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ABSTRACT 
 
A low-cost wireless sensing unit is designed and fabricated for deployment in a structural 
monitoring system that uses wireless radios as the sole channel for communications.  The finite 
operational life of portable power supplies such as batteries necessitates optimization of the 
wireless sensing unit design to attain power efficiency.  To attain far reaching communication 
ranges required in structural monitoring applications, the wireless communication channel 
consumes significant amount of power.  To reduce the quantity of raw time-history data for 
transmission and reception, a computational core that can accommodate localized processing of 
data is designed and implemented.  To illustrate the ability of the computational core to execute 
embedded engineering analyses, a two-tiered time-series damage detection algorithm is 
implemented.  Local execution of the embedded damage detection method is shown to save 
energy by avoiding utilization of the wireless channel to transmit raw time-history data. 
 
 
INTRODUCTION 
 
Many benefits can be gained from monitoring the ambient and forced response of civil 
infrastructures such as buildings, bridges, and dams.  For example, determination of a structure’s 
dynamic properties from ambient recorded responses can help engineers to identify structural 
vulnerabilities to large external disturbances.  Recorded response data obtained by structural 
monitoring systems during earthquakes have been helpful in identifying response discontinuities 
attributable to structural damage [1].  As the structural engineering field progresses towards 
performance-based design principles, structural monitoring systems can provide extensive 
empirical data that can be used to refine building codes and improve nonlinear structural models.  
Structural monitoring can provide building owners with rapid insight to the level of seismic 
excitation exerted on their structures, identify if their structures are safe for occupants following 
an earthquake and what can be done to improve structural integrity for long-term risk 
management [2].     
  
The current California Building Code (CBC), based upon the 1997 Uniform Building Code 
(UBC), recommends installation of structural monitoring systems in structures situated in zones 
of high seismic activity.  A minimum of three accelerometers are suggested for buildings with 
dimensions of six or more stories and total floor areas greater than 5,500 square meters [3].  This 
CBC/UBC instrumentation recommendation is insufficient for high-rise structures where 
structural models are characterized by high frequency modes with strong participation factors 
[4].  In addition to buildings, long-span bridges and dams have been instrumented with 
monitoring systems to measure their responses to earthquakes.  In California, over 900 sensing 

Source: Caltrans/UCSD Workshop on Structural Health Monitoring and Instrumentation and Diagnostics of 
Bridge Infrastructure, San Diego, CA, USA, March 7-8, 2003. 



channels have been installed on 60 long-span bridges by the California Department of 
Transportation and over 100 dams have been instrumented by the California Division of Safety 
of Dams [5, 6].  Internationally, structural monitoring systems have been instrumented in a broad 
class of structures.  The Tsing Ma suspension bridge in Hong Kong was instrumented with 350 
channels upon construction completion in 1997 [7].  In Europe, structural monitoring systems 
employing fiber optic strain gages are often embedded in concrete bridges to measure long-term 
deflections [8].   
 
Commercially available structural monitoring systems employ hub-spoke system architectures 
where remote sensors are wired directly to centralized data acquisition systems as shown in 
Figure 1.  Typical sensors used to record environmental loads and structural responses include 
accelerometers, strain gages and anemometers.  In current systems, sensors lack the means to 
process their data and are only responsible for communicating the measurements taken.  
Therefore, the centralized data server is responsible for the aggregation, storage and processing 
of all measurement data.   
 
Today, the cost of installing structural monitoring systems in civil structures can be characterized 
as high.  For example, structural monitoring systems installed in buildings can cost $5,000 per 
channel with typical installations using 12 sensing channels, resulting in total system costs of 
over $60,000 [4].  Fiber optic monitoring systems installed in concrete bridges can cost between 
$20,000 and $100,000 for spans greater than 200 meters [9].  The expensive nature of structural 
monitoring systems is a direct result of the high installation and maintenance costs associated 
with system wires.  For example, installation of the monitoring system can represent up to 25% 
of the total system cost with over 75% of the installation time focused solely on the installation 
of system wires [10].  In outdoor applications such as bridges, potentially harsh environmental 
conditions necessitate additional efforts to install system cables in weatherproof conduits thereby 
raising installation costs.  
 
