.3 DYNAMIC SHARED LIBRARY ELEMENT SERVICES

The distributed element service model described in the previous section is flexible and

convenient. However, the approach does carry some overhead on remote method invocation,

which is generally more expensive than local method call. The system performance is reduced

because a remote method has to be invoked for accessing every distributed element. A dynamic

shared library (or simply a shared library) element service is designed to alleviate the

performance bottleneck and to improve the system performance without losing the flexibility and

other benefits of the distributed services. Instead of being compiled to a static library and

merged to the core server, an element service is built as a dynamic shared library and located on

the element service provider’s site. During the system runtime, the installed shared library can

be automatically downloaded to the core server and linked with the OpenSees core. The shared

library element service allows the replacement of an element service without reinitiating the core

server, as well as provides a transparent service to the users.

4.3.1 Static Library vs. Shared Library

Most modern operating systems allow us to create and use two kinds of libraries — static

libraries and shared libraries. A dynamic shared library differs in many ways from a static

library. Static libraries are just collections of object files that are linked into the program during

the linking phase of compilation, and are not relevant during runtime. Only those object files

from the library that are needed by the application are linked into the executable program.

Shared libraries, on the other hand, are linked into the program in two stages. First, during

compilation time, the linker verifies that all the symbols (functions, variables, and the like)

required by the program are either linked into the program or existed in one of its shared

89

libraries. The object files from the shared libraries are not inserted into the executable file, but

rather the linker notes in the executable code that the program depends on shared libraries.

Secondly, during runtime, a program in the system (called a dynamic loader) checks out which

shared libraries are needed for the program, loads them into memory, and attaches them to the

copy of the program in memory. A detailed comparison between a static library and a shared

library is presented in Table 4.2.

Table 4.2: Comparison between static and shared libraries

 Static Library Shared Library

Access time During compilation time. During program runtime.

Code sharing The static library cannot be
shared or replaced at runtime.

Significant portions of code can be
shared among programs at runtime,
reducing the amount of memory use.

Program size A copy of the library is linked
to each program that uses the
library.

The size of the executable is smaller
compared with static library.

Runtime
replacement

Linking happens at compilation
time, thus does not allow
runtime replacement.

The shared library can be replaced at
runtime without relinking with the
application.

Performance The performance overhead
happens at compilation time.

Runtime linking has an execution-time
cost.

Environment
change

Static library is not sensitive to
the system environment change.

Moving a shared library to a different
location may prevent the system from
finding the library and executing the
program.

4.3.2 Mechanics

The mechanics of the dynamic shared library element service are depicted in Figure 4.9. In this

approach, the element code is built in the form of a dynamic shared library conforming to a

standard interface. The developed shared library can be placed on an FTP server or an HTTP

server on the online element service provider’s site; and the service needs to be registered to the

analysis core’s RANS server. During a structural analysis, if the core needs the element, the

RANS server will be queried to find the pertinent information about this element service. After

90

the location of the element service is found, the shared library is downloaded from the service

provider’s site and is placed on a predetermined location on the core’s computer. The

downloaded shared library can then be dynamically accessed at runtime by the analysis core

whenever the element is needed. Since the RANS server keeps track of the modifications and

versioning of the shared library element services, the replacement of an element service can be

easily achieved by downloading the updated copy of the shared library.

FTP Server

HTTP Server

REGISTRY

FtpClient

HttpClient

RANS

Dynamic
Shared Library

for Element

Element

Element

Analysis Core

Register Registration
& Naming

Download
Element
Library

Run-time
Dynamic
Binding

FTP

HTTP

REQUEST

Query

Download

Figure 4.9: Mechanics of dynamic shared library element service

There are many advantages of the shared library element services. One advantage of

linking dynamically with shared libraries over linking statically with static libraries is that the

shared library can be loaded at runtime, so that different services can be replaced at runtime

without recompilation and relinking with the application. Another benefit of using a dynamic

shared library is that the shared library is in binary format. The binary format guarantees that the

source code of the element will not be exposed to the core server, making the building of

proprietary software components easier. This also implies that the element developer controls

the maintenance, quality, and upgrade of the source code, facilitating bug-fixing and version

control of the element service. However, the dynamic shared library element service also bears

some disadvantages. The most prominent one is platform dependency. In order to support

dynamic loading and binding, in most cases the shared library must be built on the same platform

91

as the core server. Other disadvantages include potential security problems and minor

performance overhead due to network downloading and dynamic binding.

4.3.3 Implementation

There are three issues associated with the implementation of the dynamic shared library element

service. The first is about how to build a shared library; the second is related to the downloading

of shared library services; and the third is regarding the dynamic binding of a shared element

library.

We first address the issue of how to build a dynamic shared library. As we mentioned

earlier, the building of a dynamic shared library is platform dependent. The dynamic shared

libraries are supported and implemented on various operating systems:

• Windows: In the Windows platform, shared libraries are called “dynamic link libraries”

(DLLs) (Microsoft-Corporation. 2002) and a DLL file is often given the .dll file name

suffix. DLLs are primarily controlled by three functions: LoadLibrary(),

GetProcAddress(), and FreeLibrary(). The Win32 API function

LoadLibrary() is used to load a DLL into the caller’s address space.

GetProcAddress() is used to retrieve pointers to the DLL’s exported functions so

that the client can call those functions in the DLL. When a client has finished using the

library, the DLL is freed by calling FreeLibrary(). The Microsoft Visual C++

compiler can be used to compile DLLs and the programs that load them.

• Linux: For the Linux platform, the dlopen family of routines is used to control the

shared libraries (Norton 2000). The library should be named with a .so file name suffix.

In order to find the location of a library, Linux searches along the LD_LIBRARY_PATH

environment variable, which is a colon-separated list of directories. The directories listed

in /etc/lod.so.cache file and the directories /usr/lib and /lib will also be

searched. The GNU C compiler (gcc and g++) can be used to compile shared libraries or

programs that load them.

• SunOS: The shared libraries in SunOS are very similar to that in the Linux environment.

A shared library is loaded using the method dlopen(), the functions of a shared library

is called using dlsym(), and the shared library is unloaded using dlclose(). The

92

Sun Workshop (Sun-Microsystems 2001) compiler (CC and cc) can be used to compile

shared libraries and programs that load them.

In the prototype implementation of the collaborative framework, Sun workstations are

used as the development platform. For illustration purpose, we will focus on building dynamic

shared libraries in the SunOS environment. The shared library element services on other

platforms can be constructed similarly. In the SunOS environment, the creation of a shared

library is quite similar to the creation of a static library — compile a list of object files and then

insert them into a library file. However, there are two major differences:

1. Compile for Position Independent Code (PIC). When the object files are generated, the

positions in a program that these files will be inserted into are unknown. Thus, all the

subroutine calls in the shared library need to use relative addresses, instead of absolute

addresses. We can use the compilation flag ‘-fPIC’ to generate this type of code.

2. Library File Creation. Unlike a static library, a shared library is not an archive file. We

need to tell the compiler to create a shared library instead of a final program executable

file. This can be achieved by using the ‘–shared’ flag with the Sun compiler.

Thus, the set of commands we may use to create a shared library would be as follows:

cc –fPIC –c util_file.c

cc –fPIC –c element1.c

cc –shared libele1.so util_file.o element1.o

The first two commands compile the source files with the -fPIC option, so that they will

be suitable for use in a shared library. The last command asks the compiler to generate a shared

library named libele1.so.

After a shared library element service is implemented and tested on the service

developer’s site, the next problem is how to automatically download the library to the analysis

core server. This task can be achieved by utilizing one of the two popular Internet protocols

(FTP and HTTP) to transfer the library files. On the element service developer’s site, the

developed shared element libraries are placed on either an FTP server or a web server. The

location of the shared library and other pertinent information can be submitted to the core server

via the RANS interface. On the analysis core server’s site, two new classes, namely FtpClient

and HttpClient, are implemented. These two classes can query the RANS server for the related

information of a particular element service, and then use queried results to find the element

libraries and to download the library files from the element developer’s site. The downloaded

93

libraries are saved on the core server by placing the library files into a predetermined directory.

The directory is defined in the LD_LIBRARY_PATH environment variable, which by default is

used by a program to determine where to find dynamic shared libraries.

#include <dlfcn.h> /* defines dlopen(),dlsym(), etc. */

...

void *lib_handle; /* handle of the shared library */
char lib_name[100]; /* contains the name of the library file */

Matrix (*getTangentStiff)(int tag);

/* load the desired shared library */
lib_handle = dlopen(lib_name, RTLD_LAZY);

/* load the function in the library */
getTangentStiff = dlsym(lib_handle, "getTangentStiff");
error = dlerror();

/* call the library function */
kMatrix = (*getTangentStiff)(tag);

/* finally, close the library */
dlclose(lib_handle);

Figure 4.10: Binding of dynamic shared library

Once the shared element library is downloaded and placed in the pre-assigned directory,

the analysis core server can start using the library. Figure 4.10 shows some sample code for the

binding of a dynamic shared library. In order to use a dynamic shared library, the first step is to

open and load the library by using dlopen() function. The dlopen() function takes two

parameters: one is the full path to the shared library and the other is a flag defining whether all

symbols referred to by the library need to be checked immediately or only when the symbols are

used. In our case, we may use the “lazy” approach (RTLD_LAZY) of checking only when used.

After we obtain a handle to the loaded shared library, we can search symbols (both functions and

variables) in it. Figure 4.10 shows the process of using dlsym() to find a reference to the

library function named getTangentStiff(). Since errors might occur anywhere along the

code, dlerror() is invoked to perform error checking. For a function defined in a shared

library, we can invoke and access the function in a similar way as we access a function in a static

library. The invocation of a shared library function getTangentStiff() is presented in

Figure 4.10. The final step of using a dynamic shared library is to invoke dlclose() to close

94

down the library. This should only be done if we are not intending to use the library soon. If we

do, it is better to leave it open, since library loading takes time.

4.4 APPLICATION

A prototype of the Internet-enabled collaborative framework is implemented by using Sun

workstations as the hardware platform. These workstations are connected in a Local Area

Network (LAN) environment with a bandwidth of 10Mbps. The analysis core is based on

OpenSees. Apache HTTP server is used as the web server, and Apache Tomcat 4.0 is utilized as

the Java Servlet server. MATLAB 6.1 is used as the engine to build a simple postprocessing

service, which takes a data file as input and then generates a graphical representation.

4.4.1 Example Test Case

The prototype system is employed to conduct an online nonlinear dynamic analysis on the model

shown in Figure 3.8. As an example, the ElasticBeamColumn element in the example model can

be built as an online element service, which resides on a separate computer other than the core

server. Both distributed element service and shared library element service are implemented. In

order for these element services to be used by the analysis core, they have to be registered to the

central server by saving the information on the RANS server. Figure 4.11 shows the web-based

interface of the RANS server for the registration of the distributed ElasticBeamColumn element

service. The information required for the registration service includes the type of the service, the

name of the service, the IP and port number of the service provider’s site, developer’s identity

and password, and an optional description of the service. If the input name is already existed in

the service list, the RANS server will inform the developer to choose a different name. Based on

the input data, the RANS generates a unique Identity object for the service. This Identity can

be queried and used later to find the service and to handle the binding of the online element

service with the core server.

Figure 4.12 illustrates the interaction among the distributed services during a simulation

of the model. The analysis core is running on a central server computer called

opensees.stanford.edu. The web server and Java Servlet server are also running on this

95

computer. The developed online ElasticBeamColumn element services are running on a

computer named galerkin.stanford.edu. As we indicated before, users only need to know the

location of the central server (opensees.Stanford.edu) without the awareness of the underlying

distributed framework. Although in the figure we only illustrate the usage of the web-based

interface, the users can also communicate with the server via a MATLAB-based interface, or

other types of user interfaces. The input Tcl file can be submitted to the server using a web-

based interface (as shown earlier in Fig. 5(a)). Upon receiving the request, the central server

starts a new process to perform the nonlinear dynamic analysis of the model. When the analysis

is in need of certain type of element (in this case, ElasticBeamColumn element), the RANS

server will be consulted to find the online element service. Once the communication between the

element service and the central server is established, the analysis can continue as if the element

resides on the central server.

Figure 4.11: Web interface for registration and naming service

During the simulation, selected analysis results are saved in the database, and certain

information will be returned to the user’s browser to inform the progress of the simulation

(similar to Figure 3.10(b)). After the analysis is finished, typical analysis results can be queried,

or the results can be downloaded from the server and saved as a data file. To facilitate the

96

plotting of analysis results in a user’s web browser, the MATLAB-based distributed

postprocessing service is employed in this example. For example, if the user wants to plot the

response time history of node 1 (which is the left node on the 18th floor of the structural model),

the central server (opensees.Stanford.edu) will forward the time history response data to the

MATLAB-based service running on a separate computer (in this case, epic21.stanford.edu).

Once the postprocessing service receives the request, it automatically starts a MATLAB process

to plot the time history response and then save it in a file of PNG (Portable Network Graphics)

format. In responding to the user’s request, this file can later be sent to the client and be plotted

on the user’s browser, as shown in Figure 4.13.

