Parallel Computing for Seismic Geotechnical Applications
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Abstract

Parallel computing is gradually becoming a main stream tool in geotechnical simulations. The need for high fidelity
and for modeling of fairly large 3-dimensional (3D) spatial configurations is motivating this direction of research. A
new program ParCYCLIC for seismic geotechnical applications has been developed. Salient characteristics of the
employed parallel sparse solver will be presented. Using this code, simulations of seismically-induced liquefaction,
lateral-spreading, and countermeasures will be presented and discussed.

Introduction

Large-scale finite element (FE) simulations of earthquake-induced liquefaction effects often require a lengthy
execution time. Utilization of parallel computers, which combine the resources of multiple processing and memory
units, can potentially reduce the execution time significantly and allow simulations of large and complex models that
may not fit into a single processing unit.

Parallel computing is gradually becoming a main stream tool in geotechnical simulations. Bielak et al (2000)
modeled earthquake ground motion in large sedimentary basins using a 3D parallel linear finite element program
with an explicit integration procedure. They noted that the implementation of an implicit time integration approach
is challenging on distributed memory computers, requiring significant global information exchange (Bielak et al.
2000). Yang (2002) developed a parallel finite element algorithm, i.e. Plastic Domain Decomposition (PDD), and
attempted to achieve dynamic load balancing by using an adaptive partitioning-repartitioning scheme.

The research reported herein focuses on the development of a state-of-the-art nonlinear parallel finite element
code (implicit time integration method employed) for earthquake ground response and liquefaction simulation. The
parallel code, ParCYCLIC, is implemented based on a serial program CYCLIC, which is a nonlinear finite element
program developed to analyze liquefaction-induced seismic response (Parra 1996; Yang and Elgamal 2002).

Finite Element Formulation

In CYCLIC and ParCYCLIC, the saturated soil system is modeled as a two-phase material. A simplified numerical
formulation of this theory (Chan 1988), known as u-p formulation (in which displacement of the soil skeleton u, and
pore pressure p, are the primary unknowns), was implemented in a 3D Finite Element program CYCLIC (Parra
1996; Yang 2000; Yang and Elgamal 2002).

The u-p formulation is defined by (Chan 1988): 1) the equation of motion for the solid-fluid mixture, and 2) the
equation of mass conservation for the fluid phase that incorporates equation of motion for the fluid phase and Darcy's
law. These two governing equations are expressed in the following finite element matrix form (Chan 1988):
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where M is the total mass matrix, U the displacement vector, B the strain-displacement matrix, o’ the effective
stress tensor, Q the discrete gradient operator coupling the solid and fluid phases, p the pore pressure vector, S the

compressibility matrix, and H the permeability matrix. The vectors f* and fP represent the effects of body forces
and prescribed boundary conditions for the solid-fluid mixture and the fluid phase, respectively. Equations 1a and 1b



are integrated in the time domain using a single-step predictor multi-corrector scheme of the Newmark type (Chan
1988; Parra 1996).

Soil Constitutive Model

In ParCYCLIC, a plasticity-based formulation is employed. The constitutive model was developed with emphasis on
simulating the liquefaction-induced shear strain accumulation mechanism in clean medium-dense sands (Elgamal et
al. 2002; Yang and Elgamal 2002; Elgamal et al. 2003; Yang et al. 2003). Special attention was given to the
deviatoric-volumetric strain coupling (dilatancy) under cyclic loading (e.g., Figures 1 and 2), which causes increased
shear stiffness and strength at large cyclic shear strain excursions (i.e., cyclic mobility). The main elements allowing
for cyclic mobility response include:

The yield surface (Figure 1) is defined by the Lade and Duncan (1975) function:

f=7-K=0 @
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where [, and I, are the first and third stress invariants respectively, and &, (>27) is a parameter related to soil

shear strength (or friction angle ¢). In the context of multi-surface plasticity, a number of similar surfaces with a

common apex form the hardening zone (Figure 1). The flow rule is chosen assuming associativity in the deviatoric
plane. And a non-associative flow dictates shear-induced contraction and dilation.