As a result of high installation and maintenance costs, the adoption of structural monitoring 
technologies in the marketplace can be characterized as sluggish.  Thus far, only structures 
identified as critical can justify the expenses associated with installing a structural monitoring 
system.  As a consequence of hub-spoke architectures, structural monitoring systems have poor 

Figure 1 – Wire-based versus wireless structural monitoring systems 

C entra lized
D ata A cquis ition

S ensors
C abling

Sensors

C ables

D ata A cq. U n ix B ox
B us

S ensors

Sensors

C urrent C onventional P ractice

M icro-
P rocessor

W ire less
M odem

Sensors
A -to-DBatteries

W ire less
M odem PC

C entra lized
D ata  S torage

S U

S U

SU

SU

S ensor U n its

SU

W ireless
Com m unica tion

S U

SM

W ire less Em bedded S ystem



scalability properties with systems comprised of hundreds of sensors becoming increasingly 
expensive on a per channel basis.  Today, there is a growing demand for structural monitoring 
systems because they represent an enabling technology for a broader set of applications.  In 
particular, researchers have been successful in developing computational algorithms that can be 
used to identify the existence of damage in structures [11].  The computational demands of 
engineering analyses, such as damage detection procedures, can be high.  With engineering 
analyses ordinarily performed by the centralized data acquisition unit, the centralized monitoring 
system can becomes overburdened with computational tasks.   
 
To address the cost and performance shortcomings of current cable-based structural monitoring 
systems, use of advanced embedded system technologies is proposed to reduce monitoring 
system costs while simultaneously providing additional functionalities.  The use of wireless 
communications to transfer sensor measurements to a centralized data acquisition system was 
first proposed by Straser and Kiremidjian [10].  Their work was instrumental in proving the 
reliability and cost-effectiveness of wireless communications in lieu of extensive cabling in a 
structure.  More recently, Lynch et al. have extended their work to couple computational power 
in the form of low-cost microcontrollers with each wireless sensor node [12].  The intended 
purpose of integrating computational power directly with the sensor is to permit localized 
execution of embedded engineering analyses locally.  Many benefits can be reaped from a 
wireless monitoring system with embedded computational power.  First, decentralization of 
computational power permits an efficient infrastructure for parallel processing of data.    Second, 
with wireless radios consuming large amounts of power, processing data at the sensor and 
transmitting only the results reduces the quantity of raw time-history data.  Limiting the use of 
the wireless radio improves the power efficiency of the wireless structural monitoring system.  
The power efficiency of the wireless monitoring system is of primary concern because portable 
batteries of finite operational duration represent a likely power source for each sensor node.   
 
Research and development efforts in both academia and industry have produced wireless sensing 
networks for a variety of applications.  The Smart Dust and µAMPS projects have both yielded 
low-cost wireless sensor nodes designed for deployment in wireless sensor networks define by 
high nodal densities [13, 14].  With short communication ranges, embedded firmware is used to 
manage the flow of measurement data in these sensor networks by multi-hopping.  Commercial 
wireless sensor platforms are also commercially available from Crossbow and Microstrain [15, 
16].  However, the systems developed do not address the unique demands of the structural 
monitoring domain where low-power consumption characteristics of a wireless sensing platform 
are to be balanced by far-reaching communication ranges and sufficient computational 
capabilities for autonomous data processing.   
 
The objective of this research is to develop a state-of-the-art wireless sensing unit that can be 
used as the fundamental building block of a wireless modular monitoring system (WiMMS) that 
is proposed for civil structures.  The research aims to develop an optimal hardware design that is 
low-cost, low-power yet functionally comparable to current cable-based structural monitoring 
systems.  Embedded intelligence of the wireless sensing unit is in the form of a sophisticated 
dual-processor core design that can be used for localized data interrogation.  Interrogation of data 
directly at the sensor node reduces the demands on the wireless radio thereby preserving the life 
span of portable power supplies.  To illustrate the strength of the computational core, a 



computational task is embedded in the sensing unit and executed on raw time-history data 
obtained from a simple lumped mass laboratory test structure.  The embedded analysis chosen 
for this study is a two-tiered time-series damage detection procedure based upon a statistical 
pattern recognition paradigm.  The paper concludes with a brief discussion of current research 
efforts to embed a broad class of algorithms in the wireless sensing unit aimed towards 
compression of data.  Reduced data flow can be attained using both lossless and lossy data 
compression techniques thereby reducing the wireless channel usage.     
 
