

ONTOLOGY MAPPING BETWEEN PSL AND XML-
BASED STANDARDS FOR PROJECT SCHEDULING

Jinxing Cheng1, Pooja Trivedi2 and Kincho H. Law3

ABSTRACT
Many ontology standards, such as STEP, ifcXML, aecXML and PSL, have been proposed for
the A/E/C industries. Different ontologies exist and they have many advantages for
information exchange within specific domain applications. However, the existence of
different ontologies may cause many interoperability issues. For example, while PSL,
ifcXML and aecXML all have provisions related to project management and scheduling
information, an aecXML-compatible or ifcXML-compatible application cannot directly
exchange information with a PSL-compatible application. In this paper, we address this
information exchange problem by building translators among PSL, ifcXML and aecXML in
the project scheduling domain. We examine the ontology mapping among PSL, ifcXML and
aecXML, and compare their expressive power. Using the parsers and translators developed,
we successfully demonstrate the information exchange among PSL, ifcXML and aecXML for
various projects.

KEY WORDS
Process Specification Language, PSL, aecXML, ifcXML, ontology, information exchange

1 PhD Student, Civil and Environmental Engineering Department, Stanford University, Stanford, CA 94305-

4020, email: cjx@stanford.edu
2 Graduate Student, Computer Science Department, Stanford University, Stanford, CA 94305-4020, email:

ptrivedi@stanford.edu
3 Professor, Civil and Environmental Engineering Department, Stanford University, Stanford, CA 94305-

4020, email: law@cive.stanford.edu

1. INTRODUCTION
Ontology standards play an important role to support interoperability among applications. For
the last two decades, there have been many ontology standards proposed and adopted by
various industries. In this paper we examine the interoperability issues between Process
Specification Language (PSL) (Schlenoff et al. 2000) and XML-based standards, such as
ifcXML (Liebich 2001) and aecXML (IAI 2002), for the project scheduling task. Both PSL
and XML-based standards have ontologies defined for project management and scheduling
applications.

The different ontology standards provide users various choices according to their specific
needs. However, the different standards may hinder interoperability since different
applications may opt to adopt different ontology standards. For example, an ifcXML-
compatible or aecXML-compatible application cannot directly exchange information with a
PSL-compatible application. To address this problem, we evaluate PSL, ifcXML and
aecXML focusing on ontology mapping between these standards for project scheduling
applications.

2. INTRODUCTION TO PSL
Process Specification Language (PSL) was initiated by NIST (National Institute of Standards
and Technology) and is emerging as an international standard for the manufacturing industry.
The goal of PSL is to create a process interchange language, which could be used to exchange
process information among different applications. PSL is based on first order logic and
situation calculus. PSL ontology includes a central core, an outer core and a set of extensions.
The PSL core consists of object, activity, activity occurrence and timepoint as the primitive
classes. The PSL outer core includes a small set of extensions, which are generic and
pervasive in their applicability, such as subactivity extension, activity occurrence extension
and states extension. The PSL extensions include a set of ontology modules motivated by
different manufacturing applications.

PSL is based on a formal language KIF (Knowledge Interchange Format), which is a
language designed for use in the interchange of knowledge among disparate computer
systems (Genesereth and Fikes 1992). KIF supports declarative semantics, and is logically
comprehensive. When combined with domain specific ontology, KIF is a powerful
knowledge representation language.

A PSL file consists of a set of logic sentences. The following shows examples of PSL
sentences:

(occurrence-of occ1 a1)
(before t1 t2)
(subactivity-occurrence occ1 occ2)

The first sentence (occurrence-of occ1 a1) means that activity occurrence occ1 is a particular
instance or occurrence of an activity a1. In the second sentence, two time points t1 and t2 are
ordered, where t1 is less than t2. The third sentence specifies that an activity occurrence occ1
is a subactivity occurrence of an activity occurrence occ2.