In this example, the simulation was the result of the collaboration among four computers

and several services running on these computers. The services may be distributed on different

computers on the Internet, residing within their own address space outside of the central server,

and yet they appear as though they were local to the client.

opensees.stanford.edu epic21.stanford.edugalerkin.stanford.edu
Element Service

(ElasticBeamColumn)
Postprocessing Servi

(Matlab Software)
Core Server
(OpenSees)

Client
1

3

2
4

5

Figure 4.12: Interaction of distributed services

97

Figure 4.13: Graphical response time history of node 1

4.4.2 Performance of Online Element Services

To assess the relative performance, we compare three types of ElasticBeamColumn element

service developed for the analysis model: static element library, distributed element service, and

dynamic shared library element service. The static element library is the traditional way of

incorporating new elements, and the static ElsticBeamColumn element runs on the same

computer (opensees.Stanford.edu) as the core server. On the other hand, the distributed element

service and shared library element service are located on a separate computer named

galerkin.Stanford.edu. To assess the performance of each type of element service, structural

simulations are performed on the 18-story, one-bay model. Table 4.3 lists the total analysis time

for the simulations with different types of element services. The number of time steps shown on

the table indicates the number of data points used in the input earthquake record.

From Table 4.3, we can see that the distributed element service imposes severe

performance penalty to the system. This is mainly because the network communication is

handled at the element level. For every action on every element (sending input data, obtaining

stiffness, etc.), a remote method is invoked. Compared with a local method call, a remote

method invocation has higher cost, which involves the time for parameter marshalling and

98

unmarshalling, the initialization cost, the network latency, the communication cost, and other

types of associated performance penalties. One avenue to improve the performance is to bundle

the network communication. Instead of using the fine-grain element level communication, both

sides of the element service can set up a buffer for temporarily storing element data. The

element data will then be sent out when there is enough number (say, 20) of elements saved in

the buffer. This method would be able to reduce the cost associated with remote method

initialization and network latency.

Table 4.3: Performance of using different element services

Number of time
steps

Static library
Element Service

Distributed
Element Service

Shared library
Element Service

50 4.25 s 108.06 s 8.91 s

300 38.24 s 856.95 s 51.53 s

1500 204.47 s 6245.6 s 284.82 s

The shared library element service has better system performance than the distributed

element service and yet not losing the flexibility and other benefits of distributed services.

However, the shared library element service does incur performance overhead compared with the

static element service. The performance overhead is primarily associated with the downloading

of library files and the runtime dynamic binding of libraries. To reduce these costs, two types of

local caching techniques could be utilized: one is related to static file caching, the other is

runtime shared library caching. As we discussed earlier, the RANS sever has a simple

versioning mechanism to keep track of the modifications to element services. If there are no

major changes to a shared library service, the downloaded copy of the shared library could be

reused, eliminating the need for downloading library files. During the analysis core server’s

initialization phase, the registered shared libraries are loaded and bound with the analysis core.

If there are no newer versions of the libraries, these shared libraries will stay loaded on the

server. When the shared library element service is accessed, the library loading process then is

not needed. By adopting these caching techniques, the performance gap between using shared

library element service and using static element service can be reduced.

99

4.5 SUMMARY AND DISCUSSION

The collaborative framework as discussed in the previous chapter consists of six distinct

modules, and this chapter describes three of them, namely the registration and naming service,

the distributed element service, and the dynamic shared library element service. The RANS

sever allows the analysis core to find the registered services and to monitor the modifications to

these services. Since RANS guarantees that a unique name is associated with each service, the

name can be used to query and identify a service. The distributed element service and dynamic

shared library element service are two forms of online element services, which are introduced to

the core framework to facilitate the distributed usage and the collaborative development of an

finite element structural analysis program. An element service may be developed as a

component that can be easily integrated with the core server through a plug-and-play

environment.

The collaborative framework has multiple benefits, within which two prominent ones are

standardized interface and network transparency. An online service is best defined in terms of

the protocol it uses, rather than particular software participated in the system. Any

implementation of these protocols is able to participate in the system, interoperating with

completely independent implementations, but using the same protocols. The standard

communication protocols allow a service to be replaced easily and facilitate the concurrent

development of standardized components. The collaborative framework system provides an

execution environment that is network transparent. Being network transparent means the

execution environment provides an abstraction that is the same whether executing locally,

remotely, or distributively — the network is not visible. End users of the collaborative

framework do not need to be aware of the complexity of the core server (in terms of both

hardware and software infrastructure), hence they do not have the associated development and

maintenance challenges.

The collaborative framework with online services described in this chapter does not

address issues of authentication and security. The security issues could be addressed at the

network level, especially by utilizing the Public Key Infrastructure (PKI) that supports digital

signatures and other public key-enabled security services (Stallings 1998). One example of

managing security for high-performance distributed computing is the security architecture

(Foster et al. 1998) used for Computational Grid (Foster et al. 2001), where the integrity and

100

confidentiality of communications are ensured. Another issue of the collaborative framework is

scalability. The current implementation relies on Java’s multithreading feature to handle

simultaneous requests. Our test result shows that the performance will be substantially degraded

when more than a dozen clients access the server simultaneously. This scalability problem could

be tackled by providing multiple core servers, utilizing more powerful computers, and deploying

parallel and distributed computing environments (De-Santiago and Law 2000; Mackay and Law

1996).

101

5 Data Access and Project Management

The importance of engineering data management is increasingly emphasized in both industrial

and academic communities. The objective of using an engineering database is to provide the

users the needed engineering information from readily accessible sources in a ready-to-use

format for further manipulation. Such a trend can also be observed in the field of finite element

analysis. Modern finite element programs are increasingly required to be linked to other

software such as CAD, graphical processing software, or databases (Mackie 1997). Data

integration problems are mounting as engineers confront the need to move information from one

computer program to another in a reliable and organized manner. The handling of data shared

between disparate systems requires the definition of persistent and standard representations of

the data, and corresponding interfaces to query the data. Data must be represented in such a

manner that they can facilitate inter-operation with people or mechanisms that use other

persistent representations (van-Engelen et al. 2000).

This chapter presents a prototype implementation of an online data access system for the

open collaborative software framework {Peng, 2002 #167}. In this work, a COTS database

system is linked with the central server to provide the persistent storage of selected analysis

results. By adopting a COTS database system, we can address many of the problems

encountered by the prevailing file system-based data management. Current trends indicate that

the commercial database industry is shifting to use the Internet as the preferred data delivery

vehicle. Various Internet computing is supported by backend databases. Finite element

computing is no exception. The online data access system would allow the users to query the

core server for useful analysis results, and the information retrieved from the database through

the core server is returned to the users in a standard format. Since the system is using a

centralized server model, the data management system can also support project management and

version control of the projects.

This chapter is organized as follows:

102

• Section 5.1 presents the multi-tiered architecture of the online data access system. The

communications between different tiers are discussed.

• The data storage scheme is presented in Section 5.2. A selective data storage scheme is

introduced to provide flexible support for the tradeoff between the time used for

reconstructing an analysis domain and the space used for storing the analysis results.

• Section 5.3 describes the data representations of the online data access system. Both

internal and external data representations are described.

• Section 5.4 discusses several issues regarding data query and retrieval. A data query

language is introduced in this section, and the data query interfaces are presented.

• Section 5.5 presents two test case examples for the usage of the data access and project

management system. The benefits of using the proposed data access system are

discussed in this section.

5.1 MULTI TIERED ARCHITECTURE

As shown in Figure 3.3, the online data access system is designed as one module of the Internet-

enabled collaborative framework to provide researchers and engineers with easy and efficient

access to the structural analysis results. During an analysis, certain selected results and pertinent

data are saved, and a data storage and access system is employed to manage these data.

To design a data management system, we first need to decide what kind of media should

be used to store the data. Presently, the data storage for finite element analysis programs

primarily relies on file systems. Since most modern operating systems have built-in support for

file usage, directly using file systems to store data is a straightforward process. However, there

are many intrinsic drawbacks associated with the direct usage of file system for storing large

volume of data. File systems generally do not guarantee that data cannot be lost if the data are

not backed up, and they do not support efficient random access in which case the locations of

data items in a particular file are unknown. Furthermore, file systems do not provide direct

support for a query language to access the data in files, and their support for a schema of the data

is limited to the creation of file directory structures. Finally, file systems cannot guarantee data

integrity in the case of concurrent access. Instead of directly using the file systems to store the

analysis results of a finite element analysis, these results can also be saved in database systems.

Most database management systems (DBMS) allow certain structures for the saved data, allow

103

the users to query and modify the data, and help manage very large amounts of data and many

concurrent operations on the data. In the prototype implementation of the online data access and

management system, both file systems and database systems can be employed for data storage.

Because of the benefits of database systems over file systems, we focus our efforts on using

database systems to store the selected analysis results. Similar techniques used with database

systems can be directly applied to data management systems based on file systems.

As depicted in Figure 5.1, a COTS database system is linked with the central server to

provide persistent storage of selected analysis results for the open collaborative software

framework. Since the analysis core of the open collaborative framework resides on a central

server as a computing engine, the online data access system needs to be designed accordingly.

Figure 5.1 depicts the architecture of the online data access system. A multitiered architecture is

employed as opposed to the traditional two-tier client-server architecture. The multitiered

architecture provides a flexible mechanism to organize distributed client-server systems. Since

components in the system are modular and self-contained, they could be designed and developed

separately. The multitiered online data access system has the following components:

Browser WebServer
Database

AppServer

Java
Servlet

OpenSees

Dynamic

HTML

With

JavaScript

Pages

ORACLE
8i

Apache
With

Tomcat
Stored

Procedure

ODBC
JDBC

Presentation
Server

Application
Server

Data
Server

Browser WebServer
Database

AppServer

Java
Servlet

OpenSees

Dynamic

HTML

With

JavaScript

Pages

ORACLEApache
With

Tomcat
Stored

Procedure

Remote
Client

Presentation
Server

Application
Server

Data
Server

Browser
MATLAB

Java
Servlets

WebServer

JDBC
ODBC

Database

DB_Datastore
sendSelf()
recvSelf()

AppServer

Apache
Tomcat

OpenSees

Dynamic

HTML

With

JavaScript

Pages

ORACLE 8i
or MySQL

Presentation
Server

Application
Server

Data
Server

Browser WebServer
Database

AppServer

Java
Servlet

OpenSees

Dynamic

HTML

With

JavaScript

Pages

ORACLE
8i

Apache
With

Tomcat
Stored

Procedure

ODBC
JDBC

Presentation
Server

Application
Server

Data
Server

Browser WebServer
Database

AppServer

Java
Servlet

OpenSees

Dynamic

HTML

With

JavaScript

Pages

ORACLEApache
With

Tomcat
Stored

Procedure

Remote
Client

Presentation
Server

Application
Server

Data
Server

Browser
MATLAB

Java
Servlets

WebServer

JDBC
ODBC

Database

DB_Datastore
sendSelf()
recvSelf()

AppServer

Apache
Tomcat

OpenSees

Dynamic

HTML

With

JavaScript

Pages

ORACLE 8i
or MySQL

Presentation
Server

Application
Server

Data
Server

Figure 5.1: Online data access system architecture

• A standard interface is provided for the Remote Client programs to access the server

system. Application programs, such as web browsers or MATLAB, can access the server

core and the analysis results from the client site via the predefined communication

protocols. Using dynamic HTML pages and JavaScript code, together with the

104

mathematical manipulation and graphic display capability of MATLAB, the client has the

ability to specify the format and views of analysis results.

• Java Servlet-enabled Web Server is employed to receive the requests from the clients

and forward them to the Application Server. The Web Server also plays the role of

reformatting the analysis results in certain HTML format for the web-based clients. In

the prototype system, an Apache HTTP web server is employed to handle the requests

from the users, and Apache Tomcat is employed as the Java Servlet server. Details about

the Web Server have been discussed earlier in Chapter 3.

• The Application Server is the middle layer for handling communication between the

Web Server and the Data Server. The Application Server also provides the core

functionalities for performing analyses and generating analysis results. In the prototype

system, the finite element analysis core is situated in the Application Server. Since the

analysis core is a C++ application, the integration of the analysis core with Java Servlet

server needs to be handled with special care. In order to keep the design modular, the

communication between Java applications (Servlet server) and C++ program (the

analysis core) is handled in the data access system via a socket connection, instead of

directly using JNI. Specific socket classes written in both Java and C++ are implemented

to provide communication channels between Java Servlets and the analysis core

application.

• A COTS database system is utilized as the Data Server for the storage and retrieval of

selected analysis results. Examples of COTS database systems include: Oracle (Kyte

2001) and MySQL (DuBois and Widenius 1999). The communication between the

Application Server and the Database is handled via the standard data access interfaces

based on Open Database Connectivity (ODBC) that most COTS database systems

provide. ODBC makes it possible to access different database systems with a common

language.

In this research, OpenSees (McKenna 1997) is employed as the finite element analysis

platform for the analysis core in the Internet-enabled collaborative software framework. To

facilitate the data storage and access, a new class, FE_Datastore, is introduced to the object-

oriented FEA core program OpenSees, as shown in Figure 5.2. The FE_Datastore is a subclass

of the Channel class, which is implemented in OpenSees to facilitate data communication

between two processes. A FE_Datastore object is associated with a Domain object to store and

105

retrieve the state of this Domain object. The FE_Datastore class has many subclasses, including

File_Datastore and DB_Datastore. The File_Datastore class is introduced to facilitate the

storage of analysis results in a file system. The DB_Datastore is the subclass that defines the

interface between OpenSees and a database system. The DB_Datastore class uses Open

Database Connectivity (ODBC) to send and retrieve data between the OpenSees core objects and

a COTS database. Since the state of domain objects (Node, Element, Constraint, and Load, etc.)

can be represented as either a byte stream or a sequence of ID, Vector, and Matrix objects, the

DB_Datastore class provides methods to send and receive byte streams, ID, Vector and Matrix

objects. The interface for the DB_Datastore class is shown in Figure 5.3. Subclasses of the

DB_Datastore class are implemented for different database systems; for example,

OracleDatastore class is implemented for the Oracle database system and MysqlDatastore class

is implemented for the MySQL database system. Other database systems can be included by

defining new subclasses of DB_Datastore class.