 
A WIRELESS SENSING UNIT OPTIMIZED FOR STRUCTURAL MONITORING 
 
A proposed wireless sensing unit is designed as the cornerstone component of the proposed 
wireless structural monitoring system [17, 18].  At the outset of the design process, functional 
requirements of the sensing unit are specified that reflect the demands of structural monitoring.  
First, low-power consumption characteristics of the wireless sensing unit are sought to ensure 
long lasting autonomous operation before battery replacement is required.  Furthermore, the 
range of the wireless communication channel must be on the order of a hundred meters to permit 
sufficient separation of the units in large scale structural systems.  Wireless radios with far range 
exhibit superior propagation properties within enclosed structures such as buildings and dams.  A 
low cost wireless sensing unit is sought thereby encouraging installation of structural monitoring 
systems defined by high sensing densities.      
    
A modular approach is taken in the design of a wireless sensing unit for application in a wireless 
structural monitoring system.  Principally, the design of the sensing unit can be divided into three 
functional modules: sensing interface, computational core, and wireless communications.  A 
modular design approach results in a sensing unit that can easily be upgraded as embedded 
system technologies continue to mature.  In addition, dividing the sensing unit design into 
functional categories favors optimization of each module with respect to cost, desired 
functionalities and power consumption characteristics.   
 
Sensing Interface 
 
A plethora of sensors can be used to measure the environmental loading and response of 
structural systems.  The wireless sensing unit should be capable of permitting easy interface of 
traditional sensors such as accelerometers and strain gages as well as new sensors potentially 
relevant to structural monitoring applications.  A sensor transparent interface is designed with 
multiple channels to accommodate sensors with both analog and digital outputs.  A multi-
channel interface supports multi-sensor data fusion where the outputs of some sensors are used to 
attain accurate calibration or enhancement of another [19].   
 
A single-channel 16-bit analog-to-digital (A/D) converter is chosen to accommodate sensors 
with analog outputs.  With a maximum sampling rate of 100 kHz, the Texas Instruments 
ADS7821 A/D converter can even be used to collect local structural member responses whose 
dynamics are defined by high-frequency modes.  At the maximum sampling rate of 100 kHz, the 
converter draws 16 mA of current.  For lower sampling rates (20-200 Hz), the current draw of 



the A/D converter will be on the order of 1 mA.  Two additional sensor channels are provided for 
sensors with digital outputs.  In total, three sensor channels are provided by the sensing interface.   
 
Computational Core 
 
The most important component of the proposed wireless sensing unit design is the computational 
core.  Core responsibilities include overall operation of the wireless sensing unit in addition to 
processing of acquired time-history data.  The core is comprised of embedded microcontrollers 
and their appropriate support circuitry.  Commercial microcontrollers come in different sizes 
(internal bus size), speed, and costs.  Low-power microcontrollers tend to be found in 8-bit 
architectures.  While such microcontrollers could easily accommodate the operation of the 
sensing unit, computationally intense engineering analyses embedded in the core would be 
difficult to implement.  To address the need for high analysis throughput, higher end 
microcontrollers, namely 16- and 32-bit architectures, are required.  Unfortunately, the power 
consumption characteristics of 16 and 32-bit microcontrollers exceeds design requirements and 
would drain portable power supplies rapidly.  A balance can be attained by designing a 
computational core with dual processors: a low-power 8-bit microcontroller for overall unit 
operations and a 32-bit microcontroller for execution of embedded engineering analyses.  
Normal operation of the wireless sensing unit would rely upon the 8-bit microcontroller.  When 
data is ready for processing, the 8-bit microcontroller would turn the 32-bit microcontroller on 
and command it to interrogate the data.  Upon completion of the prescribed analyses, the 8-bit 
microcontroller will record the results and turn the 32-bit microcontroller off.   
 
A low-power 8-bit microcontroller is selected for control of the data acquisition operation of the 
wireless sensing unit.  In particular, the Atmel AVR AT90S8515 microcontroller is chosen [20].  
By leveraging the internal services provided by the AT90S8515, reliable acquisition of sensor 
data from the sensing interface can be performed in real-time.  The wireless communication 
channel is directly accessed through the AT90S8515’s serial port.  With memory and 
computational speed limited on the AT90S8515, a second microcontroller is selected for 
inclusion in the computational core.  The Motorola MPC555 PowerPC, a high-performance 32-
bit microcontroller, is selected for the task of local data interrogation [21].  With significantly 
more read only memory (ROM) and random access memory (RAM) onboard, in addition to a 
faster clock rate of 20 MHz, intensive data processing not possible on the AT90S8515 can now 
be performed.  The AT90S8515 (at 4 MHz) draws 8 mA of current when turned on and active 
while the MPC555 (at 20 MHz) draws 110 mA.  When placed in sleep mode, both 
microcontrollers draw reduced currents of 2.5 mA and 4 mA for the AT90S8515 and MPC555 
respectively.     
 