3. INTRODUCTION TO IFCXML AND AECXML
XML (Extended Markup Language) is a meta-markup language that consists of a set of rules
for creating semantic tags used to describe data (Young 2001). XML provides a mechanism
to describe an object as a hierarchy of elements. Due to the popularity of XML, many efforts
have been invested to propose XML schemas as ontology standards in the construction and
manufacturing industry as well as for business applications. In the A/E/C domain, ifcXML
and aecXML are the most popular XML schemas.

There exist tools that can automatically translate ifcXML from IFC/EXPRESS source
(Liebich 2001). IfcXML enables the exchange of IFC data in XML formats. IFC (Industry
Foundation Classes) is a data representation standard primarily for architectural and
construction product data (ISO 1994). There have been efforts to extend IFC to include cost
estimating and project management information (Thomas et al. 1999).

The ifcXML schema is a fairly extensive document with over 400 pages. IfcXML deals
not only with geometry and product data, but also intends to support life cycle project
information including architecture, HVAC, construction and facility management.

 AecXML was initially proposed by Bentley Systems in 1998, and is now being part of
the IAI (International Alliance of Interoperability). AecXML provides XML-based schemas
to describe information specific for data exchange among participants involved in the design,
construction, and operation of buildings, plants, infrastructure, and facilities (ISO 2002). The
schemas currently under development include:

• COS (Common Object Schema)
• Infrastructure
• Structural
• FM (Facility Management)
• Procurement
• Project Management
• Plant
• Building Performance

There are many working groups within each domain to define XML schemas for specific
applications. For example, the Project Management group is working on
ApplicationForPayment schema, contract schema and other schemas. Table 1 summarizes the
current state of the schemas posted on the URL site (http://www.aecxml.org).

Table 1: Schemas available in draft version

Working group Schemas available in draft version
Infrastructure LandXML
Project Management ApplicationForPayment Contract
Plant EquipmentDesignRequest
Building Performance QbXML

In this work, we focus our research in the project scheduling and resource allocation area.
While ifcXML schema exists, the “aecXML” schema1 employed in this study is the draft

1 The schema employed here is a version recommended by Professor Thomas Froese of University of British

Columbia during his sabbatical at Stanford University.

version developed by Primavera Systems in 1998. The schema is focused on project
scheduling, and was based on the Primavera Project Planner (P3)TM software.

4. ONTOLOGY MAPPING BETWEEN PSL AND XML

4.1 MAPPING CONCEPTS BETWEEN PSL AND XML
The first task is to map the terms related to project scheduling defined in PSL, ifcXML and
aecXML.

In a typical construction project, a project schedule consists of a set of activities and the
dependency relationships among the activities. Construction activities can generally be
categorized into one of three types: production activities, procurement activities and
administrative activities. Each activity has certain attributes associated with it, such as start
date and duration.

Dependency relationships describe the constraints defining the order in which the
activities must occur to complete the project (Gould 2002). There are four typical dependency
relations: Finish to Start, Finish to Finish, Start to Start, Start to Finish. Figure 1 depicts the
dependency relationships and their respective definitions. For examples, the “Finish to Start”
relationship between activity A and activity B means that B does not begin until A completes,
and the “Finish to Finish” relationship means that A need to complete before B does.

A B

Finish to Start

A B

Finish to Finish

A B

Start to Start

A B

Start to Finish

Figure 1: Dependency Relationships Among Activities

In PSL, there are four basic classes: object, activity, activity occurrence and timepoint. Each
activity in a project schedule can be roughly mapped into an activity occurrence in PSL,
while time point is used to specify the beginning point and the end point of an activity
occurrence. In PSL extensions, PSL provides some terms to describe the dependency
relationship among activities. For example, the terms before-start and before-start-delay in
PSL correspond to the “Start to Start” relationship in a project schedule. The PSL sentence
(before-start occ1 occ2 occ3) specifies that the beginning time point of occ1 is earlier than
the beginning time point of occ2, while (before-start-delay occ1 occ2 occ d) means that occ2
begins at least d time points after occ1 begins.