ModelBuilder AnalysisDomain

FE_Datastore

File_DatastoreDB_Datastore

MysqlDatastoreOracleDatastore

Figure 5.2: Class diagram for FE_datastore

5.2 DATA STORAGE SCHEME

The usage of a database system in the online data access system has two distinct phases. The

first phase is during the finite element analysis of a model, in which certain selected analysis

results are stored in the database. The second phase occurs during the postprocessing of a finite

element analysis, where the analysis results are queried for the response of the analysis model.

106

The goal of the data storage is to facilitate the data query, and the design of a data storage

scheme is to make the data query efficient and to minimize storage space. Rather than storing all

the interim and final analysis results, the online data management system allows saving only

selected analysis data in the database. That is, the user has the flexibility to specify storing only

certain selected data during a structural analysis. All the other analysis results can be accessed

through the analysis core with certain recomputation. The selective storage scheme can

substantially reduce the data storage space without severely sacrificing the performance of

accessing the analysis results.

class DB_Datastore {
 DB_Datastore(char* dbName, Domain &theDomain,
 FEM_ObjectBroker &broker);
 ~DB_Datastore();

 // method to get a database tag.
 int getDbTag(void);
 // methods to set and get a project tag.
 int getProjTag();
 void setProjTag(int projectTag);

 virtual int sendObj(int commitTag, MovableObject &theObject,
 ChannelAddress *theAddress);
 virtual int recvObj(int commitTag, MovableObject &theObject,
 FEM_ObjectBroker &theBroker, ChannelAddress *theAddress);

 virtual int sendMatrix(int dbTag, int commitTag,
 const Matrix &theMatrix, ChannelAddress *theAddress);
 virtual int recvMatrix(int dbTag, int commitTag,
 Matrix &theMatrix, ChannelAddress *theAddress);

 virtual int sendVector(int dbTag, int commitTag,
 const Vector &theVector, ChannelAddress *theAddress);
 virtual int recvVector(int dbTag, int commitTag,
 Vector &theVector, ChannelAddress *theAddress);

 virtual int sendID(int dbTag, int commitTag,
 const ID &theID, ChannelAddress *theAddress);
 virtual int recvID(int dbTag, int commitTag,
 ID &theID, ChannelAddress *theAddress);
}

Figure 5.3: Interface for DB_Datastore class

5.2.1 Selective Data Storage

A typical finite element analysis generates a large volume of data. The analysis results can be

saved and retrieved in two ways. One approach is to predefine all the required data and save

107

only those predefined data during the analysis. However, when analysis results other than the

predefined ones are needed, a complete re-analysis is needed to generate those analysis results.

For a nonlinear dynamic analysis of large structural models, the analysis needs to be restarted

from scratch, which is an expensive process in terms of both processing time and storage

requirements. The other approach is simply dumping all the interim and final analysis data into

files, which are then utilized later to retrieve the required results as a postprocessing task. The

drawbacks of this approach are the substantial amount of storage space and the potential poor

performance due to the expensive search on the large data files.

An alternative is to store only selected data, rather than storing all interim and final

analysis results. Many approaches can be adopted for selecting the data to be stored during an

analysis. The objective is to minimize the amount of storage space without severely sacrificing

performance. For many commercial finite element analysis packages, such as ANSYS and

ABAQUS, two types of output files can be created during an analysis. One type is a results file

containing results for postprocessing. The results file is the primary medium for storing results

in computer readable form. The results file can also be used as a convenient medium for

importing analysis results into other postprocessing programs. Users are able to specify in the

analysis input the kind of data to be saved in the results file. The other type of output file is a

restart file containing results for continuing an analysis or for postprocessing. The restart file

essentially stores the state of an analysis domain so that it can be used for subsequent

continuation of an analysis. Users are allowed to specify the frequency at which results will be

written to the restart file.

In the engineering data access system, these two types of data storage (results and restart)

are also supported. The data access system allows the collection of certain information to be

saved as the analysis progresses, e.g., the maximum nodal displacement at a node or the time

history response of a nodal displacement. A Recorder class is introduced in OpenSees to

facilitate the selective data storage during an analysis. The Recorder class can keep track of the

progress of an analysis and output the users’ prespecified results. Details about the usage of the

Recorder command have been described elsewhere by McKenna (McKenna and Fenves 2001).

Besides the recording functionalities, the data access system also has the restart capability.

Certain selected data are stored during the analysis that allows the analysis domain to be restored

to a particular state. The selected data need to be sufficient for the recomputation during

postprocessing. In the data access system, we use object serialization (Breg and

108

Polychronopoulos 2001) to facilitate the restart function. Object serialization captures the state

of an object and writes the state information in a persistent representation, for example in the

form of a byte stream. Consider a Truss element as an example: its nodes, dimension, number of

DOFs, length, area, and material properties can be saved in a file or a database system during an

analysis. Based on these stored data, a copy of the Truss object can be restored, and the stiffness

matrix of the Truss element can then be regenerated. The object serialization technique can be

associated with other storage management strategies to further reduce the amount of storage

space. As an example, a data storage strategy named sampling at a specified interval (SASI) can

be applied to nonlinear incremental analyses to dramatically reduce the storage requirement.

The restart function introduced in the engineering data access system is different,

however, from those supported by current commercial finite element programs (e.g., ANSYS,

ABAQUS, etc.). The restart function in the data access system relies on object serialization,

which allows the developer of each class to decide what kind of information needs to be saved.

As long as a replica of an object can be recreated with the saved data, the developer of the class

can freely manipulate the saved data. This decentralized development control provides great

flexibility and extendibility to the developers, especially in a distributed and collaborative

development environment. For most commercial finite element programs, the data saved in the

restart file must conform to certain data format. Furthermore, the restart file of most commercial

finite element programs is organized as a sequential file, which may make the data retrieval

efficient. On the other hand, the restart data saved in the data access system is retrieved

randomly — the state of a particular object is accessed through a key value. Therefore, a

particular object or a subdomain of the finite element domain can be easily restored without

retrieving unnecessary data. Because COTS database systems generally have indexing capability

to support key-based searching, the required data retrieval mechanism of the data access system

is one reason that makes COTS database systems preferable to file systems.

In the data access system, a COTS database system is associated with the finite element

analysis core to provide data storage and query. For a typical structural analysis, the analysis

core stores selected data into the database. During the postprocessing phase, a request from a

client for a certain analysis result is submitted to the analysis core instead of directly querying

the database. Upon receiving the request, the analysis core automatically queries the database

for saved data to instantiate the required new objects. If necessary, these objects are initialized to

restart the analysis to generate the requested results. Compared with reperforming the entire

109

analysis to obtain the data that are not predefined, recomputation is more efficient, since only a

small portion of the program is executed with the goal of fulfilling the request. As opposed to

storing all the data needed to answer all queries, the selective storage strategy can significantly

reduce the amount of data to be stored in the data management system.

5.2.2 Object Serialization

Ordinarily, an object lasts no longer than the program that creates it. In this context, persistence

is the ability of an object to record its state so that the object can be reproduced in the future,

even in another runtime environment. To provide persistence for objects, we can adopt a

technique called “object serialization,” where the internal data structures of an object are mapped

to a serialized representation that can be sent, stored, and retrieved by other applications.

Through object serialization, the object can be shared outside the address space of an application

by other application programs. A persistent object might store its state in a file or a database,

which is then used to restore the object in a different runtime environment. The object

serialization technique is one of the built-in features of Java and is used extensively in Java to

support object storage and object transmission. There are currently three common forms of

object serialization implementation in C++ (Slominski et al. 2001):

• Java Model: The Java serialization model stores all non-transient member data and

functions for a serializable object by default. The user can change the default behavior

by overriding the object’s readObject() and writeObject() methods, which

specify the behaviors for serialization and deserialization of the object, respectively. This

behavior can be emulated in C++ by ensuring that each serializable object implements

two methods: one for serialization and another for deserialization.

• HPC++ Model: HPC++ (Diwan 1999) is a C++ library and a set of tools being

developed by the HPC++ Consortium to support a standard model for portable parallel

C++ programming. The serialization model was originally introduced in HPC++ to share

objects in a network environment to facilitate parallel and distributed computing. Every

serializable object declares a global function to be its friend. The runtime environment

then uses this global function to access an object’s internal state to serialize or deserialize

110

it. In C++, a class can declare an individual function as a friend, and this friend function

has access to the class’ private members without itself being a member of that class.

• Template Factory Model: The template factory-based serialization model is used in

Java Beans (Lunney and McCaughey 2000), and this model can be emulated in C++. A

template is defined for each object type by a template factory. For serialization, the

runtime environment can invoke the serialization method setX() of each object to write

the state of the object to a stream. For deserialization, the type of an object needs to be

obtained from its byte stream representation first. A template of the object then can be

created by the template factory based on the object type. Subsequently, the internal states

of the object need to be accessed from the stream with getX() method. Since a

template of the object can be created based on its type and the template usually already

includes some member data and methods, the setX() method only needs to write the

member data that are not defined in the template. This is the major difference between

the template factory model and the Java model, whose writeObject() method

accesses all the member data and methods.

In the data access system, object serialization is supported via a technique that is similar

to the Template Factory Model. In the implementation of the analysis core program OpenSees,

all the modeling classes (Domain, Node, Element, Constraint, and Load, etc.), and Numerical

classes (Matrix, Vector, ID, and Tensor, etc.) share a common superclass named MovableObject.

The Interface for the MovableObject class is shown in Figure 5.4. The MovableObject class

defines two important member methods: sendSelf() and recvSelf(). The sendSelf()

method is responsible for writing the state of the object so that the corresponding recvSelf()

method can restore it. The methods sendSelf() and recvSelf() rely on a particular type

of Channel object to communicate with remote processes, which could be a remote application, a

file system or a database system.

In the data access system, the Domain state can be saved (serialization) in a database

system during a structural analysis. The stored Domain state can then be restored

(deserialization) during the postprocessing of the structural analysis to facilitate data query

processing. Since a Domain object is the container for all the modeling component objects such

as Node, Element, Load, and Constraint, the Domain object can invoke the serialization behavior

of its component object to serialize itself.

111

class MovableObject
{
 public:
 MovableObject(int classTag, int dbTag);
 virtual ~MovableObject();

 int getClassTag(void) const;
 int getDbTag(void) const;
 void setDbTag(int dbTag);

 virtual int sendSelf(int commitTag, Channel &theChannel)=0;
 virtual int recvSelf(int commitTag, Channel &theChannel,
 FEM_ObjectBroker &theBroker) =0;
}

 Figure 5.4: Interface for MovableObject class

During Domain serialization, the Domain object accesses all its contained component

objects and invokes the corresponding sendSelf() methods on the component objects to send

out their state. The object state will then be piped to certain storage media (file system or

database system) by a specified Channel object. For each component object, the first field that

sends out is an integer classTag, which is a unique value used in OpenSees to identify the type of

an object.

During Domain deserialization, the prestored data can be used to restore the Domain and

its contained components. For each component, we first retrieve its classTag from the stored

data. The retrieved classTag then can be passed to the template factory, which is a class named

FEM_ObjectBroker. The main method defined in the FEM_ObjectBroker class is

MovableObject* getObjectPtr(int classTag);

A template of the class corresponding to the classTag can be created by calling the

constructor of the class that has no arguments. The returned value is a pointer to an object with

the generic MovableObject type. Since each object knows its own type (a feature supported by

the object-oriented polymorphism), the returned MovableObject can be further cast to create a

specific template of the object. After a template for the object has been created, the remaining

task of creating a replica of the object is to fill in the member fields. This can be achieved by

calling the member method recvSelf() of the object, which is responsible for reading the

member fields from the associated Channel object. The restored component objects can then be

added to the Domain object. Figure 5.5 illustrates the process of invoking recvSelf() on a

Domain object to restore its state to a specific step.