Wireless Communications        
 
In exchange for reliable cable-based communications, a low-cost and flexible wireless 
communication system is chosen.  For installation in civil structures, wireless communication 
components must have node to node ranges of over 150 meters and employ spread spectrum 
techniques to ensure reliability in the face of channel interference, multi-path reflection, and path 
loss [22].  Furthermore, the wireless communications require adequate penetration characteristics 
through typical civil engineering materials such as heavily reinforced concrete [23]. 



 
The Proxim RangeLAN2 7911 radio modem is selected to serve as the wireless technology for 
the sensing unit.  Operating on the 2.4 GHz unregulated FCC industrial, scientific and medical 
(ISM) band, the RangeLAN2 communicates at a data rate of 1.6 Mbps.  A standard RS232 serial 
port interface is provided by the modem for direct communication with the computational core.  
By employing a 1 dBi omni-directional antenna, open space communication ranges of over 300 
meters can be attained which is a suitable range for the installation of sensing units on bridges.  
Unfortunately, the shielding behavior of heavy construction (e.g. concrete) reduces the range to 
approximately 150 meters when used on the interior of structures.   
 
Powered by a 9 V direct current (DC) voltage source, the wireless modem draws 190 mA of 
current while actively receiving and transmitting.  Compared to the power consumption 
characteristics of the computational core, the large power demands of the wireless modem 
provide additional motivation for performing as many data interrogations possible using the 
sensing unit.  When the modem is not needed, its current draw can be reduced to 60 mA by 
placing it in sleep mode.  Sleep mode is important for preserving the life of the unit’s battery 
source. 
 
Wireless Sensing Unit Construction and Validation 
 
To house the chosen circuit components, a two-layer printed circuit board is designed and 
fabricated.  The circuit board is designed to keep the wireless sensing unit form factor low and to 
ensure a low electrical noise environment.  A limitation of the two-layer circuit board design is 
its inability to sufficiently separate analog and digital circuit components resulting in injected 
noise in the A/D conversion process.  As a result, the effective resolution of the conversion is on 
the order of 13-bits [12].  The wireless sensing unit can be powered by a minimum 6 volt direct 
current (DC) power supply. 
 
The completed wireless sensing unit, as pictured in Figure 2, has been previously tested and its 
performance validated in both the laboratory and field setting.  Simple laboratory test structures 
have been used to successfully collect data from microelectromechanical system (MEMS) 
accelerometers in addition to locally calculate the frequency response function of time-history 

Figure 2. Wireless sensing unit design overview (left) and completed fabrication (right) 
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data [12].  The unit has also been taken to the field for instrumentation upon the Alamosa 
Canyon Bridge in southern New Mexico in parallel with a cable-based data acquisition system.  
The accuracy of the wireless monitoring system has been shown to be comparable to that of the 
commercial system.  In addition, installation of the wireless sensing units on the bridge was 
completed in half the time required for the cable-based system [24].   
 
Table 1 summarizes the operational life of the wireless sensing unit for two different battery cell 
chemistries.  Typical alkaline (Zn/MnO2 cell chemistry) and high energy density (Li/FeS2 cell 
chemistry) 7.5 V battery packs are considered.  Based on design charts provided by the 
manufacturer, the continuous operational life of the wireless sensing unit is calculated [25].  The 
RangeLAN2 wireless radio is powered separately from the rest of the wireless sensing unit.  The 
operational lives listed are conservative because they assume continuous use of the batteries and 
do not reflect the batteries’ ability to extend their lives through re-equilibrium of the cell during 
duty cycle usage.  Furthermore, if unit volume is not an issue, additional battery packs can be 
placed in parallel to increase the unit’s operational life before battery replacement is required.   