For ifcXML, each activity in a project schedule can be roughly mapped to a Task element.
The scheduling information about an activity is expressed in the WorkSchedule and
ScheduleTimeControl elements. The WorkSchedule element holds the overall scheduling
information, such as the start time and duration, while the ScheduleTimeControl element

holds further descriptions of scheduling information, such as actualStart, earlyStart, lateStart
and scheduleStart. The RelSequence element is used to express the dependency relationships
among activities.

The aecXML schema follows closely the Primavera P3TM tool. Primavera Project Planner
(P3)TM provides advanced project scheduling functions. The mapping from a project schedule
in P3TM to aecXML schema is relatively straightforward. In the aecXML schema, there are
activity, dependency and timepoint elements corresponding to the concepts in a project
schedule.

4.2 EXPRESSING PSL IN XML-BASED SCHEMAS
IfcXML and aecXML are based on a meta-markup language (XML), while PSL is based on a
formal logical language (KIF). XML has only limited representation capability to represent
constraints and rules. Since PSL is built on first order logic, it is more expressive than XML-
based schemas. Not all PSL sentences can be directly translated into XML, and some of the
PSL logical statements are difficult to translate into ifcXML and aecXML.

Most PSL sentences that deal with basic facts can be expressed in XML format, for
examples:

• (Beginof occ1 t1)
This PSL sentence can be translated into ifcXML by creating a task occ1 and an
associated WorkSchedule element, where the value of startTime attribute is t1.

• (before-start occ1 occ2 occ3)
For this sentence, we can create two tasks occ1 and occ2, and define occ3 as the task
of the whole project. We can then use RelSequence element to express the
relationship between occ1 and occ2.

In general, the PSL sentences dealing with logic rules will be difficult to translate into XML
directly. Some example situations are listed below:

• PSL sentences with existential or universal logic token (forall and exists), for
examples:

(forall (ν1 ... νn) (=> ψ θ))
(exists (ν1 ... νn) (and ψ1 ... ψm θ))

• PSL sentences with deduction or logically equivalent tokens (=> and <=>), for
examples:

(=> occ1 occ2)
(<=> occ1 ooc2)

• Some PSL sentences with logic relations, for example:
(during occ1 occ2 occ3)

The PSL sentence (during occ1 occ2 occ3) means that the beginning and ending time
points of occ1 are between the beginning and ending time points of occ2, and both
occ1 and occ2 are subactivity occurrences of occ3. In ifcXML and aecXML, however,
we do not have corresponding elements to express this logic relation. Consequently, it
is difficult to translate this PSL sentence into ifcXML or aecXML.

One solution to this problem is to embed the whole PSL logic sentence as an XML attribute.
For example, we can express the example PSL logic sentences in an XML structure as:

<LogicRules>
<PSLsentence ID=”01” rule=”(forall (ν1 ... νn) (=> ψ θ))“>
<PSLsentence ID=”02” rule=”(exists (ν1 ... νn) (and ψ1 ... ψm θ))“>
</LogicRules>

Embedding PSL sentences in an XML structure does not provide the meaning of the rules,
since most XML parsers do not support rule processing. Nevertheless, the sentence can be
exchanged verbatim between applications, if necessary.

On the other hand, we can always translate the scheduling information in ifcXML or
aecXML files into PSL, as long as the PSL ontology covers all the concepts in the ifcXML
and aecXML schemas.