112

Domain::recvSelf(int savedStep, Channel &database,
 FEM_ObjectBroker &theBroker)
{
 // First we receive the data regarding the state of the Domain.
 ID domainData(this->DOMAIN_SIZE);
 database.recvID(this->INIT_DB_TAG, savedStep, domainData);

 // We can restore Nodes based on saved information.
 int numNodes = domainData(this->NODE_INDEX);
 int nodeDBTag = domainData(this->NODE_DB_TAG);

 // Receive the data regarding type and dbTag of the Nodes.
 ID nodesData(2*numNodes);
 database.recvID(nodeDBTag, savedStep, nodesData);

 for (i = 0; i < numNodes; i++) {
 int classTagNode = nodeData(2*i);
 int dbTagNode = nodeData(2*i+1);
 // Create a template of the Node based on its classTag.
 MovableObject *theNode = theBroker.getObjectPtr(classTagNode);
 // The Node itself tries to restore its state.
 theNode->recvSelf(savedStep, database, theBroker);
 // Add this Node to be a component of the Domain.
 this->addNode(theNode);
 }

 // Same as Nodes above, we rebuild Elements, Constraints, and Loads
 ...
}

Figure 5.5: Pseudo code for recvSelf method of the Domain class

5.2.3 Sampling at a Specified Interval

We illustrate the usage of selective data storage strategies in this section by sampling the results

at specified intervals (SASI). This data storage strategy can be applied for nonlinear incremental

analysis. For numerical analysis of structures, formulation of equilibrium on the deformed

geometry of a structure, together with nonlinear behavior of materials, will result in a system of

nonlinear stiffness equations. One method for solving these equations is to approximate their

non-linearity with a piecewise segmental fit (McGuire et al. 2000). For example, the single-step

incremental method employs a strategy that is analogous to solving systems of linear or

nonlinear differential equations by the Runge-Kutta methods. In general, the incremental

analysis can be cast in the form

}{}{}{ 1 iii d∆+∆=∆ −

113

where {∆i-1} and {∆i} are the total displacements at the end of the previous and current load

increments, respectively. The increment of unknown displacements {d∆i} is found in a single

step by solving the linear system of equations

}{}]{[iii dPdK =∆

where][iK and }{ idP represents the incremental stiffness and load respectively.

In contrast to the single-step schemes, the iterative methods need not use a single

stiffness in each load increment. Instead, increments can be subdivided into a number of steps,

each of which is a cycle in an iterative process aimed at satisfying the requirements of

equilibrium within a specified tolerance. The displacement equation thus can be modified to

∑
=

− ∆+∆=∆
im

j

j
iii d

1
1 }{}{}{

where mi is the number of iterative steps required in the ith load increment. In each step j, the

unknown displacements are found by solving the linear system of equations

}{}{}]{[11 −− +=∆ j
i

j
i

j
i

j
i RdPdK

where][1−j
iK is the stiffness evaluated using the deformed geometry and corresponding element

forces up to and including the previous iteration, and }{ 1−j
iR represents the imbalance between

the existing external and internal forces. This unbalanced load vector can be calculated

according to

}{}{}{ 111 −−− −= j
i

j
i

j
i FPR

where }{ 1−j
iP is the total external force applied and }{ 1−j

iF is a vector of net internal forces

produced by summing the existing element end forces at each global degree of freedom. Note

that in the above equations, the subscript is used to indicate a particular increment and the

superscript represents an iterative step.

From the above equations, it can be seen that the state of the domain at a certain step is

dependent only on the state of the domain at the immediate previous step. This is applicable for

both incremental single-step methods and some of the incremental-iterative methods (such as

Newton-Raphson scheme). Based on this observation, a discrete storage strategy can be applied

to nonlinear structural analysis. More specifically, instead of storing all the analysis results, the

114

state information of a nonlinear analysis is saved at a specified interval (e.g., every 10 steps or

other appropriate number of steps, instead of every step). The saved state information needs to

be sufficient to restore the domain to that particular step. As discussed earlier, object

serialization can be used to guarantee this requirement.

During the postprocessing phase, the data requests are forwarded from the remote client

site to the analysis core. After receiving the requests, the analysis core will search the database

to find the closest sampled point that is less than or equal to the queried step. The core then

fetches the data from the database to obtain the necessary state information for that step. These

fetched data will be sufficient to restore the domain to that sampled step. After the domain

restores itself to the required step, the core can progress itself to reach the queried time or

incremental step. The details of this process are illustrated in the pseudo code shown in Figure

5.6. Once the state of the queried step is restored, the data queries regarding the domain at that

step can be processed by calling the corresponding member functions of the restored domain

objects. Since the domain state is saved only at the sampled steps, the total storage space is

dramatically reduced as opposed to saving the domain state at all the steps. Compared with

restarting the analysis from the original step, the processing time needed by using SASI (i.e.,

restarting the analysis from a sampled step) can potentially be reduced significantly. The same

strategy can also be designed for other types of analyses (such as for time-dependent problems).

5.3 DATA REPRESENTATION

In the data access system of the collaborative framework, data are organized internally within the

FEA analysis core using an object-oriented model. Data saved in the COTS databases are

represented in three basic data types: Matrix, Vector, and ID. Project management and version

control capabilities are also supported by the system. For external data representation, XML

(eXtensible Markup Language) (Hunter et al. 2001) is chosen as the standard for representing

data in a platform-independent manner. Since the internal and external data representations are

different, a certain data translation mechanism is needed.

115

Domain* convertToState(int requestStep, char* dbName,
 double convergenceTest)
{
 Domain* theDomain = new Domain();
 FEM_OjbectBroker *theBroker = new FEM_ObjectBroker();
 DB_Datastore *database = new DB_Datastore(dbName,
 *theDomain, *theBroker);

 // Find the sampled largest time step that is <= requestStep.
 int savedStep = findMiniMax(*database, requestStep);

 // The domain restores itself to the state of savedStep.
 theDomain->recvSelf(savedStep, *database, *theBroker);

 // The first parameter is dLamda, the second is numIncrements.
 Integrator *theIntegrator = new LoadControl(0.1, 10);
 SolutionAlgorithm *theAlgorithm =

new NewtonRaphson(convergenceTest);

 // Set the links to theAlgorithm with theDomain and theIntegrator.
 theAlgorithm->setLinks(theDomain, theIntegrator);

 // Progress the state of theDomain to the requestStep.
 for (int i = savedStep, i < requestStep; i++) {
 theIntegrator->newStep();
 theAlgorithm->solveCurrentStep();
 theIntegrator->commit();
 }

 return *theDomain;
}

Figure 5.6: Pseudo code for converting domain state

5.3.1 Data Modeling

The role of databases as repositories of information (data) highlighted the importance of data

structures and data representation. Several general approaches for organizing the data models

have been developed. They are the hierarchical approach, the network approach, the relational

approach, and the object-oriented approach. No matter which data model is used, data structures

need to be self-describable (Felippa 1979). The relational model was introduced by Codd (Codd

1970), and has been adopted in several finite element programs to represent the models and the

analysis results (Blackburn et al. 1983; Rajan and Bhatti 1986; Yang 1992).

In the collaborative framework, a relational COTS database system is used as the

backend data management system. A relational database can be perceived by the users to be a

collection of tables, with operators allowing a user to generate new tables and retrieve the data

from the tables. The term schema often refers to a description of the tables and fields along with

116

their relationships in a relational database system. An entity is any distinguishable object to be

represented in the database. While at the conceptual level a user may perceive the database as a

collection of tables, this does not mean that the data in the database is stored internally in tabular

form. At the internal level, the data management system (DBMS) can choose the most suitable

data structures necessary to store the data. This allows the DBMS to look after issues such as

disk seek time, disk rotational latency, transfer time, page size, and data placement to obtain a

system which can respond to user requests much more efficiently than if the users were to

implement the database directly using the file system.

The typical approach in using relational databases for FEA is to create a table for each

type of object that needs to be stored (for example, see Reference (Yang 1992)). This approach,

while straightforward, would require that at least a table be created for each type of object in the

domain. Furthermore, in nonlinear analysis, two tables would have to be created, one for the

geometry and the other for the state information of a time step. Since data structures would grow

with the incorporation of new element and material types for finite element analysis programs,

the static schema definition of most DBMS is incompatible with the evolutionary nature of FEA

software. The static schema definition of most COTS database systems makes them have

difficulties in coping with changes and modification in the evolution of a FEA program —

inconsistencies could be introduced into the database and they are expensive to eliminate.

Since OpenSees is designed and implemented using C++, the internal data structure is

organized in an object-oriented fashion. The object-oriented data structure cannot be easily

mapped into a relational database. As discussed in the last section, object serialization can be

employed efficiently as a linear stream to represent the internal state of an object. The linear

stream can simply be a byte stream or it can be a sequence of matrix-type data, namely ID (array

of integers), Vector (array of real numbers), and Matrix. The byte stream can be stored in the

database as a CLOB in order to achieve good performance for data storage and searching. A

CLOB is a built-in type that stores a Character Large Object Block as an entity in a database

table. Two methods sendObj() and recvObj() are provided in the interface of

DB_Datastore for the storage and retrieval of byte streams. The matrix-type data (ID, Vector,

and Matrix), on the other hand, can be directly stored in a relational database. The

corresponding methods for accessing the matrix-type data are also provided in DB_Datastore

interface. In the current implementation of the online data access system, we focus on using the

matrix-type data to represent and store the state of an object.

117

By using matrix-type data for storing object states, the database schema can be defined

statically. The advantage of this approach is that new classes can be introduced to the analysis

core without the creation of new tables in the relational database. The layer of abstraction

provided by DB_Datastore can alleviate the burden of the FEA software developers, who in this

case are typically finite element analysts, for learning database technologies. As long as a new

class (new element, new material types, etc.) follows the protocols of implementing

sendSelf() and recvSelf(), the objects of the new introduced class can communicate

with the database through a DB_Datastore object. The disadvantage of this approach is that no

information regarding the meaning of the data will exist within the database. Therefore, users

cannot query the database directly to obtain analysis results, e.g., the maximum stress in a

particular type of elements. However, as discussed earlier, the data can be retrieved from the

database by the objects in the core that placed the data there; that is, the semantic information is

embedded in the objects themselves.

5.3.2 Project-Based Data Storage

As shown in Figure 5.1, a database is provided as the backend data storage to facilitate online

data access. Since potentially many users can access the core server to perform structural

analysis and to query the analysis results, a project management scheme is needed. The basic

premise is that most researchers and engineers typically work independently while sharing

information necessary for collaboration. More importantly, they wish to retain control over the

information they make accessible to other members (Krishnamurthy 1996). In the prototype online

data access system, a mechanism to perform version control and access control in order to cope

with project evolution is implemented. The overall database schema is depicted in Figure 5.7.

The schema includes a USER table and a PROJECT table. A user is identified by name and a

project is identified by both its name and version. We use a hierarchical tree structure to

maintain the version set of the projects. To simplify the design, each project has a primary user

associated with it. This super-user has the privilege to modify the access control of a project.

Only the authorized users who have the write permission of a project will be allowed to make

changes on the project and to perform online simulation with the analysis model. Other

registered users only have read permission, in that any manipulation of analysis data is to be

118

done a posteriori (for example, using other external programs such as MATLAB). The access

control information of a project is stored in the ACCESS_CTRL table.

For the storage of nonlinear dynamic simulation results of a typical project, a hybrid

storage strategy is utilized. As mentioned early, the state information saved in the database

follows the SASI strategy. The SASI strategy is very convenient and efficient for servicing the

queries related to a certain time step, e.g., the displacement of Node 24 at time step 462. For

obtaining a response time history, on the other hand, using the state information alone to

reconstruct the domain will not be efficient. This is because a response time history includes the

results from all time steps, and thus constructing a response time history requires the state

information from all time steps to be reconstructed. The performance of reconstructing all time

steps could be as expensive as a complete re-analysis. To alleviate the performance penalty, the

data access system has an option to allow the users to specify their interested response time

histories in the input Tcl file. During the nonlinear dynamic simulation, these predefined

response time histories will be saved in files together with certain description information.

These response time history files can then be accessed directly during the postprocessing phase

without involving expensive recomputation.

N am e
P assW o rd
N am eT ag
La stN a m e
F irs tN am e
E m a il
O rgan iza tion
M isc
C T im e

U S E R

N am e
V ers ion
P ro jT ag
U se rN a m e
D escrip tion
M isc
C T im e

P R O JE C T

P ro jT ag
D B T ag
C om m itT ag
V a lueT ag

M AT R IX

P ro jT ag
D B T ag
C om m itT ag
V a lueT ag

V E C T O R

P ro jT ag
D B T ag
C om m itT ag
V a lueT ag

ID

V a lueT ag
P o s itio n
V a lue

ID V a lu e

V a lueT ag
P o s itio n
V a lue

V E C V a lu e

V a lueT ag
P o s itio n
V a lue

M AT V a lu e

P ro jN am e
P ro jV e rs ion
U se rN a m e
C on tro l

AC C E S S _ C T R L

Figure 5.7: Database schema diagram for online data access system

119

For the storage of the Domain state information at the specified intervals, three tables are

needed to store the basic data types. They are ID, VECTOR, and MATRIX. Figure 5.7 depicts

the schema design of the database and the relations among different tables. For ID, VECTOR,

and MATRIX tables, the attribute projTag identifies the project that an entry belongs to; dbTag

is an internal generated tag to identify the data entry; and commitTag flags the time step.

Together, the set of attributes (projTag, dbTag, commiTag) is used as an index for the database

table. An index on a set of attributes of a relation table is a data structure that makes it efficient

to find those tuples that have a fixed value for the set of attributes. When a relation table is very

large, it becomes expensive to scan all the tuples of a relation to find those tuples that match a

given condition. In this case, an index usually helps with queries in which their attribute is

compared with a constant. This is the most frequently used case for the database queries.

5.3.3 Data Representation in XML

Software applications collaborate by exchanging information. For example, a finite element

program needs to be able to obtain an analysis model from CAD programs and send the analysis

results to design tools. The lack of a reliable, simple, and universally deployed data exchange

model has long impaired effective interoperations among heterogeneous software applications.

The integration of scientific and engineering software is usually a complex programming task.

Achieving data interoperability is often referred to as legacy integration or legacy wrapping,

which has typically been addressed by ad-hoc means. There are several problems associated

with the ad-hoc approach. First, every connection between two systems will most likely require

custom programming. If many systems are involved, a lot of programming effort will be needed.