Table 1. Wireless sensing unit operating life for various battery chemistries 

  Operational State Current 
(mA) 

5-AA L91 (Li/FeS2) 
Battery Pack (7.5 V) 

5-AA E91 (Zn/MnO2) 
Battery Pack (7.5 V) 

AT90S8515 On  (MPC555 Off) 50 50 hours 30 hours 
AT90S8515 On  (MPC555 On) 160 15 hours 5 hours 

RangeLAN2 Active 190 12 hours 3.5 hours 
 
 
POWER EFFECIENCY OF LOCALIZED DATA INTERROGATION 
 
Our proposed wireless monitoring system places a strong emphasis upon leveraging the 
computational strengths of the unit’s core to first interrogate data and to communicate the results 
to adjacent wireless sensor nodes.   Transfer of long records of measurement time-histories is not 
an efficient use of the wireless medium and should be avoided for real time communication 
when possible.  Results derived from raw time-history data for communication to the wireless 
network could include modal frequencies, location and severity of potential structural damage 
and sensor status information.   
 
The rationale for employing the wireless sensing unit’s computational core to attain energy 
efficiency is best explained through the use of an example.  Consider an operational scenario 
where the wireless sensing unit is used to collect a raw time-history record of 4096 points.  Since 
each data point produced by the A/D converter is represented by a 16-bit integer, the resulting 
record is in total, 65,536 bits (8,192 bytes).  The RangeLAN2 radio is capable of sending data 
packets with a maximum size of 1462 bytes (including 14 bytes of overhead per packet).  As a 
result, the entire time-history record can be sent using 6 packets.  At a communication baud rate 
of 19,200 bits per second, the wireless radio requires 4.3 seconds of time, t, to transmit the data 
during which time the radio draws 190 mA of current, i.  The internal electrical circuit of the 
wireless radio is regulated at a voltage, V, of 5 V.  Based on Equation (1), the total amount of 
energy, E, consumed by this operation is 4.09 Joules.   
 



( ) ( ) ( ) JsecmAVtiVE 09.43.4190.05 ==⋅⋅=  (1) 
 
Consider the scenario where instead of transmitting the raw time-history record, the MPC555 
microcontroller is used to execute an engineering analysis and the results transmitted.  The 
MPC555 powered by a direct current power source and draws 110 mA of current.  Internally, the 
MPC555 is regulated to a 3.3 V voltage.  The time required, tMPC555, for the MPC555 to consume 
the same amount of power as that used by the wireless radio in transmitting 4,096 point record is 
equal to 11.25 seconds (t = E/V·i).   
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In this assessment, the amount of energy expended by the wireless radio in transmitting results 
with sizes of 100 bytes or less is negligible.  As a result, embedded engineering analyses that can 
be performed within 11.25 seconds represent a direct energy saving in the wireless monitoring 
system.  As will be shown in this study, engineering analyses can easily be conducted within this 
allotted timeframe.     
 
 
LOCALIZED EXECUTION OF DAMAGE DETECTION ALGORITHMS 
 
Structural health monitoring entails the use of damage detection algorithms for the identification 
of damage in a structural system.  Particularly for civil structures, information on the integrity of 
a structure in near real-time can be instrumental in assessing its safety over its operational 
lifespan.  An extensive body of literature has illustrated the successes and failures of different 
damage detection algorithms that have been applied to a broad class of structural systems [26].  
Early damage detection methods that relied upon modal properties and finite element 
representations of the structural system have been difficult to apply to civil structures because of 
normal environmental and operational variability associated with structures.  As a result, a 
statistical time-series approach that does not require information of the system operational and 
environmental variability has been proposed for detecting possible damages in civil structures 
[27].  Statistical time-series approaches have been successfully applied to a laboratory test 
structure, the hull of a high-speed patrol boat and on a full-scale benchmark problem structure 
[28-30].  The time-series approach is designed for implementation with measurement data 
collected from a single node of the dynamic system.  When the analysis is performed in parallel 
at various sensing nodes distributed throughout a structure, a spatial dimension to the approach 
can be exploited to assist in estimating damage locations.   
 
The value of integrating embedded system hardware and engineering software in the proposed 
wireless sensing unit is made clear by the unit’s potential use in an autonomous structural health 
monitoring system that employs statistical time-series approaches for damage detection.  A two-
tiered auto-regressive model approach can be implemented using the wireless sensing units.  The 
autonomous nature of the approach does not require the direct exchange of raw time-history data 
between wireless sensing units further simplifying its implementation.  A simple lumped mass 
laboratory test structure is used to illustrate and validate the autonomous execution of this 
promising damage detection procedure.       
 