The phase transformation (PT) surface (Ishihara et al. 1975) defines the boundary between contractive and
dilative behavior (Figure 2) under shear loading. Along the PT surface, the stress ratio 7 (=7/ p', where 7 is the

octahedral shear stress and p' the effective mean confinement) is denoted as 77, . Depending on the value of 7

with respect to 7], and the sign of 71} (time rate of 77), distinct contractive/dilative (dilatancy) responses are
reproduced (Yang et al. 2003; Yang and Elgamal 2004).
Thus, under undrained conditions, the adopted flow rule defines the following phases of soil response (Figure
2):
: 1) The contractive phase inside the PT surface (77 <77, , phases 0-1 and 4-5), as well as outside during
shear unloading (77 > 77, with 77 <0, phase 3-4).
2) The dilative phase during shear loading, with the stress state outside the PT surface (77 > 77, with
17> 0, phase 2-3), and

3) The neutral phase (phase 1-2 and 5-6) between the contraction (phase 0-1) and the dilation (phase 2-3)
phases.

Parallel Implementation

Parallel Program Strategies

Programming architectures required to take advantage of parallel computers are significantly different from the
traditional paradigm for a serial program (Law and Mackay 1993). ParCYCLIC employs the single-program-
multiple-data (SPMD) paradigm, a common approach in developing application software for distributed memory
parallel computers (Lu et al. 2004; Peng et al. 2004). In this approach, problems are decomposed using well-known
domain decomposition techniques. Each processor of the parallel machine solves a partitioned domain, and data
communications among sub-domains are performed through message passing. The SPMD model has been applied
successfully in the development of many parallel finite element programs from legacy serial code (De Santiago and
Law 1996).

Computational Procedures

The computational procedure of ParCYCLIC can be basically divided into two distinct phases: the initialization
phase and the nonlinear solution phase. The initialization phase consists of reading input files, performing mesh
partitioning and symbolic factorization. METIS (Karypis and Kumar 1997), which is a set of libraries for graph



partitioning developed at the University of Minnesota, is used to partition the finite element mesh at this phase. An
automatic domain decomposer for performing domain decomposition, based on the METIS ordering, is also
implemented in ParCYCLIC.

In the nonlinear solution phase, the modified Newton-Raphson algorithm is employed. When needed, a time-
step splitting algorithm is employed to achieve convergence.
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Parallel Sparse Solver

Nonlinear finite element computations of earthquake simulations involve the iterative solution of sparse symmetric
systems of linear equations (Lu et al. 2004; Peng et al. 2004). Solving the linear system is often the most
computationally intensive task, especially when an implicit time integration scheme is employed. ParCYCLIC
employs a direct sparse solution method proposed and developed by Law and Mackay (1993). The concept of the
sparse solver incorporated in ParCYCLIC is briefly described below.

Given a linear system of equations Kx = f, the symmetric sparse matrix K is often factored into the matrix
product LDL”, where L is a lower triangular matrix and D is a diagonal matrix. The solution vector x is then
computed by a forward solution, Lz = f or z = L''f, followed by a backward substitution DL'x = z or x = L'Dz.
Sparse matrix factorization can be divided into two phases: symbolic factorization and numeric factorization (Law
and Mackay 1993). Symbolic factorization determines the structure of matrix factor L from that of K (i.e. locations
of nonzero entries). Numeric factorization then makes use of the data structure determined to compute the numeric
values of L and D. The nonzero entries in L can be determined by the original nonzero entries of K and a list vector,
which is defined as:

PARENT(j)=min{i| L, # 0} 3)

in which j is the column number and i the row subscript. The array PARENT represents the row subscript of the first
nonzero entry in each column of the lower matrix factor L. The definition of the array PARENT results in a
monotonically ordered elimination tree T of which each node has its numbering higher than its (Law and Mackay
1993). Furthermore, by topologically postordering the elimination tree, the nodes in any subtree can be numbered
consecutively. The resulting sparse matrix factor is partitioned into block submatrices where the columns/rows of
each block correspond to the node set of a branch in 7. Figure 3 shows a simple finite element grid and its post-
ordered elimination tree representation.