Furthermore, if there are changes in the logic or data structures in one system, the interface will

probably need to change — again, more need for programming. Finally, these interfaces are

fragile: if some data are corrupted or parameters do not exactly match, unpredictable results can

occur. Error handling and recovery are quite difficult with this approach.

XML (eXtensible Markup Language) (Hunter et al. 2001) can alleviate many of these

programming problems associated with data conversion. XML is a textual language quickly

gaining popularity for data representation and exchange on the Web (Goldman et al. 1999). XML

is a meta-markup language that consists of a set of rules for creating semantic tags used to

120

describe data. An XML element is made up of a start tag, an end tag, and content in between.

The start and end tags describe the content within the tags, which is considered the value of the

element. In addition to tags and values, attributes are provided to annotate elements. Thus,

XML files contain both data and structural information.

In the data access system, XML is adopted as the external data representation for

exchanging data between collaborating applications. Since the internal data of OpenSees is

organized in terms of matrix-type data (Matrix, Vector, and ID objects) and basic-type data

(integer, real, and string, etc.), a mechanism to translate between internal data and external XML

representation is needed. The translation is achieved by adding two services: matrix services and

XML packaging services. The matrix services are responsible for converting matrix-type data

into an XML element, while the XML services can package both XML elements and basic-type

data into XML files. The relation of these two types of services is shown in Figure 5.8.

Matrix
Vector, ID Output

Matrix Services
Generating XML

representation by Matrix
and Vector classes

XML Services
Formatting and buidling

XML documents by
XML classes

XML
Packaging

XML
Element

Integer
Real, String

Figure 5.8: Relation of XML services

The translation between matrix-type data (Matrix, Vector, and ID) and XML elements is

achieved by adding two member functions to the Matrix, Vector, and ID classes to perform data

conversion. These two new member functions are:

char* ObjToXML();

void XMLToObj(char* inputXML);

The function XMLToObj() is used to populate a matrix-type object with an input XML

stream; and the function ObjToXML() is responsible for converting the object member data

121

into XML representation. In order to represent data efficiently, matrix-type entity sets can be

divided into two categories: sparse matrices and full matrices. Figure 5.9 shows the XML

representation of a full matrix (for example, the stiffness matrix of a 2D truss element) and a

sparse matrix (for example, the lumped-mass matrix of a 2D truss element). Since Vector and ID

are normally not sparse, they can be represented in a similar way as full matrix.

(a) Full Matrix (b) Sparse Matrix

Figure 5.9: XML representation of matrix-type data

After matrix-type data are converted into XML elements, the next step is packaging them

with other related information. This can be achieved by adding a new class XMLService to

OpenSees, which is responsible for formatting and building XML documents, as well as

interpreting and parsing input XML documents.

Two data models have been used in the data access system for XML representation. The

relational model is used with tabular information, while the list model is defined for matrix-type

entity sets. Because different mechanisms involved in locating a record of information, the

relational model is different in implementation from the list model. The tabular data essentially

has two parts, one is the metadata that is the schema definition and the other is the content. An

example of the tabular data is the displacement time history response of a node in nonlinear

analysis. The list model is essentially provided for packaging all the related information into a

single XML file. An example of the list model is the description of an element. Figure 5.10

shows the example XML representations for both tabular data and list data.

122

(a) Tabular Data

(b) List Data

Figure 5.10: XML representation of packaged data

5.4 DATA QUERY PROCESSING

For finite element programs, the postprocessing functions need to allow the recovery of analysis

results and provide extensive graphical and numerical tools for gaining an understanding of

results. In this sense, querying the analysis results is an important aspect, and query languages

need to be constructed to retrieve the analysis results. In the online data access system, a data

query processing system is provided to support the interaction between people and application

programs. A data query language is also defined to facilitate data retrieval as well as invoking

postprocessing functionalities. With the query language, users can have uniform access to the

analysis results by using a web browser or other application programs.

123

5.4.1 Data Query Language

The data access system supports both programmed procedures and high-level query languages

for accessing domain models and analysis results. A query language can be used to define,

manipulate, and retrieve information from a database. For instance, for retrieving some

particular result of an analysis, a query can be formed in the high-level and declarative query

language that satisfies the specified syntax and conditions. In the data access system, a query

language is provided to query the analysis result. The DQL (data query language) is defined in a

systematic way and it is capable of querying the analysis results together with invoking certain

postprocessing computation. Combining general query language constructs with domain-related

representations provides a more problem-oriented communication. (Orsborn 1994). The defined

DQL and the programmed procedures have at least two features:

• It provides a unified data query language. No matter what kind of form the data is

presented (whether a relation or a matrix), the data is treated in the same way. It is also

possible to make query on specific entries in a table or individual elements of a matrix.

• The DQL language provides the same syntax for both terminal users (from command

lines) and for those who use the DQL within a programmed procedure. This leads to the

ease of communication between the client and the server, and can save programming

efforts when linking the data access system with other application programs.

As discussed earlier, a hybrid storage strategy is utilized for storing nonlinear dynamic

simulation results. For different types of stored data (results regarding a certain time step or time

history responses), different query commands are needed and different actions are taken. Several

commonly used features of the DQL are illustrated below.

Queries related to a particular time step:

First, we will illustrate the queries related to a particular time step. In order to query the data

related to a specified time step, the Domain state needs to be restored to that time step. For

example, we can use command RESTORE 462, which will trigger the function

convertToState() on the Domain object (shown in Figure 5.6) to restore the Domain state

to time step 462.

124

After the domain has been restored to the time step, queries can be issued for detailed

information. As an example, we can query the displacement from Node number 4,

SELECT disp FROM node=4;

The analysis result can also be queried from other domain object: Element, Constraint,

and Load. For example,

SELECT tangentStiff FROM element=2;

 returns the stiffness matrix of Element number 2.

Besides the general queries, two wildcards are provided. One is the wildcard ‘*’ that

represents all values. For instance, if we want to obtain the displacement from all the nodes, we

can use

SELECT disp FROM node=*;

The other wildcard ‘?’ can be used on a certain object to find out what kind of queries it

can support. For example, the following query

SELECT ? FROM node=1;

returns Node 1:: numDOF crds disp vel accel load mass *

Another class of operations is aggregation. By aggregation, we mean an operation that

forms a single value from a list of related values. In the current implementation, five operators

are provided that apply to a list of related values and produce a summary or aggregation of that

list. These operators are:

SUM, the sum of the values in the list;

AVG, the average of values in the list;

MIN, the least value in the list;

MAX, the greatest value in the list;

COUNT, the number of values in the list.

Queries of time history responses:

The second type of queries is used to access the predefined analysis results, especially the time

history responses. The users are allowed to specify in the Tcl file what kind of information they

want to keep track of. During the structural analysis, these predefined data are stored in files in

the central server site. The files saved in the server can be queried and downloaded by the

clients. The queried time history responses can be saved into files in the client site. The data in

125

the files then can be retrieved for future postprocessing applications. For instance, if we want to

save the displacement time history response of a particular node, the following query can be

issued to the server

SELECT time disp FROM node=1 AND dof=1

SAVEAS node1.out;

If the data are predefined in the Tcl input file and saved during the analysis phase, the

query can return the corresponding saved analysis results. Otherwise, a complete recomputation

is triggered to generate the requested time history response.

5.4.2 Data Query Interfaces

The collaborative framework can offer users access to the analysis core, as well as to the

associated supporting services via the Internet. One of the supporting services is to query

analysis results. Users can compile their query in the client site and then submit it to the central

server. After the server finishes the processing, queried results will return to the users in a

predefined XML format. It is up to the client program to interpret the data and present the data

in a specific format desirable to the users. In the prototype system, two types of data query

interfaces are provided: a web-based interface and a MATLAB-based interface. This client-

server computing environment forms a complete computing framework with a very distinct

division of responsibilities. One benefit of this model is the transparency of software services.

From a user’s perspective, the user is dealing with a single service from a single point-of-entry

— even though the actual data may be saved in the database or regenerated by the analysis core.

For the data access system, a standard World Wide Web browser is employed to provide

the user interaction with the core platform. Although the use of a web browser is not mandatory

for the functionalities of the data access system, using a standard browser interface leverages the

most widely available Internet environment, as well as being a convenient means of quick

prototyping. Figure 5.11 shows the interaction between the web-based client and the data access

server. A typical data query transaction starts with the user supplying his/her data query

intention in a web-based form. After the web server receives the submitted form, it will extract

the useful information and packaging it into a command that conforms to the syntax of the DQL.

Then the command will be issued to the core analysis server to trigger the query of certain data

126

from the database and to perform some recomputation by the analysis core. After the queried

data is generated, it will be sent to the client and presented to the user as a web page.

Database

OpenSees
CORE

Web Server

4

0

1

5

6

2
7

3

Figure 5.11: Interaction diagram of online data access system

The web-based client is convenient and straightforward for the cases when the volume of

the queried data is small. When the data volume is big, especially if some postprocessing is

needed on the data, the direct usage of a web-based client can bear some inconvenience. All too

often the queried analysis results need to be downloaded from the server as a file, and then put

manually into another program to perform postprocessing, e.g., a spreadsheet. For example, if

we want to plot a time history response of a certain node after a dynamic analysis, we might have

to download the response in a data file and then use MATLAB, Excel, or other software

packages to generate the graphical representation. It would be more convenient to directly

utilize some popular application software packages to enhance the interaction between client and

server. In our prototype system, a MATLAB-based user interface is available to take advantage

of the mathematical and graphical processing power of MATLAB. In the implementation, some

extra functions are added to the standard MATLAB in order to handle the network

communication and data processing. These add-on functions can be directly invoked from either

the MATLAB prompt or a MABLAB-based graphical user interface.

127

5.5 APPLICATIONS

A prototype of the online data access and project management system is implemented using Sun

workstations as the hardware platform. The finite element analysis core is based on OpenSees,

and the employed database system is Oracle 8i. The Apache HTTP server is served as the web

server, and Apache Tomcat 4.0 is utilized as the Java Servlet server. MATLAB 6.0 and a

standard web-browser are employed as the user interfaces for accessing the analysis results and

project-related information.

As we discussed earlier, a Tcl input interface is employed in OpenSees to send

commands to the analysis core (McKenna and Fenves 2001). To facilitate data storage and data

access, several new commands are introduced to the Tcl interpreter of OpenSees. The

introduced new Tcl commands are:

• database <databaseName> <databaseType>

The database command is used to construct a FE_Datastore object to build the

communication between OpenSees and a storage media. The first argument to the

database command is databaseName, which can be used to specify the project that the

simulation is related to. The second argument databaseType is used to specify the

type of storage media. Some possible values for databaseType are: File, Oracle,

MySQL, or other types of database systems.

• save <startingStep> <endStep> <stepSize>

The save command can be used to inform the Analysis object to save the domain state

at certain time steps. The three arguments to the save commands are used to specify in

which time steps the domain state needs to be saved. The startingStep defines the

first time step the domain state is saved, the endStep defines the ending criteria, and the

stepSize is the time interval. The usage of these three arguments is analogous to the

usage of arguments in the for loop of C/C++ language.

• restore <step>

The restore command is used to restore the domain state to the specified time step

step. If the domain state of the specified step is not saved in the database, certain

recomputation will be triggered to restore the domain.

128

5.5.1 Example 1: Eighteen Story One Bay Frame Model

The first test case example is the eighteen story two-dimensional one bay frame model shown in

Figure 3.8. For this example, the Newton-Raphson procedure is employed for the nonlinear

structural analysis. Furthermore, the SASI strategy is used to store the domain state at every ten

time steps. The step size (every 10 steps) is specified in the input Tcl file by using the save

command. Besides the saved domain states, the time history displacement values of each node

are saved in files by using the Tcl recorder command.

After the analysis, the results regarding any time step can be queried by using the DQL

commands. The following illustrates example usage of some of the DQL commands. We use C:

for the query command and R: for the queried results.

C: RESTORE 462

This command is used to restore the Domain state to the time step 462. The command

first triggers the analysis core to fetch from the database the saved Domain state at time step

460, which is the closest time step stored before the requested step. The analysis core program

then progresses itself to reach time step 462 using the Newton-Raphson scheme. After the

Domain has been initialized to the step of 462, the wildcard ‘?’ can be used to find the attribute

information of node 1 (which is the left node on the 18th floor) that can be retrieved:

C: SELECT ? FROM node=1;

R: Node 1:: numDOF crds disp vel accel load trialDisp
trialVel trialAccel mass *

For example, we retrieve the displacement information of Node 1 as follows:

C: SELECT disp FROM node=1;

R: Node 1::
 disp= -7.42716 0.04044

The analysis result can also be queried for Element, Constraint, and Load. For instance,

we can query the information related to element 19, which is the left column on the 18th floor.

C: SELECT ? FROM element=19;

R: ElasticBeam2D 19::
 connectedNodes A E I L tangentStiff secantStiff mass damp

129

C: SELECT L E FROM element=19;

R: ElasticBeam2D 19::
L=144 E=29000

As mentioned earlier, five aggregation operators are provided to produce summary or

aggregation information. For instance, the following command produces the maximum

displacement among all the nodes. Please note that both positive and negative maximum values

are presented.