 
Statistical Time-Series Damage Detection Methodology 
 
As proposed by Sohn et al., the time-series analysis begins with measurement of the response, y, 
of the structure at a particular sensor location [29].  Assuming the response to be stationary, an 
auto-regressive (AR) process model is used to fit the discrete measurement data to a set of linear 
coefficients weighing past time-history observations: 
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The response of the structure at sample index, k, as denoted by yk, is a function of p previous 
observations of the response of the system, plus, a residual error term, rk

y.  Weights on the 
previous observations of yk-i are denoted by the bi coefficients.  A large number of AR models 
can be derived for an undamaged structure under a variety of operational conditions to populate a 
database consisting of AR model coefficients.  If the structure is damaged, an AR model fit to 
time-history data would not be in agreement with the database models that correspond to the 
undamaged structure.  Model agreement, D, is calculated by determining the Euclidian distance 
between coefficient vectors of the AR model calculated and those in the database.  A lower 
distance between coefficient vectors suggests stronger agreement.     
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It is assumed that the residual error of the AR model, rk

y, is influenced by the unknown excitation 
input to the system.  As a result, a second time-series model is chosen to model the relationship 
between the residual error and the measured response of the system.  For this second model, an 
auto-regressive with exogenous inputs (ARX) model can be chosen [29]: 
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Coefficients on past measurements and the residual error of the AR model are αi and βi, 
respectively.  The residual of the ARX model, εk

y, is a damage sensitive feature used to identify 
the existence of damage in the structure regardless of its operational state.  Statistics of the ARX 
model residual error will then be used to hypothesize damage in the structure. 
 
Implementation of the Two-Tiered Time-Series Damage Detection Method 
     
To implement the statistical pattern recognition approach, the structure is observed in its 
undamaged state under a variety of environmental and operational states to populate a database 
pairing AR(p) models of dimension p and ARX(a,b) models of dimension a and b.  Prior to 
using the raw time-history records, their means and standard deviations are standardized to zero 
and one respectively.  After measuring the response of the structure, yk, in an unknown state 
(damage or undamaged), an AR(p) model is fit.  The coefficients of the fitted AR model are 



compared to the database of AR-ARX model pairs previously calculated for the undamaged 
structure.  A match is determined by minimizing Euclidian distance, D, of the newly derived AR 
model and the database AR models coefficients, bi

y and bi
DB respectively.  If no structural 

damage is experienced and the operational conditions of the two models are close to one another, 
the selected database AR model should closely approximate the measured response.  If damage 
has been sustained by the structure, even the closest AR model of the database will not 
approximate the measured structural response well.   
 
The measured response of the structure in the unknown state, yk, and the residual error of the 
fitted AR model, rk

y, are substituted in the database ARX model to determine the residual error, 
εk

y, of the ARX model:  
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The residual error of the ARX(a,b) model is the damage sensitive feature in the analysis.  If the 
structure is in a state of damage, the statistics of the ARX model residual, εk

y, will vary from that 
of the ARX model corresponding to the undamaged structure.  In particular, damage can be 
identified when the ratio of the standard deviation of the model residuals exceeds a threshold 
value established from good engineering judgment [29].  
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Establishing a threshold, h, that minimizes the number of false-positive and false-negative 
identifications of damage is necessary for robust damage detection [29].    
 
The wireless sensing unit will be used to embed the statistical time-series damage detection 
method presented.  Given the memory limitations of the wireless sensing unit, storage of a 
database of AR and ARX coefficients is done using a remote data server.  The implementation 
details using the wireless sensing unit are presented in Figure 3.       
 
Embedded Firmware Development 
 
An abstraction layering approach is taken for writing embedded software (also termed firmware) 
for the wireless sensing unit.  The lowest layer of firmware is written to directly interact with 
hardware subsystems of the sensing unit thereby hiding implementation details from upper 
software layers.  An upper software layer that sits upon the lowest layer is reserved for 
embedded engineering analyses.  At both layers, the unique programming demands of the 
wireless sensing unit such as limited on-board program and data memory must be addressed to 
deliver an optimized program. 
       