5. TRANSLATION BETWEEN PSL AND XML

5.1 BUILDING A PSL PARSER
Presently, no generic PSL parser exists. Our first task was to build a PSL parser for the
project scheduling information in Java. The basic process of a PSL parser works as follows:
When the PSL parser reads a PSL logic sentence, it calls a corresponding function, which in
turn parses the information in the sentence according to the PSL syntax. The information will
be stored as objects and vectors, so that other functions and applications can retrieve and use
the information. Figures 2 shows the example code segment from the PSL parser.

private void parseDependency(String line, String type){

String id,id1,id2; float ww;
StringTokenizer st = new StringTokenizer(line, " \t\n\r\f()");
st.nextToken();
id1 = st.nextToken(); id2 = st.nextToken();
id = "depend" + depid;
dependency dep = new dependency(id, id1, id2);
dep.setType(type);
dependencies.addElement(dep);
depid = depid + 1;

}

Figure 2: Sample Code of the PSL Parser

One simplification we made in the PSL parser is that all PSL sentences are expressed as
relations rather than functions. PSL syntax is based on KIF. In KIF, each function can be
expressed as a relation. For example, the following two PSL sentences are equivalent:

(begin-of A 17)
(= (begin-of A) 17)

The difference is that in the first sentence the term begin-of is used as a relation, while in the
second sentence the term begin-of is used as a function. In KIF, each function has a unique
value; for example, in the second sentence, the value of the function (begin-of A) is 17. In
contrast, the value of a relation is either true or false; furthermore, relations can have
disagreement on the last element. For examples, the relations (before t1 t2) and (before t1 t3)

differ. As a result, every function is a relation, while not every relation can be expressed as a
function. Therefore, using relations is usually more convenient than using functions and
minimizes unnecessary confusions and complexities in implementing the PSL parser.

The PSL parser developed so far can only parse predefined PSL terms. We are currently
investigating the possibility to build a generic PSL parser in Java using a parser generator. A
parser generator is a tool that reads a grammar specification and converts it to a Java program
that can recognize matches to the grammar. Java Compiler Compiler (JavaCC) is one of such
popular parser generators for use with Java applications (SUN 2002). We are currently
building a generic PSL parser using JavaCC.

5.2 BUILDING XML PARSERS
To build parsers for ifcXML and aecXML files, we use Apache Xerces Java Parser (Apache
2002). Xerces Java Parser provides XML parsing and generation, and implements the W3C
XML and DOM (Document Object Model) standards, as well as the SAX (Simple API for
XML) standard. The parsers are highly modular and configurable.

The basic processes of the ifcXML and aecXML parsers are essentially the same. Both
parsers use Xerces API to parse the information from XML files, and store the information as
a linked list. Other functions and applications can iterate over the list to retrieve the
information. The difference between the ifcXML parser and the aecXML parser lies in that
ifcXML file and aecXML file use different tags and tree structures to represent a project
schedule. Figures 3 and 4 show the sample code segments from the ifcXML parser and the
aecXML parser respectively.

public LinkedList getRelSequenceGroup(){

LinkedList RelList = new LinkedList();
NodeList nodes =document.getElementsByTagName("RelSequence");
for(int i=0;i<len;i++){

Element e=(Element)nodes.item(i);
String[] attr = new String[5];
attr[0] = (String)e.getAttribute("id");
… …
RelList.add(attr); }

return RelList;
}

Figure 3: Sample Code of the ifcXML Parser

public LinkedList getDependencies(){
LinkedList DependencyList = new LinkedList();
NodeList nodes = document.getElementsByTagName("dependency");
int len = (nodes != null) ? nodes.getLength() : 0;
for(int i=0;i<len;i++){

Element e=(Element)nodes.item(i);
String[] attr = new String[7];
attr[0] = (String)e.getAttribute("dependencyid");
… …
DependencyList.add(attr); }

return DependencyList;
}

Figure 4: Sample Code of the aecXML Parser

5.3 TRANSLATION PROCESS
As shown in Figure 5, the translation process between PSL and XML is straightforward. To
translate PSL files into XML files, first we use a PSL parser to parse the PSL logic sentences.
We then map the terms in PSL into XML tags. Finally we construct the XML trees according
to the ifcXML schema and aecXML schema, and output the file in the corresponding formats.