C: SELECT MAX(disp) FROM node=*;

R: MAX(disp)::
Node 1: –7.42716
Node 21: 4.93986

We can also use a DQL command to query the time history response. For instance, if we

want to save the displacement time history response of Node 1, the following query can be

issued to the server

C: SELECT time disp FROM node=1 AND dof=1
SAVEAS node1.out;

After the execution of the command, the displacement time history response of Node 1 is

saved in a file named node1.out. At this stage, we can invoke the added MATLAB-based

interface command res2Dplot(‘node1.out’) to plot the displacement time history

response of Node 1, which is shown in Figure 5.12.

5.5.2 Example 2: Humboldt Bay Middle Channel Bridge Model

The second example is an ongoing research effort within the Pacific Earthquake

Engineering Research (PEER) Center to investigate the seismic performance of the Humboldt

Bay Middle Channel Bridge. This is part of the PEER effort in developing probabilistic seismic

performance assessment methodologies (Cornell and Krawinkler Spring 2000). As shown in

Figure 5.13(a), the Humboldt Bay Middle Channel Bridge is located at Eureka in northern

California. This bridge (shown in Figure 5.13(b)) is a 330 meters long, 9-span composite

structure with precast and prestressed concrete I-girders and cast-in-place concrete slabs to

provide continuity. It is supported on 8 pile groups, each of which consists of 5 to 16 prestressed

concrete piles.

130

Figure 5.14 shows the foundation condition for the bridge and a finite element model for

the bridge. The river channel has an average slope from the banks to the center of about 7% (4

degrees). The foundation soil is mainly composed of dense fine-to-medium sand (SP/SM),

organic silt (OL), and stiff clay layers. In addition, thin layers of loose and soft clay (OL/SM)

are located near the ground surface. The bridge was designed in 1968 and built in 1971. The

bridge has been the object of two Caltrans (California Department of Transportation) seismic

retrofit efforts, the first one designed in 1985 and completed in 1987, and the second designed in

2001 to be completed in 2002.

Figure 5.12: Displacement time history response of node 1

A two-dimensional nonlinear model of the Middle Channel Bridge, including the

superstructure, piers, and supporting piles, was developed using OpenSees as shown in Figure

5.14 (Conte et al. 2002). The bridge piers are modeled using 2-D nonlinear material, fiber beam-

column elements and the abutment joints are modeled using zero-length elasto-plastic gap-hook

elements. A four-node quadrilateral element is used to discretize the soil domain. The soil

below the water table is modeled as an undrained material, and the soil above as dry.

131

(a) Location of the Humboldt Bay Middle Channel Bridge

(b) Aerial Photograph of the Bridge

Figure 5.13: Humboldt Bay middle channel bridge (courtesy of Caltrans)

132

Figure 5.14: Finite element model for Humboldt Bay Bridge (from (Conte et al. 2002))

5.5.2.1 Project Management

In order to conduct probability analysis, approximately sixty ground motion records are to be

applied to the bridge model for damage simulation. The ground motion records are divided into

three hazardous levels based on their probability of occurrence, which are 2%, 10%, and 50% in

fifty years respectively. Since the bridge will perform differently under each ground motion

level, the projects can be grouped according to the applied ground motion records. Figure 5.15 is

a list of some of the Humboldt Bay Bridge projects. When using the project management

developed in this work, the web page is a single point-of-entry for all the project-related

background information, documents, messages, and simulation results. The detailed information

of a particular project can be accessed by clicking on the project name, which is a hyperlink to

the project website.

We will use project X1 (see Figure 5.15) as an illustration. The ground motion applied to

this project is a near-field strong motion, the 1994 Northridge earthquake recorded at the Rinaldi

station (PGA = 0.89g, PGV = 1.85 m/sec, PGD = 0.60 m), with a probability of 2% occurrence

in fifty years. The earthquake record is shown in Figure 5.16. A nonlinear dynamic analysis is

conducted on the model with the input ground motion.

After the nonlinear dynamic analysis is performed on the model, some generated results

can be archived in the web server for sharing information. For example, Figure 5.17 shows the

deformed mesh after the shaking event by applying the strong earthquake motion record. This

figure is saved in the web server and can be accessed by following the link to the project. A

main characteristic in this figure is that the abutments and riverbanks moved towards the center

133

of the river channel. This is a direct consequence of the reduction in soil strength due to pore-

pressure buildup.

Figure 5.15: List of current Humboldt Bay Bridge projects

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 2 4 6 8 10 12 14 16 18 20

Time (second)

A
cc

el
er

at
io

n
 (

g
)

Figure 5.16: 1994 Northridge earthquake recorded at Rinaldi station

Figure 5.17: Deformed mesh of Humboldt Bay Bridge model (from (Conte et al. 2002))

134

5.5.2.2 Data Storage and Data Access

We have conducted a nonlinear dynamic analysis on the Humboldt Bay Bridge model. The

analysis was conducted under three different conditions: without any domain state storage, using

Oracle database to save the domain states at every 20 time steps, and using a file system to save

the domain states at every 20 time steps. The input earthquake record is the 1994 Northridge

earthquake recorded at Rinaldi Station, as shown in Figure 5.16. Table 5.1 shows the solution

time for the nonlinear dynamic analysis. Since the model is fairly large and some expensive

elements (fiber element) and materials (nonlinear) are used in the model, the nonlinear dynamic

analysis requires a significant amount of computational time. As shown in Table 5.1, the usage

of the Oracle database and a file system to store the selected domain states further reduces the

performance.

Table 5.1: Solution time (in minutes) for nonlinear dynamic analysis

Time Steps Analysis Time (mins) Analysis Time (mins)
(With Database)

Analysis Time (mins)
(With Files)

100 262.6 321.6 314.5

500 1249.4 1663.8 1701.1

600 1437.3 1914.3 2026.7

Table 5.2: Solution time (in minutes) for recomputation

Time Steps Analysis Time
(mins)

Re-analysis Time (mins)
(With Database)

Re-analysis Time (mins)
(With Files)

105 281.7 39.4 46.9

539 1309.5 67.9 85.6

612 1464.8 55.7 71.4

Although there are performance penalties for using a database or a file system to save

selected domain states during a nonlinear dynamic analysis, using the data storage can improve

the performance of recomputation during the postprocessing phase. Table 5.2 lists some solution

times for recomputation that restores the domain to certain time steps. If there are no domain

states archived during the analysis phase, we have to start the analysis again from the scratch,

135

which can take a long time. On the other hand, with the selected domain states saved in the

database or file system, we can restore the domain to a certain stored state and then progress the

domain to the requested time step. For example, in order to restore the domain state to the time

step 105, we can retrieve the domain state at time step 100 and then progress the domain to time

step 105 by using the Newton-Raphson scheme. The solution time shown in Table 5.2 clearly

demonstrated that the usage of data storage dramatically improves the performance of

recomputation. The experimental results also showed that the usage of an Oracle database is

generally more efficient than the direct usage of file systems.

As mentioned earlier, a hybrid storage strategy is used to save some selected analysis

results in the database during the nonlinear dynamic simulation. The saved analysis results

include both Domain state information at sampled time steps and user predefined response time

histories. To query results regarding a certain time step, the DQL commands are similar to what

have been used for the previous example; and this process involves restoring the domain to that

time step together with certain recomputation. For obtaining a predefined response time history,

on the other hand, no recomputation is needed. Figure 5.18 shows a typical session using a web-

based user interface, where all the predefined response time histories are listed, and the certain

response results can be searched and downloaded.

Besides the web-based user interface, a MATLAB-based user interface is also available

to take advantage of the mathematical manipulation and graphic display capabilities of

MATLAB. Some functions are added to the standard MATLAB for handling the

network communication and data processing. These commands can be executed from either the

standard MATLAB prompt or the MATLAB-based graphical interfaces. We can issue the

command submitmodel humboldtX1.tcl to submit the input file to the analysis core

server for performing the online simulation. After the analysis, the command queryresult

can be issued to bring up an interactive window. The user can enter DQL commands in this

window to query the analysis results related to a certain time step. To access the predefined

response time histories, the command listResults can be used to generate the list of

response time history files (shown in Figure 5.19(a)). To generate a graphical representation of a

particular response time history, two steps are needed: one for downloading the file and the other

for plotting. For example, we can issue the command getFile press1315_2.out to

download the response time history file and the command

136

res2Dplot(‘press1315_2.out’) to invoke the plotting of the results. The plot is shown

in Figure 5.19(b).

Figure 5.18: Web pages of response time histories

(a) listResults (b) res2Dplot(‘press1315_2.out’)

Figure 5.19: Sample MATLAB-based user interface

137

5.6 SUMMARY AND DISCUSSION

Scientific and engineering database systems have several special requirements compared with

their business counterparts. The dataflow of a finite element analysis program is tightly coupled

with expensive numerical computation. This is one of the main reasons for the lack of a generic

purpose data management system for finite element programs. When a number of programs are

required for engineering simulation or design, the absence of standardization and the lack of

coordination among software developers can result in difficulty in data communication from one

program to another. The result is often manual transfer of data with laborious efforts, time delay,

and potential error. In the effort of trying to alleviate some of the problems, we have introduced

a data access system for a finite element structural analysis program. The main design principle

of the system is to separate data access and data storage from data processing, so that each part

of the system can be designed and implemented separately. By introducing a standard data

representation and a modular infrastructure, each component of the system can be added or

updated without substantial amount of modification to the existing system. By storing abstract

data types (ID, Vector, and Matrix) into the database, it is not necessary to re-implement low-

level dedicated data structures or to redefine new database tables for each added new element or

other components. The utilization of a standard query language and popular query interfaces, as

well as the deployment of the Internet for delivering data, is another factor that makes the system

flexible and extendible. Although this work has focused on a data access system for a finite

element program, the design principles and techniques can be applied to other similar types of

engineering and scientific applications.

For the prototype implementation and testing in this research work, we have utilized an

Oracle database system as the backend data server. The experimental results clearly showed that

a COTS database system can facilitate the data management for a FEA program, and improve the

performance of certain types of queries including queries related to a particular time step of a

nonlinear dynamic analysis. Because the design is flexible and general, other types of database

systems, e.g., MySQL (DuBois and Widenius 1999), BerkeleyDB (Olson et al. 1999), or

Microsoft Access (Andersen 1999), can easily be employed to provide data storage for the data

access system.

In the prototype data access system, the performance may be a concern. This is partly

because of the unstable performance of the Internet, and partly due to the design decision of

138

sacrificing a certain degree of performance for better flexibility and extendibility. However,

compared with the direct usage of file systems, using relational database systems normally

improves the overall performance of the system. By utilizing the selective storage strategy,

especially SASI, the amount of storage space in our system is substantially smaller than the

storage requirement of simply dumping all the analysis data into files. Compared to the

traditional way of redoing the entire analysis to obtain the results that are not predefined, the

recomputation technique used in the data access system could be more efficient because only a

small portion of the program is executed with the goal to fulfill the query request. While the

performance issue does exist, it may be alleviated by efficient optimization of generated code,

and possibly, by indexing techniques. The database indexing techniques have been used in the

prototype data access system to improve the performance of data query.

139

6 Summary and Future Directions

This research has developed an Internet-enabled software framework and has proposed a new

system paradigm for the design and implementation of finite element analysis programs. The

framework allows distributed computers and related software components to function

collaboratively as a single system. Three goals motivated the development of the collaborative

software framework:

• Developing a software framework that would allow engineers and users to easily access a

finite element analysis program running on a server environment.

• Providing a plug-and-play environment where researchers and developers can collaborate

and build incrementally on each other’s developments.

• Providing a data management system to facilitate the access to simulation results and to

perform project management.

This chapter provides a brief summary and discusses some key features of the

collaborative software framework. Furthermore, certain limitations of the system and directions

for future work are discussed.

6.1 SUMMARY

This research is focused on the design and implementation of an Internet-enabled software

framework that can facilitate the development of finite element analysis programs and the access

of simulation results. The main design principle of this collaborative framework is to keep the

software kernel flexible and extendible, so that a diverse group of users and developers can

easily access the platform and attach their own developments to the core server. The

collaborative Internet service architecture would allow new services to be remotely incorporated

into a modular nonlinear dynamic analysis platform. Users can select appropriate services and

can easily replace one service by another without having to recompile or reinitialize the existing

140

services being used. The software framework also allows users to remotely access simulation

results and other related information. There are a number of notable features of the collaborative

software framework.

Component-based modular design is adopted in the collaborative framework to enhance

the usability, flexibility, interoperability, and scalability of the engineering analysis software.

The collaborative framework for the finite element structural analysis program described consists

of six distinct component modules. Each module in the system is well-defined and encapsulated.

In addition, each component module provides and/or requires a set of services interacting with

the core via well-defined interfaces. The modules are “loosely coupled,” and the loose

connectivity among components allows each component to be implemented separately, which

can facilitate concurrent software development. For example, the engineering data access system

is linked with the core server and employs a multitiered modular design, which separates data

access and data storage from data processing. In short, the collaborative framework is a system

where complex groupings of components can interact in diverse ways, and new components can

easily be integrated into the system with a plug-and-play character. Another benefit of

component-based design is that the code changes tend to be localized for the update and

improvement of the system. The localized code change can substantially reduce the efforts of

integrating components and minimize the potential of bugs being introduced.