Software is required to determine the coefficients of an AR(p) model based on a segment of 
recorded time-history data.  A least-squares approach can be taken to calculate the coefficients of 
an AR model.  For calculation of the coefficients by the wireless sensing unit, Burg’s approach 
to solving the Yule-Walker equations is chosen because it is proven to be more stable compared 



to least-squares by avoiding matrix inversions [31].  Multiplying Equation (3) by the current 
measurement sample, yk, and taking the expected value of both sides of the equation, the 
autocorrelation function, φ, of the auto-regressive process is derived.  
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The autocorrelation function of the discrete time-history obeys the initial difference equation of 
the AR process.  This yields a means of determining the coefficients of the AR process based on 
calculations of the autocorrelation of the measurement data.  Resulting are the Yule-Walker 
equations:   
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The coefficients of the auto-regressive process are extremely sensitive to the way the 
autocorrelation of the process is determined.  As a result, a method has been proposed by Press et 
al. for determining the coefficients of the auto-regressive model directly from the measurement 
data [31].  The method is recursive with its order increasing during each recursive call by 
estimating a new coefficient bi and re-estimating the previously calculated coefficients so as to 
minimize the residual error of the process.      

Figure 3. Implementation details of using the wireless sensing unit to autonomously detect damage 
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Laboratory Validation using a Lumped Mass Test Structure 
 
Raw time-history measurements taken from previous testing of a lumped mass laboratory test 
structure is used to illustrate the successful execution of the embedded time-series damage 
detection procedure.  The lumped mass model is comprised of eight cylindrical aluminum disks 
(25.4 mm thick, 76.2 mm diameter) that are free to slide along a common steel rod with coil 
springs placed between adjacent masses.  Each aluminum disk is 419.4 g, except for the first 
whose mass is 559.3 g, and the spring constant of the coil springs is 56.7 kN/m.  Structural 
damping is derived from Coulomb damping between the aluminum disks and the steel rod.  
Endevco 2251A-10 accelerometers are firmly attached to each mass of the system to measure 
transverse acceleration responses from input excitations imparted by a 215 N electro-dynamic 
shaker.  To induce damage to the structure, adjustable bumpers are placed between masses.  To 
simulate damage in the structural system, bumpers are adjusted to ensure contact when the 
system is excited.  This damage is analogous to the closing of a crack during vibration in a civil 
structure.  A picture of the complete test setup is presented in Figure 4 with the aluminum disks 
numbered.        
 
Sohn and Farrar have extensively used the laboratory test structure to test the proposed time-
series damage detection method [28].  In their study, a cable-based laboratory data acquisition 
system was used to collect the acceleration response of the system to white-noise excitations of 
prescribed standard deviations.  Their time-history records are 4096 points in length and have 
been collected at a sampling rate of 512 Hz.  The response time-history records collected by their 
study are stored in the wireless sensing unit and will be used by the embedded damage detection 
analysis.  Because the focus of this study is to validate the accuracy of the wireless sensing unit 
in executing embedded algorithms, use of their data set is justified even though it has not been 
collected by the wireless sensing unit sensing interface.     
 
For both the undamaged (no bumper) and damaged (bumper) states of the structural system, the 
force transducer is set to exert forces at two operational levels (white noise forcing functions 
characterized by standard deviations of 26.6 N and 31.1 N).  Using response data obtained from 
the undamaged structure, a database of AR(30)-ARX(5,5) model pairs is populated.  Selection of 
30 coefficients for the AR model is determined from where the autocorrelation function of the 
response is below a certain threshold near zero.  Likewise, the dimensions of the ARX model are 
chosen to be smaller than the dimension of the AR model as recommend by Ljung [32]. 

Figure 4. Laboratory test structure of eight aluminum disks excited by an external force transducer [28] 
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Damage in the structural system is modeled by adjusting the bumper between selected masses to 
ensure contact during the external excitation [28].  The bumper on the first mass is adjusted to 
induce contact between mass 1 and 2.  The complete two-tiered time-series analysis embedded in 
the wireless sensing units is locally executed.  Table 2 documents the results of the analysis with 
the ratio of standard deviations of Equation (7) presented.  As presented in Table 2, damage is 
easily identified by the peak in the standard deviation ratio for the data processed in the vicinity 
of mass 2.  The computational core embedded in the wireless sensing unit has successfully 
determined the possible existence and location of damage in the system.        

