
Simulation of Earthquake Liquefaction Response on Parallel Computers

Jun Peng, Jinchi Lu, Kincho H. Law and Ahmed Elgamal

INTRODUCTION

Simulations of earthquake responses and liquefaction effects generally involve coupling solid
and fluid phases, and often require the incorporation of soil plasticity models. Large-scale
earthquake simulations are not feasible on most current single processor computers.
Utilization of parallel computers, which combine the resources of multiple processing and
memory units, can potentially reduce the solution time significantly. Furthermore, parallel
computing allows analysis of large and complex models that may not fit into a single
processing unit. Application software, such as finite element programs, must be re-designed
in order to take full advantage of parallel computing.

This joint research effort between Stanford University and University of California at San
Diego explores the implementation of a geomechanics nonlinear finite element program on
distributed memory parallel computers. The research focuses on the development of a
parallel version of a nonlinear finite element program, CYCLIC, for the simulation of
earthquake ground response and liquefaction effects. The objective is to extend the
computational capabilities of the finite element program to simulate large-scale systems, and
to broaden the scope of its applications to seismic ground-foundation interaction problems.

PARCYCLIC

The parallel finite element program, ParCYCLIC, is implemented based on a sequential
geomechanics nonlinear finite element program, CYCLIC, which has been developed to
analyze cyclic mobility and liquefaction problems (Parra 1996; Yang et al. 2003). CYCLIC is
based on small-deformation theory, which does not account for nonlinearity effects due to
finite deformation or rotation. Extensive calibration of CYCLIC has been conducted with
results from experiments and full-scale response of earthquake simulations involving ground
liquefaction. For the liquefaction model currently employed, emphasis is placed on
controlling the magnitude of cycle-by-cycle permanent shear strain accumulation in clean
medium-dense sands. Following the classical plasticity formulation, it is assumed that
material elasticity is linear and isotropic, and that nonlinearity and anisotropy are the results
of plasticity. The selected yield function forms a conical surface in stress space with its apex
along the hydrostatic axis, as shown in Figure 1. During shear loading, the soil
contractive/dilative behavior is handled by a non-associative flow rule (Parra 1996) so as to
achieve appropriate interaction between shear and volumetric response.

The computational procedure of the developed ParCYCLIC program is illustrated in Figure 2.
The procedure can be divided into three distinct phases, namely: preprocessing and input
phase, nonlinear solution phase, and output and postprocessing phase. In the nonlinear
solution phase, modified Newton-Raphson algorithm is employed, that the stiffness matrix at

each iteration step uses the same tangential stiffness from the initial step of the increment.
Although this modified iterative approach will typically require more steps per load increment
compared with full Newton-Raphson scheme, substantial savings can be realized as a result of
not having to assemble and factorize a new global stiffness matrix during each iteration step.
As shown in Figure 2, if the solution is not converged after a certain number of iterations
(e.g., 10 iterations) within a particular time step, the time step will be split into two to
expedite convergence.

Figure 1 – Conical yield surface in principal stress space and deviatoric plane

PARALLEL PROCESSING

Programming models required to take advantage of parallel programming are significantly
different from the traditional paradigm for a serial program (Mackay 1992). To achieve high
efficiency for parallel applications, it is important to keep all participating processors busy
performing useful computations and to minimize communications among the processors.

One common approach in developing application software for distributed memory parallel
computers is to use the single-program-multiple-data (SPMD) paradigm. In this parallel
programming paradigm, all processors are assigned the same program code but run with
different data sets comprising the problem. Each processor of the parallel machine solves a
partitioned domain, and data communications among sub-domains are performed through
message passing. In the implementation of ParCYCLIC, METIS (Karypis and Kumar 1998)
routines are applied to decompose the finite element domain. The algorithms in METIS are
based on multilevel graph partitioning (Karypis and Kumar 1998), which is an efficient and
popular domain decomposition approach.

Symbolic
factorization

Postprocessing
visualization

Global matrix
assembly

Numerical
factorization

Right-hand-side
formation

Forward and
backward solve

Converged?

Read input
files

Initialization
Allocate memory

i < steps?
No

Element stiffness
generation

Yes

Yes

i =
 i

+
 1

Iteration
exceeds limit?

No

Split current
 time step

Yes

No

Preprocessing
and input phase

Solution
phase

Postprocessing
phase

Output

Mesh
Partitioning

Figure 2 – Flowchart of ParCYCLIC computational procedures

After the domain partitioning, symbolic factorization is performed to set up the data structure
for storing global stiffness matrix. The assembly of the global matrix from the element
stiffness matrices is one of the most natural tasks for parallel implementation. Since each
element stiffness matrix can be generated independently of the other element stiffness
matrices, each processor can work independently on the elements assigned to it. Once the
processor assignment and the assembly of the global stiffness matrix are completed,
numerical solution of the global system of linear equations can proceed. A parallel row-
oriented sparse solver (Mackay and Law 1993) is adopted in ParCYCLIC for performing the
numerical calculation. The parallel numerical factorization procedure is divided into two
phases. In the first phase, each processor independently factorizes certain portions of the
matrix that assigned to a single processor. In the second phase, other portions of the matrix
shared by more than one processor are factored. Following the parallel factorization, the
parallel forward and backward solution phases proceed to compute the solution to the global
system of equations.