The research of the collaborative software framework focuses on the design and

implementation of standardized interfaces and protocols. The standard interfaces are defined in

the collaborative framework following the object-oriented design principles to facilitate local

module integration. Standard communication protocols are also defined to allow different

distributed and collaborative element services to participate in the system. Furthermore, this

research has illustrated the ease of incorporating COTS (commercial off-the-shelf) software

components and packages. In the collaborative framework, the user interfaces are based on

COTS software such as web browsers and MATLAB. The database and the web server also use

COTS software as building blocks.

The Internet is utilized in the software framework as a communication channel to link

distributed software services and to access simulation results. The Internet has provided many

possibilities for enhancing the distributive and collaborative software development and

utilization. One important feature of the Internet-enabled framework is network transparency,

which makes it indifferent to users whether code is running locally or remotely. The

141

collaborative framework is based on a number of networking and communication technologies

and the services are distributed over the Internet. The details of networking and data

communication can be very complicated. Ideally, the distributed services need to be as self-

configuring as possible so that the users do not need to bother with the technological details of

the network. The collaborative framework provides an execution environment where users deal

with only a single server. The end users do not need to be aware of the complexity of the core

server in terms of both its hardware and software configurations.

The engineering data access and project management system is provided to manage

simulation results and other pertinent information. This research has illustrated the usage of a

database system that addresses some of the issues associated with traditional engineering data

processing. A selective data storage scheme is introduced to provide flexible support for the

tradeoffs between the time used for reconstructing the analysis domain and the space used for

storing the analysis results. The data access system takes advantage of the nature of the object-

oriented finite element core program to provide the semantics of the data objects. The data saved

in the database system are represented in three basic data types; namely Matrix, Vector, and ID,

so that it is unnecessary to re-implement low-level dedicated data structures or to redefine new

database tables for each added new element or object. The data access system also defines a data

query language to support the interaction with both humans and other application programs.

This research has introduced the potentials of using a project management system for archiving

project-related information and performing access and revision control. The data access and

project management system supports data storage transparency. Data storage transparency

allows the users to choose the available and appropriate data storage media to save the analysis

results. Since a standard interface is implemented to establish the communication between the

analysis core and data storage media, the collaborative framework can interact with either file

systems or commercial database systems. In other words, the implementation of the

collaborative framework does not depend on the types of the storage media employed.

6.2 FUTURE DIRECTIONS

While this research has fulfilled its preliminary goals for a proof-of-concept development of a

collaborative framework to facilitate the development and usage of a finite element analysis

program, much new research and development are needed to further enhance the robustness and

142

functionalities of the software framework. The following comprises a selected few of the

research tasks that are worth future investigation.

Performance of the collaborative framework remains to be a key challenge for the wide

adoption of the collaborative system for engineering practice. Although the distributed service is

a very convenient and flexible way of distributing computational tasks over a network, the

performance penalty imposed by the distributed service is high. One avenue to improve the

performance is to bundle the network communication, a method that would be able to reduce the

cost associated with remote method initialization and network latency. The performance of the

data access system may also be a concern. This performance penalty can be alleviated by

efficient optimization of the generated code, and by employing appropriate indexing techniques.

Another limitation of the collaborative framework is the lack of authentication and

security. Since the collaborative framework supports multiple software services and a great

number of users, the authentication of these parties and the security of the communication are

important to guarantee the integrity of the system. The collaborative framework already

provides a simple mechanism to identify users and projects, and to enforce access control.

Further consideration of the security issues needs to be addressed in the network level, especially

by utilizing the Public Key Infrastructure (PKI) that supports digital signature and other public

key-enabled security services (Stallings 1998).

The scalability of the collaborative system could be further improved. The current

implementation relies on Java’s multithreading feature to handle simultaneous requests from

users. Test results showed that the performance might be substantially degraded when more than

a dozen clients access the server simultaneously. This scalability problem could be tackled by

both hardware and software. Multiple core servers and more powerful computers can be

deployed; especially the locally distributed web-server systems are very promising to improve

the performance and scalability (Cardellini et al. 2002). Another possibility is to enhance the

software framework by utilizing a parallel and distributed computing environment (De-Santiago

and Law 2000; Mackay and Law 1996).

One of the goals of building distributed collaborative systems is to make the software

system more reliable. The idea is that if a machine goes down, some other machines may take

over the job. The approach for improving the availability of the system is duplication and

redundancy – key pieces of hardware and software should be replicated so that if one of them

fails the others will be able to rescue the job. To achieve the goal of fault tolerance and fault

143

recovery, a mechanism is needed to keep track of the state and progress of the analysis so that

the simulation can continue and proper actions can be taken even if some computers are

compromised (De-Santiago 1996).

Two user interfaces have been implemented in the current collaborative framework,

namely the web-based interface and the MATLAB-based interface. These interfaces allow the

users to remotely access the server to perform online simulation, and to query the analysis results

by using the defined data query language. For the MATLAB-based user interface, this research

focuses on network communication and data processing. Work should be continued to further

explore the graphical manipulation power of MATLAB to provide better postprocessing

functionalities. Besides the web-based and the MATLAB-based interfaces, the core server can

link with other software systems, such as Excel and other application programs.

The project management system developed in the collaborative framework allows the

usage of a database system to manage the information related to projects. The actual project data

is stored in distributed machines. Certain access control and revision control capabilities are

provided in the project management system. Continuing developments are needed to improve

the flexibility and functionalities of the project management system. One example is an

automatic notification mechanism to acknowledge and notify the project participants whenever

changes are happened to a particular project.

In conclusion, this research has developed a proof-of-concept prototype system that is

capable of supporting the collaborative development and usage of a finite element analysis

program. The current functionalities of the Internet-enabled software framework have been

demonstrated. The framework, which includes data and project management, provides the basic

building blocks for further development. As discussed, continuing research and development are

needed to address issues such as performance, security, scalability, and distributed and parallel

computing.

144

REFERENCES

Andersen, V. (1999). Access 2000: The Complete Reference, McGraw-Hill Osborne Media,

Berkeley, CA.

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Croz, J. D.,

Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen, D. (1999). LAPACK

Users' Guide, Society for Industrial and Applied Mathematics (SIAM) Press,

Philadelphia, PA.

Anumba, C. J. (1996). "Data Structures and DBMS for Computer-Aided Design Systems."

Advances in Engineering Software, 25(2-3), 123-129.

Archer, G. C. (1996). "Object-Oriented Finite Element Analysis," Ph.D. Thesis, University of

California, Berkeley, CA.

Bathe, K. J. (1995). Finite Element Procedures, Prentice Hall, Upper Saddle River, NJ.

Birrell, A. D., and Nelson, B. J. (1984). "Implementing Remote Procedure Calls." ACM

Transactions on Computer Systems, 2(1), 39-59.

Blackburn, C. L., Storaasli, O. O., and Fulton, R. E. (1983). "The Role and Application of Data

Base Management in Integrated Computer-Aided Design." Journal of Aircraft, 20(8),

717-725.

Breg, F., and Polychronopoulos, C. D. "Java Virtual Machine Support for Object Serialization."

the ISCOPE Conference on ACM 2001 Java Grande, Palo Alto, CA, 173-180.

Brezzi, F., Bathe, K. J., and Fortin, M. (1989). "Mixed-Interpolated Elements for Reissner-

Mindlin Plates." International Journal for Numerical Methods in Engineering, 28(8),

1787-1801.

Budd, T. A. (2002). An Introduction to Object Oriented Programming, Addison-Wesley, Boston,

MA.

Budge, K. G., and Peery, J. S. (1993). "RHALE: A MMALE Shock Physics Code Written in

C++." International Journal of Impact Engineering, 14(1-4), 107-120.

Cardellini, V., Casalicchio, E., Colajanni, M., and Yu, P. S. (2002). "The State of the Art in

Locally Distributed Web-Server Systems." ACM Computing Surveys, 34(2), 263-311.

146

Cardona, A., Klapka, I., and Geradin, M. (1994). "Design of a New Finite Element Programming

Environment." Engineering Computations, 11(4), 365-381.

Carey, M. J., DeWitt, D. J., Graefe, G., Haight, D. M., Richardson, J. E., Schuh, D. T., Skekita,

E. J., and Vandenberg, S. L. (1990). "The EXODUS extensible DBMS project: An

overview." Readings in Object-Oriented Database Systems, Data Management Series, S.

B. Zdonik and D. Maier, eds., Morgan Kaufmann, San Mateo, CA.

Carney, D. J., and Oberndorf, P. A. (1997). "The Commandments of COTS: Still Searching for

the Promised Land." CrossTalk, 10(5), 25-30.

Chandra, S. (1998). "Information Extraction and Qualitative Descriptions from Dynamic

Simulation Data." Computers and Structures, 69(6), 757-766.

Codd, E. F. (1970). "A Relational Model of Data for Large Shared Data Banks."

Communications of the ACM, 13(6), 377-387.

Commend, S., and Zimmermann, T. (2001). "Object-Oriented Nonlinear Finite Element

Programming: A Primer." Advances in Engineering Software, 32(8), 611-628.

Conte, J. P., Elgamal, A., Yang, Z., Zhang, Y., Acero, G., and Seible, F. "Nonlinear Seismic

Analysis of a Bridge Ground System." the 15th ASCE Engineering Mechanics

Conference, New York, NY.

Cornell, A., and Krawinkler, H. (Spring 2000). "Progress and Challenges in Seismic

Performance Assessment." PEER Center News.

Davis, T. A. (2002). A Column Pre-Ordering Strategy for the Unsymmetric-Pattern Multifrontal

Method,, Technical Report TR-02-001, Computer & Information Science & Engineering,

University of Florida, Gainesville, FL.

Demmel, J. W., Eisenstat, S. C., Gilbert, J. R., Li, X. S., and Liu, J. W. H. (1999). "A Supernodal

Approach to Sparse Partial Pivoting." SIAM Journal on Matrix Analysis and Applications,

20(3), 720-755.

De-Santiago, E. (1996). "A Distributed Implementation of The Finite Element Method for

Coupled Fluid Structure Problems," Ph.D. Thesis, Stanford University, Stanford, CA.

De-Santiago, E., and Law, K. H. (2000). "A Distributed Implementation of an Adaptive Finite

Element Method for Fluid Problems." Computers and Structures, 74(1), 97-119.

147

Diwan, S. M. (1999). "Open HPC++: An Open Programming Environment for High-

Performance Distributed Applications," Ph.D. Thesis, Indiana University, Bloomington,

IN.

DuBois, P., and Widenius, M. (1999). MySQL, New Riders Publishing, Indianapolis, IN.

Dubois-Pelerin, Y., and Zimmermann, T. (1993). "Object-Oriented Finite Element

Programming: III. An efficient implementation in C++." Computer Methods in Applied

Mechanics and Engineering, 108(1-2), 165-183.

Eddon, G., and Eddon, H. (1998). Inside Distributed COM, Microsoft Press, Redmond, WA.

Ericsson, T., and Ruhe, A. (1980). "The Spectral Transformation Lanczos Method for the

Numerical Solution of Large Sparse Generalized Symmetric Eigenvalue Problems."

Mathematics of Computation, 35(152), 1251-1268.

Eyheramendy, D., and Zimmermann, T. "Object-Oriented Finite Element Programming: Beyond

Fast Prototyping." the 2nd International Conference on Computational Structures

Technology, Athens, GA, 121-128.

Farley, J. (1998). Java Distributed Computing, O'Reilly & Associates, Sebastopol, CA.

Felippa, C. A. (1979). "Database Management in Scientific Computing -- I. General

Description." Computers and Structures, 10(1-2), 53-61.

Felippa, C. A. (1980). "Database Management in Scientific Computing -- II. Data Structures and

Program Architecture." Computers and Structures, 12(1), 131-146.

Felippa, C. A. "Database Management in Scientific Computing -- III. Implementation."

Symposium on Trends and Advances in Structural Mechanics, Washington, DC.

Fishwick, P. A., and Blackburn, C. L. (1983). "Managing Engineering Data Bases: The

Relational Approach." Computers in Mechanical Engineering, 1(3), 8-16.

Forde, B. W. R., Foschi, R. O., and Stiemer, S. F. (1990). "Object-Oriented Finite Element

Analysis." Computers and Structures, 34(3), 355-374.

Foster, I., Kesselman, C., Tsudik, G., and Tuecke, S. "A Security Architecture for Computational

Grids." the 5th ACM Conference on Computer and Communications Security, 83-92.

148

Foster, I., Kesselman, C., and Tuecke, S. (2001). "The Anatomy of the Grid: Enabling Scalable

Virtual Organizations." International Journal of Supercomputer Applications and High

Performance Computing, 15(3), 200-222.

George, A. (1971). "Computer Implementation of the Finite Element Method," Ph.D. Thesis,

Stanford University, Stanford, CA.

George, A., and Liu, J. W. (1981). Computer Solution of Large Sparse Positive Definite Systems,

Prentice Hall, Englewood Cliffs, NJ.

George, A., and Liu, J. W. (1989). "The Evolution of the Minimum Degree Ordering

Algorithm." SIAM Review, 31(1), 1-19.

Goldman, R., McHugh, J., and Widom, J. "From Semistructured Data to XML: Migrating the

Lore Data Model and Query Language." WebDB '99: the Second International Workshop

on the Web and Databases, Philadelphia, PA, 25-30.

Golub, G. H., and Van-Loan, C. F. (1996). Matrix Computations, The Johns Hopkins University

Press, Baltimore, MA.

Goodwill, J. (2001). Apache Jakarta-Tomcat, APress, Berkeley, CA.