PSL File PSL
Parser

Mapping
Ontology

Mapping
Ontology

Construct
XML trees

ifcXML
File

aecXML
File

ifcXML
File

aecXML
File

 XML
Parsers

Mapping
Ontology

Mapping
Ontology

Construct
Logic

Sentences
PSL File

Figure 5: Mapping Process Between PSL and XML

The reverse process is similar. To translate ifcXML and aecXML files into PSL files, we use
the ifcXML and aecXML parsers to parse the information from the XML files. We then map
the XML tags into PSL terms, and output the PSL logic sentences according to PSL syntax.

6. EXAMPLES

6.1 EXAMPLE 1: SAMPLE PROJECT FROM VITE
We select a sample project from ViteTM to test our translators among PSL, ifcXML and
aecXML. ViteTM is a project and organization modeling system designed to assist in
developing organizational structures and identifying potential problems with project cost,
time, or quality. As shown in Figure 6, the sample project is to design and fabricate a chip
set for a new personal digital assistant (PDA) product. There are 12 activities in this project.
Among the 12 activities there are three milestone activities: ‘Start Project,’ ‘Ship Tapes to
Foundry’ and ‘Fab, Test and Deliver.’ The activity ‘Design_Coordination’ is to maintain the
overall control of the project.

Start
Project

Fab, Test
and Deliver

Develop
Specification

Write-Verify-
Synth_B1RTL FullChipSynth

Sim_Gates

Eng Layout &
Physical Ver'n

Assemble &
verify_RTL

PartitionChip
& Floor

Planning
Generate Test

Vectors
Ship Tapes
to Foundry

Design_Coordination

Figure 6: Original CPM Diagram in Vite

The scheduling information in the example project can be expressed in a PSL file. Figure 7
shows part of the PSL file, which includes a set of logic statements to describe activities and
dependency relationships in the project schedule.

(and

(project TUTO)
(doc TUTO "TUTORIAL Project")
(beginof TUTO 9/18/1998)
(subactivity-occurrence ID100 TUTO)
… …

)
(and

(activity-occurrence ID100)
(doc ID100 "Assemble and verify_RTL")
(beginof ID100 12/17/1998)
(duration-of ID100 18)
(after-start ID100 ID170 TUTO)
(after-start-delay ID100 ID170 TUTO 0)

)
Figure 7: Sample PSL File

Figure 8 shows part of the ifcXML file translated from the PSL file. As discussed earlier, a
Task element in ifcXML maps to an activity in a project schedule. Thus the ‘taskid’ attribute
in ifcXML maps to the identifier of an activity occurrence in PSL. As a result, the
WorkSchedule element is associated with the corresponding activity by using the same
identifier as its identifier attribute. Similarly, the RelSequence element, which depicts the
dependency relationships among activities, is associated with the predecessor and successor
activities through its ‘relatedProcess’ and ‘relatingProcess’ attributes.

<WorkScheduleGroup>

<WorkSchedule identifier="ID100" duration="18.0" freeFloat="0.0"
totalFloat="0.0" startTime="12/17/1998" finishTime="1/4/99"/>

</WorkScheduleGroup>
<TasksGroup>

<Task taskid="ID100" description="Assemble and verify_RTL"/>
<Task taskid="ID700" description="FullChipSynth"/>

</TasksGroup>
<RelSequenceGroup>

<RelSequence id="depend0" relatingProcess="ID100"
relatedProcess="ID170" timeLag="0.0" sequenceType="after-start"/>
 </RelSequenceGroup>

Figure 8: Sample ifcXML file

Figure 9 shows part of the aecXML file translated from the PSL file. AecXML schema has
most elements corresponding exactly to the concepts in a project schedule. Once we have
mapped the PSL ontology to the concepts in a project schedule, translation between PSL and
aecXML requires little extra efforts.