For parallel implementation of the sparse matrix factorization, the processor assignment strategy can be based
on matrix partitioning according to the post-ordered elimination tree. Essentially, the strategy is to assign the rows
corresponding to the nodes along each branch (column block) of the elimination tree to a processor or a group of
processors (Figure 3).

The parallel numerical factorization procedure is divided into two phases (Law and Mackay 1993). In the first
phase, each processor independently factorizes certain portions of the matrix assigned to a single processor. In the
second phase, other portions of the matrix shared by more than one processor are factored. Following the parallel
factorization, the parallel forward and backward solution phases proceed to compute the solution to the global
system of equations.
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Figure 3: A finite element mesh and its elimination tree representation (Law and Mackay 1993).

Parallel Performance

ParCYCLIC has been successfully ported on many different types of parallel computers and workstation clusters,
including IBM SP machines and Linux workstation clusters. The parallel performance was evaluated by simulating a
stone column centrifuge test model on the Blue Horizon machine (IBM SP) at San Diego Supercomputer Center
(SDSC). In this stone column model (half mesh shown in Figure 4), a number of gravel columns are embedded into
a fully-saturated silt soil stratum. Figure 5 displays the speedup and the execution times for the nonlinear solution
phase for one time step. Excellent parallel speedup is achieved, as shown in Figure 5. Note that the stone column
model, with a scale of 364,800 degrees of freedom (dofs), cannot fit into the memory of less than 4 processors.
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Figure 4. Finite element model of a stone column Figure 5. Execution times and speedup of the

centrifuge test. nonlinear solution phase (one time step) for the
stone column model.

Numerical Simulation of Shallow Foundation Settlement and Remediation

A 10 m saturated medium sand layer is studied (calibrated based on Nevada sand at about D, = 40%). In view of
symmetry, a half-mesh (5,320 elements and 80,118 degrees of freedom in total) was used as shown in Figure 6.
Herein, the load (40 kPa, about 2 m of an equivalent soil overburden) is simply applied at ground level in the form of
a distributed surficial vertical stress over a 10 m x 10 m area (the dark zone at the ground surface in Figure 6 also
shows this foundation size). At any given depth, displacement degrees of freedom of the left and right boundaries
were tied together (both horizontally and vertically using the penalty method) to reproduce a 1D shear wave
propagation mechanism effect. The 7.5 m depth (NS direction) downhole acceleration record (Figure 7) from the
Wildlife Refuge site during the 1987 Superstition Hills earthquake was employed as base excitation along the x-axis.

Two cases were explored: one without any treatment (Medium-Sand, permeability k = 6.6 x 10 m/s) and the
other one with remediation by compaction as well as high permeability effects (Dense Gravel, D, = 65%, k = 1.0 x
10 m/s). The employed soil constitutive modeling parameters are summarized in Table 1.



Figure 8 shows the foundation vertical displacement time histories before and after remediation. The foundation
final settlement was reduced to 0.21 m after remediation (compared to 0.28 m before remediation). Other more
effective remediation strategies are reported in Lu (2005).

The simulations were performed on DataStar IBM SP POWER4 machine) at SDSC using 64 processors. The
total execution time for each simulation is about 18 hours.
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Figure 6. FE mesh of a shallow foundation model
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Table 1. Model parameters for medium sand and
dense gravel (Lu et al. 2005).
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histories before and after remediation.

Summary and Conclusions

This paper presents the analysis and solution strategies employed in ParCYCLIC, a parallel nonlinear finite element
program for the simulation of earthquake site response and liquefaction. In ParCYCLIC, the calibrated serial code
for modeling of earthquake geotechnical phenomena is combined with advanced computational methodologies to
facilitate the simulation of large-scale systems and broaden the scope of practical applications. The parallel
computational strategies employed in ParCYCLIC are general and can be adapted to other similar applications
without difficulties. ParCYCLIC has been successfully ported on IBM SP machines, SUN super computers, and
Linux workstation clusters.

A shallow foundation model was simulated using ParCYCLIC and preliminary results are presented. It is shown
that ParCYCLIC can be used to simulate large-scale problems, which would otherwise be infeasible using single-
processor computers due to limitations.
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