Grimes, R. G., Lewis, J. G., and Simon, H. D. (1994). "A Shifted Block Lanczos Algorithm for

Solving Sparse Symmetric Generalized Eigenproblems." SIAM Journal of Matrix Analysis

and Applications, 15(1), 228-272.

Han, C. S., Kunz, J. C., and Law, K. H. (1999). "Building Design Services in A Distributed

Architecture." Journal of Computing in Civil Engineering, 13(1), 12-22.

Henning, M., and Vinoski, S. (1999). Advanced CORBA Programming with C++, Addison-

Wesley, Boston, MA.

Hughes, T. J. R. (1987). The Finite Element Method: Linear static and dynamic finite element

analysis, Prentice Hall, Englewood Cliffs, NJ.

Hunter, D., Rafter, J., Pinnock, J., Dix, C., Cagle, K., and Kovack, R. (2001). Beginning XML,

Wrox Press Inc, Chicago, IL.

Hunter, J., and Crawford, W. (2001). Java Servlet Programming, O'Reilly & Associates,

Sebastopol, CA.

149

Ju, J., and Hosain, M. U. "Substructuring Using the Object-Oriented Approach." the Second

International Conference on Computational Structures Technology, Athens, GA, 115-120.

Karypis, G., and Kumar, V. (1998a). "A Fast and High Quality Multilevel Scheme for

Partitioning Irregular Graphs." SIAM Journal on Scientific Computing, 20(1), 359-392.

Karypis, G., and Kumar, V. (1998b). "METIS Version 4.0: A Software Package For Partitioning

Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of

Sparse Matrices,", Department of Computer Science and Engineering, University of

Minnesota, Minneapolis, MN.

Karypis, G., and Kumar, V. (1998c). "Multilevel k-way Partitioning Scheme For Irregular

Graphs." Journal for Parallel and Distributed Computing, 48(1), 96-129.

Kong, X. A., and Chen, D. P. (1995). "An Object-Oriented Design of FEM Programs."

Computers and Structures, 57(1), 157-166.

Krishnamurthy, K. (1996). "A Data Management Model for Change Control in Collaborative

Design Environments," Ph.D. Thesis, Stanford University, Stanford, CA.

Kyte, T. (2001). Expert One on One: Oracle, Wrox Press, Chicago, IL.

Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T. (1979). "Basic Linear Algebra

Subprograms for Fortran Usage." ACM Transactions on Mathematical Software, 5(3),

308-323.

Lehoucq, R. B., Sorensen, D. C., and Yang, C. (1997). ARPACK User's Guide: Solution of Large

Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods, Center for Research

on Parallel Computation, Rice University, Houston, TX.

Lewandowski, S. M. (1998). "Frameworks for Component-Based Client/Server Computing."

ACM Computing Surveys, 30(1), 3-27.

Liang, S. (1999). Java Native Interface: Programmer's Guide and Specification, Addison-

Wesley, Boston, MA.

Lipton, R. J., Rose, D. J., and Tarjan, R. E. (1979). "Generalized Nested Dissection." SIAM

Journal on Numerical Analysis, 16(1), 346-358.

Liu, J. W. H. (1986). "A Compact Row Storage Scheme for Cholesky Factors Using Elimination

Trees." ACM Transactions on Mathematical Software, 12(2), 127-148.

150

Liu, J. W. H. (1991). "A Generalized Envelope Method for Sparse Factorization by Rows." ACM

Transactions on Mathematical Software, 17(1), 112-129.

Lu, J., White, D. W., Chen, W. F., and Dunsmore, H. E. (1995). "A Matrix Class Library in C++

for Structural Engineering Computing." Computers and Structures, 55(1), 95-111.

Lu, J., White, D. W., Chen, W. F., Dunsmore, H. E., and Sotelino, E. D. "FE++: An Object-

Oriented Application Framework for Finite Element Programming." the Second Annual

Object-Oriented Numerics Conference, Sunriver, OR, 438-447.

Lunney, T. F., and McCaughey, A. J. (2000). "Component based distributed systems -- CORBA

and EJB in context." Computer Physics Communications, 127(2-3), 207-214.

MacBride, A., Susser, J., and Piersol, K. (1996). Byte Guide to OpenDoc, McGraw-Hill Osborne,

Berkeley, CA.

Mackay, D. R. (1992). "Solution Methods for Static and Dynamic Structural Analysis," Ph.D.

Thesis, Stanford University, Stanford, CA.

Mackay, D. R., and Law, K. H. (1996). "A Parallel Implementation of a Generalized Lanczos

Procedure for Structural Dynamic Analysis." International Journal of High Speed

Computing, 8(2), 171-204.

Mackay, D. R., Law, K. H., and Raefsky, A. (1991). "An Implementation of a Generalized

Sparse/Profile Finite Element Solution Method." Computers and Structures, 41(4), 723-

737.

Mackie, R. I. (1992). "Object-Oriented Programming of the Finite Element Method."

International Journal for Numerical Methods in Engineering, 35(2), 425-436.

Mackie, R. I. "Object-Oriented Methods -- Finite Element Programming and Engineering

Software Design." the 6th International Conference on Computing in Civil and Building

Engineering (ICCCBE-VI), Berlin, Germany, 133-138.

Mackie, R. I. (1997). "Using Objects to Handle Complexity in Finite Element Software."

Engineering with Computers, 13(2), 99-111.

McGuire, W., Gallagher, R. H., and Ziemian, R. D. (2000). Matrix Structural Analysis, John

Wiley & Sons, New York, NY.

151

McKenna, F. (1997). "Object-Oriented Finite Element Programming: Frameworks for Analysis,

Algorithm and Parallel Computing," Ph.D. Thesis, University of California at Berkeley,

Berkeley, CA.

McKenna, F. (2002). "OpenSees: Open System for Earthquake Engineering Simulation.".

McKenna, F., and Fenves, G. L. (2001). "The OpenSees Command Language Manual.".

Mentrey, P., and Zimmermann, T. (1993). "Object-Oriented Non-linear Finite Element Analysis:

Application to J2 Plasticity." Computers and Structures, 49(5), 767-773.

Microsoft-Corporation. (2002). "Dynamic Link Libraries: MSDN Library.".

Miller, G. R. (1991). "An Object-Oriented Approach to Structural Analysis And Design."

Computers and Structures, 40(1), 75-82.

Nagel, R. N., Braithwaite, W. W., and Kennicott, P. R. (1980). Initial Graphics Exchange

Specification IGES, Version 1.0, National Bureau of Standards, Washington, DC.

Norton, J. (2000). "Dynamic Class Loading for C++ on Linux." Linux Journal, Issue 73.

Ohtsubo, H., Kawamura, Y., and Kubota, A. (1993). "Development of the Object-Oriented Finite

Element Modelling System -- Modify." Engineering with Computers, 9(4), 187-197.

Olson, M. A., Bostic, K., and Seltzer, M. "Berkeley DB." the FREENIX Track: 1999 USENIX

Annual Technical Conference, Monterey, CA, 183-192.

Ones, S. R., and De-Santiago, E. "An Object Based Application of Distributed Programming for

Turbulent Flow Problems." the ASCE Fourteenth Engineering Mechanics Conference,

Austin, TX.

Orfali, R., and Harkey, D. (1998). Client/Server Programming with Java and CORBA, John

Wiley & Sons, Hoboken, NJ.

Orsborn, K. "Applying Next Generation Object-Oriented DBMS for Finite Element Analysis."

the first International Conference on Applications of Databases (ADB'94), Vadstena,

Sweden, 215-233.

Ostermann, W., Wunderlich, W., and Cramer, H. "Object-Oriented Tools for the Development of

User Interfaces for Interactive Teachware." the Sixth International Conference on

Computing in Civil and Building Engineering (ICCCBE-VI), Berlin, Germany, 169-175.

152

Otte, R., Patrick, P., and Roy, M. (1996). Understanding CORBA, Prentice Hall, Upper Saddle

River, NJ.

Ousterhout, J. K. (1994). Tcl and the Tk Toolkit, Addison-Wesley, Boston, MA.

Page-Jones, M. (1999). Fundamentals of Object-Oriented Design in UML, Addison-Wesley,

Boston, MA.

Peng, J., and Law, K. H. "Framework for Collaborative Structural Analysis Software

Development." the Structural Congress & Expositions ASCE, Philadelphia, PA.

Peng, J., and Law, K. H. (2002). "A Prototype Software Framework for Internet-Enabled

Collaborative Development of a Structural Analysis Program." Engineering with

Computers, 18(1), 38-49.

Peng, J., McKenna, F., Fenves, G. L., and Law, K. H. "An Open Collaborative Model for

Development of Finite Element Program." the Eighth International Conference on

Computing in Civil and Building Engineering (ICCCBE-VIII), Palo Alto, CA, 1309-1316.

Pidaparti, R. M. V., and Hudli, A. V. (1993). "Dynamic Analysis of Structures Using Object-

Oriented Techniques." Computers and Structures, 49(1), 149-156.

Pitt, E., and McNiff, K. (2001). java(TM).rmi: The Remote Method Invocation Guide, Addison-

Wesley, Boston, MA.

Plasil, F., Visnovsky, S., and Besta, M. "Bounding Component Behavior via Protocols." TOOLS

USA 1999: the 30th International Conference & Exhibition, Santa Barbara, CA, 387-398.

Pope, A. (1998). The CORBA Reference Guide: Understanding the Common Object-Request

Broker Architecture, Addison-Wesley, Boston, MA.

Raj, G. S. (1998). "A Detailed Comparison of CORBA, DCOM, and Java/RMI (with detailed

code examples).",, Object Management Group (OMG) whitepaper.

Rajan, S. D., and Bhatti, M. A. (1986). "SADDLE: A Computer-Aided Structural Analysis and

Dynamic Design Language -- Part II. Database Management System." Computers and

Structures, 22(2), 205-212.

Rucki, M. D., and Miller, G. R. "A Program Architecture for Interactive Nonlinear Dynamic

Analysis of Structures." the Fifth International Conference on Computing in Civil and

Building Engineering (ICCCBE-V), Anaheim, CA.

153

Rucki, M. D., and Miller, G. R. (1996). "Algorithmic Framework for Flexible Finite Element-

Based Structural Modeling." Computer Methods in Applied Mechanics and Engineering,

136(3-4), 363-384.

Rumbaugh, J., Blaha, M. R., Premerlani, W., Eddy, F., and Lorensen, W. (1991). Object-

Oriented Modeling and Design, Prentice-Hall, Englewood Cliffs, NJ.

Saad, Y. (1990). SPARSKIT: A Basic Tool Kit for Sparse Matrix Computations, Technical

Report CSRD TR 1029, Center for Supercomputing Research and Development,

University of Illinois, Urbana-Champaign, IL.

Scholz, S. P. (1992). "Elements of an Object-Oriented FEM++ program in C++." Computers and

Structures, 43(3), 517-529.

Silva, E. J., Mesquita, R. C., Saldanha, R. R., and Palmeira, P. F. M. (1994). "An Object-

Oriented Finite Element Program for Electromagnetic Field Computation." IEEE

Transactions on Magnetics, 30(5), 3618-3621.

Slominski, A., Govindaraju, M., Gannon, D., and Bramley, R. "Design of an XML based

Interoperable RMI System: SoapRMI C++/Java 1.1." PDPTA'2001: the International

Conference on Parallel and Distributed Processing Techniques and Applications, Las

Vegas, NV, 1661-1667.

Smith, B. L., and Scherer, W. T. (1999). "Developing Complex Integrated Computer

Applications and Systems." Journal of Computing in Civil Engineering, 13(4), 238-245.

Stallings, W. (1998). Cryptography and Network Security: Principles and Practice, Prentice

Hall, Upper Saddle River, NJ.

Stearns, B. (2002). "The Java Tutorial: Java Native Interface," accessed on April 29, 2002,

http://java.sun.com/docs/books/tutorial/native1.1/index.html.

Sun-Microsystems. (2001). Introduction to Sun Workshop: Forte Developer 6 Update 2, Sun

Microsystems, Inc., Palo Alto, CA.

The Mathworks Inc. (2001). MATLAB The Language of Technical Computing: External

Interfaces, Version 6, Mathworks, Natick, MA.

Tinney, W. F., and Walker, J. W. (1967). "Direct Solutions of Sparse Network Equations by

Optimally Ordered Triangular Factorization." Proceedings of the IEEE, 55(11), 1801-

1809.

154

van-Engelen, R., Gallivan, K., Gupta, G., and Cybenko, G. "XML-RPC Agents for Distributed

Scientific Computing." IMACS'2000: the IMACS World Congress on Scientific

Computation, Applied Mathematics and Simulation, Lausanne, Switzerland.

Wegner, P. "Dimensions of Object-Based Language Design." the Conference on Object Oriented

Programming, Systems, Languages, and Applications (OOPSLA), Orlando, FL, 168-182.

Yang, X. (1992). "Database Design Method for Finite Element Analysis." Computers and

Structures, 44(4), 911-914.

Zeglinski, G. W., Han, R. S., and Aitchison, P. (1994). "Object-Oriented Matrix Classes for Use

in a Finite Element Code Using C++." International Journal for Numerical Methods in

Engineering, 37(22), 3921-3937.

Zimmermann, T., Dubois-Pelerin, Y., and Bomme, P. (1992). "Object-Oriented Finite Element

Programming: I. Governing Principles." Computer Methods in Applied Mechanics and

Engineering, 98(2), 291-303.