The inter-process communication of ParCYCLIC is implemented using MPI (Snir and Gropp
1998). MPI (Message Passing Interface) is a specification of a standard library for message
passing that was defined by the MPI Forum, a broadly based group of parallel computer
vendors, library developers, and applications specialists. The strength of MPI is its
portability, which makes it suitable to write programs to run on a wide range of parallel
computers and workstation clusters. For ParCYCLIC, during the global matrix assembly and
matrix factorization phases, most of the communications are point-to-point messages; while in
the forward and backward solution phase, most of the communications are broadcast
messages.

PARALLEL PERFORMANCE

The performance of ParCYCLIC is tested on the Blue Horizon machine at San Diego
Supercomputer Center. Blue Horizon is an IBM Scalable POWERparallel (SP) machine,
which has 144 compute nodes, each with eight POWER3 RISC-based processors and with 4
GBytes of memory. Each processor on the node has equal shared access to the memory. The
performance of ParCYCLIC is evaluated by using a three-dimensional soil-pile interaction
model, as shown in Figure 3. In this model, a 3x3 pile group, embedded in a fully saturated
soil foundation with three stratums (liquefiable soil as middle layer), is subjected to
earthquake excitation along the X direction at the base. As shown in Figure 3, only half of the
model is used due to its geometrical symmetry.

Table 1 summarizes the timing results of the nonlinear analysis for one time step. The results
for the solution phase and the total execution time (which includes the sequential phases such
as input, domain decomposition, output and postprocessing steps) are also illustrated in Figure
4. Note that the results for one processor are not available because the model is too large to
fit into the memory of a single processor. The performance results demonstrate excellent
parallel speedup on the solution phase for the model. The results also show that the
ParCYCLIC program is scalable to a large number of processors, e.g., 64 or more.

Figure 3 – A soil-pile interaction finite element model

Table 1 – Solution times for the soil-pile interaction model (time in seconds)

(130,020 equations; 29,120 elements; 96,845,738 non-zeros in factor L)
Number of
processors

LDLT
factorization

Forward and
backward solve

Solution
phase

Total execution
time

2 332.67 1.41 370.42 455.91
4 166.81 0.78 187.72 286.97
8 85.20 0.45 97.71 186.67

16 50.73 0.29 59.39 147.55
32 27.80 0.23 34.61 124.30
64 18.41 0.26 24.40 116.21

0

50

100

150

200

250

300

350

400

450

500

0 10 20 30 40 50 60 70

Number of Processors

T
im

e
(s

ec
o

n
d

)

Solution Phase

Total Execution Time

Figure 4 – Solution times for the soil-pile interaction model

CONCLUSIONS

This article presents the analysis and solution strategies employed in ParCYCLIC, a parallel
nonlinear finite element program for the simulations of earthquake site response and
liquefaction. In ParCYCLIC, finite elements are employed within an incremental plasticity
coupled solid-fluid formulation. A constitutive model developed for the simulation of
liquefaction-induced deformations is a main component of this analysis framework. Large-
scale experimental results for 3-D geotechnical simulations are presented to demonstrate the
performance of ParCYCLIC. It is shown that ParCYCLIC can be used to simulate large-scale
problems, which would otherwise be infeasible using single-processor computers due to the
limited memory sizes. Furthermore, the results show that the ParCYCLIC program is scalable
to a large number of processors. Research continues to optimize the program to further
reduce the total solution time and to apply the finite element program for large-scale
simulation of ground-foundation interaction problems.

ACKNOWLEDGEMENTS

This research was supported by the National Science Foundation Grant Number CMS-
0084530, and an equipment grant from Intel Corporation. Thanks to Dr. Zhaohui Yang for
his assistance with the development of the original CYCLIC code. The authors also would
like to acknowledge the San Diego Supercomputer Center (SDSC) for providing computing
facilities employed in this research.

REFERENCES

Karypis, G., and Kumar, V. (1998). METIS Version 4.0: A Software Package For Partitioning
Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings
of Sparse Matrices, Department of Computer Science and Engineering, University of
Minnesota, Minneapolis, MN.

Mackay, D., and Law, K. H. (1993). "A Parallel Row-oriented Sparse Solution Method for
Finite Element Structural Analysis," International Journal for Numerical Methods in
Engineering, 36, pp. 2895-2919.

Mackay, D. R. (1992). Solution Methods for Static and Dynamic Structural Analysis, Ph.D.
Thesis, Stanford University, Stanford, CA.

Parra, E. (1996). Numerical Modeling of Liquefaction and Lateral Ground Deformation
Including Cyclic Mobility and Dilation Response in Soil Systems, Ph.D. Thesis,
Rensselaer Polytechnic Institute, Troy, NY.

Snir, M., and Gropp, W. (1998). MPI: The Complete Reference, MIT Press, Boston, MA.
Yang, Z., Elgamal, A., and Parra, E. (2003). "A Computational Model for Cyclic Mobility

and Associated Shear Deformation," Journal of Geotechnical and Geoenvironmental
Engineering, ASCE, (accepted).