<activities>
<activity activityid="ID100" description="Assemble and verify_RTL"

dependencyids="depend0" />
</activities>
<dependencies>
<dependency dependencyid="depend0" predecessor_activity_id="ID100"
successor_activity_id="ID170“ relationship="after-start" lag="0.0" />
</dependencies><timepoints><timepoint timepointid="tp0"
activityid="ID100" atTime="12/17/1998" /> <timepoint timepointid="tp1"
activityid="ID100" atTime="1/4/99"/>
</timepoints><occurrences><occurrence activityid="ID100" begin="tp0"
end="tp1" duration="18.0" freefloat="0.0" totalfloat="0.0"
/></occurrences>

Figure 9: Sample aecXML file

As shown in Figures 7, 8 and 9, all information in the PSL file is successfully translated into
ifcXML file and aecXML file, and vice versa.

6.2 EXAMPLE 2: MORTENSON CEILING PROJECT
To test the scalability of the prototype translators, the Mortenson Ceiling Project is employed
to illustrate the ontology mapping process. The Mortenson Ceiling Project is a portion of the
construction of the Walt Disney Concert Hall, built by Mortenson Construction, and designed
by Frank O.Gehry & Associates. Figure 10 shows the schedule in Primavera Project
PlannerTM. In this project, there are 191 activities and 459 dependency relationships.

Figure 10: Original Schedule in Primavera Project Planner

Using the PSL wrapper, we extract the scheduling information from Primavera Project
PlannerTM, and convert it into a PSL file, as illustrated in Figure 11. There are more than
2000 logic sentences in the generated PSL file. Using the PSL to XML translators, we
successfully translate the PSL file into ifcXML and aecXML files. Figures 12 and 13 show
the corresponding ifcXML and aecXML files, respectively. This example demonstrates the
robustness of the prototypes developed for information exchange between PSL and XML-
based standards.

(and
(activity-occurrence 1620-91101)
(doc 1620-91101 "Hang Drywall@Studs (Dtl7050) - M1/3 Lvl 6 Elem1")
(beginof 1620-91101 2/11/2002)
(duration-of 1620-91101 10)
(freefloat 1620-91101 0)
(totalfloat 1620-91101 42)
(after-end 1620-91101 1620-97101 CEIL)
(after-end-delay 1620-91101 1620-97101 CEIL 1)
(after-start 1620-91101 1630-91101 CEIL)
(after-start-delay 1620-91101 1630-91101 CEIL 0)

)
… …

Figure 11: Sample PSL File

<WorkSchedule identifier="1620-91101" freeFloat="0.0" totalFloat="42.0"
startTime="2/11/2002" finishTime="2/21/102"/>
<Task taskid="1620-91101" description="Hang Drywall@Studs (Dtl7050) - M1/3
Lvl 6 Elem1" >
<RelSequence id="depend79" relatingProcess="1610-91101"
relatedProcess="1610-97101" timeLag="1.0" sequenceType="after-start"/>

<RelSequence id="depend80" relatingProcess="1610-91101"
relatedProcess="1620-91101" timeLag="0.0" sequenceType="after-start"/>

… …
Figure 12: Sample ifcXML File

<activity activityid="1620-91101" description="Hang Drywall@Studs (Dtl7050)
- M1/3 Lvl 6 Elem1" dependencyids="depend159,depend160"/>
<dependency dependencyid="depend159" predecessor_activity_id="1620-91101"
successor_activity_id="1620-97101" relationship="after-start" lag="1.0"/>
<dependency dependencyid="depend160" predecessor_activity_id="1620-91101"
successor_activity_id="1630-91101" relationship="after-start" lag="0.0"/>
<timepoint timepointid="tp102" activityid="1620-91101" description="begin
Hang Drywall@Studs (Dtl7050) - M1/3 Lvl 6 Elem1" atTime="2/11/2002"/>
<timepoint timepointid="tp103" activityid="1620-91101" description="end
Hang Drywall@Studs (Dtl7050) - M1/3 Lvl 6 Elem1" atTime="2/21/102"/>
<occurrence activityid="1620-91101" begin="tp102" end="tp103"
duration="10.0" freefloat="0.0" totalfloat="42.0"/>
… …

Figure 13: Sample aecXML file

7. CONCLUSIONS
Different ontologies exist for different application domains. IfcXML, aecXML and PSL are
candidate ontology standards that could be employed by the construction industry. To achieve
interoperability among different construction applications, we have developed translators for
information exchange among PSL, ifcXML and aecXML and tested for a typical project
schedule. We identify the PSL sentences, which could be difficult to translate into XML
format. Our current research includes translating complex PSL logic sentences into ifcXML
and aecXML structures. In addition, we are investigating the potential use of logic-based PSL
for conflict resolution and consistency checking of a project schedule.

8. ACKNOWLEDGEMENTS
This work is partially sponsored by the Center for Integrated Facility Engineering at Stanford
University, a Stanford Graduate Fellowship, and the Product Engineering Program headed by
Dr. Ram D. Sriram at NIST. The Product Engineering Program gets its support from the
NIST’s SIMA (Systems Integration for manufacturing Applications) program and the
DARPA’s Radeo Program. The model of the Mortenson Ceiling Project is provided by
Professor Martin Fischer and his research group at Stanford University. The authors would
like to thank Professor Thomas Froese, University of British Columbia, for providing the
aecXML schema and for his valuable comments and suggestions about the schema.

9. REFERENCES
Apache (2002), “Xerces Java Parser.” The Apache Software Foundation,

http://xml.apache.org/xerces-j/ (Accessed: 25 March 2002).
Froese, T., Fischer, M., Grobler, F., Ritzenthaler, J., Yu, K., Sutherland, S., Staub, S., Akinci,

B., Akbas, R., Koo, B., Barron, A., and Kunz, J., (1999). "Industry Foundation Classes
for Project Management-A Trial Implementation." ITCON, Vol. 4, 17-36.

Genesereth, M.R. and Fikes, R. (1992), “Knowledge Interchange Format Version 3.0
Reference Manual.” Computer Science Department, Stanford University.

Gould E.F.(2002), Managing the construction Process: Estimating, Scheduling, and Project
Control, Prentice Hall, 2002.

IAI (2002), “AecXML.” International Alliance for Interoperability, http://www.aecxml.org
(Accessed: 15 March 2002).

ISO (1994), 10303-1:1994, “Product data representation and exchange: Part 1: Overview and
fundamental principles.”

Liebich T. (2001), “XML schema language binding of EXPRESS for ifcXML.” MSG-01-
001(Rev 4), International Alliance of Interoperability, 2001.

Schlenoff, C., Gruninger M., Tissot, F., Valois, J., Lubell, J., and Lee, J.(2000), “The
Process Specification Language (PSL): Overview and Version 1.0 Specification.”
NISTIR 6459, National Institute of Standards and Technology, Gaithersburg, MD.

SUN (2002), “ Java Compiler Compiler(JavaCC) - The Java Parser Generator.” Sun
Microsystems, http://www.webgain.com/products/java_cc/ (Accessed: 25 March 2002).

Young, M.J. (2001), Step by Step XML, Microsoft Press, 2001.

	ABSTRACT
	KEY WORDS
	1. INTRODUCTION
	2. INTRODUCTION TO PSL
	3. INTRODUCTION TO IFCXML AND AECXML
	
	
	
	
	
	
	
	Schemas available in draft version

	4. ONTOLOGY MAPPING BETWEEN PSL AND XML
	4.1 Mapping Concepts Between PSL and XML
	4.2 EXPRESSING PSL IN XML-BASED SCHEMAS

	5. TRANSLATION BETWEEN PSL AND XML
	5.1 Building A PSL Parser
	5.2 Building XML Parsers
	5.3 Translation Process

	6. EXAMPLES
	6.1 Example 1: Sample Project From vite
	6.2 Example 2: Mortenson Ceiling Project

	7. CONCLUSIONS
	8. ACKNOWLEDGEMENTS
	9. REFERENCES