Table 2. Analysis results of the damaged lumped mass structure (damage induced between mass 5 and 6) 

σ(εy)/σ(εDB) Operational State 
Mass 1 Mass 2 Mass 3 Mass 4 Mass 5 Mass 6 Mass 7 Mass 8

Excitation σ = 31 N 1.0196 2.5181 1.3289 1.1240 1.1170 0.9780 1.0249 1.0401
Excitation σ = 31 N 1.0034 2.4547 1.2561 1.0320 1.0961 1.0022 1.0116 1.0050
Excitation σ = 31 N 0.9989 2.4823 1.3454 1.0820 1.0942 0.9799 1.0272 0.9996
Excitation σ = 26 N 1.0053 2.3187 1.2603 1.1133 1.0876 1.0605 1.0330 1.1117
Excitation σ = 26 N 1.0039 1.9954 1.0219 0.9573 0.9765 1.0209 0.9873 0.9875
Excitation σ = 26 N 1.0173 1.9762 1.1441 0.9707 1.0533 1.0463 1.0053 1.0021

 
With respect to energy efficiency, the time to calculate 30 coefficients of an AR model from 
4096 data points is completed by the wireless sensing unit in 8 seconds.  As previously 
discussed, a processor time of 11.25 seconds is required by the MPC555 to consume an 
equivalent amount of energy as sending 4096 data point with the wireless radio.  As a result, an 
energy savings of approximately 30% has been attained by locally processing data.  The current 
wireless sensing unit prototype is using low-power external random access memory (RAM) with 
a slow read-write time, adding latency in the embedded engineering analysis.  Energy 
efficiencies can be drastically improved for this system by judiciously selecting a faster external 
RAM with accelerated read-write times.  For example, to determine 30 AR coefficients from 
1600 data points using the limited internal RAM of the MPC555, only fractions of a second are 
required.   
 
 
EMBEDDING ADDITIONAL ENGINEERING ANALYSES  
 
A wide variety of engineering analyses can be embedded in the proposed wireless sensing units.  
Previous work has explored embedding fast Fourier transforms in the wireless sensing units to 
derive the frequency response function of structural systems from raw time-history data.  The 
frequency response function calculated by the wireless sensing unit has been used to estimate the 
modal frequencies of the Alamosa Canyon Bridge in New Mexico [24].     
 
To reduce the flow of data in a wireless sensor network, data compression algorithms are 
currently being explored for use by the wireless sensing units.  Data compression can allow more 
efficient time sharing of the limited wireless sharing in addition to saving operational power.  
Data compression can be of a lossless or lossy type.  Lossless data compression exploits 
redundancy in data records without sacrificing the integrity of the data.   On the other hand, 



higher compression rates can be attained through use of lossy compression techniques where 
data integrity is not assured.  Both lossless and lossy data compression methods are being 
explored for embedment in the wireless sensing unit.  At the center of this work is the use of 
wavelet transforms in both techniques.  Inclusion of wavelet transforms for initial decorrelation 
of data samples is both computational efficient and easy to implement for execution by the 
computational core of the wireless sensing units.  Wavelets are a valuable tool for compression 
in that they can attain higher data compression rates.  In the realm of damage detection methods, 
wavelet transforms have also been illustrated to be a useful tool in identifying time-history 
discontinuities attributable to structural damage [33].  As a result, a common set of orthogonal 
basis functions is being sought that can be suitably used for both compression and damage 
detection methods.     
 
 
CONCLUSIONS 
 
The development of a wireless sensing unit for deployment in future structural monitoring 
systems is presented.  A major innovation of the proposed unit is the inclusion of wireless 
communications and embedded microcontrollers.  Wireless communications eradicates a need 
for expensive cabling in a structure while microcontrollers facilitate localized processing of raw 
time-history data prior to transmission in the wireless network.  Distributing computational 
power throughout the sensor network in this manner attains high energy efficiency thereby 
preserving portable battery operational lives.        
 
This study has focused upon illustrating the performance of the wireless sensing unit 
computational core by embedding a promising approach to the damage detection problem: 
statistical pattern recognition damage detection approach using AR and ARX time-series.  
Details unique to implementation in the limited resource microcontroller are addressed.  An eight 
degree-of-freedom laboratory test structure, whose response data is readily available, is used.  
Damage is simulated in the test structure through installment of bumpers between the lumped 
masses to initiate contact during the system response to external excitations.  The wireless 
sensing unit is configured for autonomous execution of the embedded damage detection 
algorithm.  The test has conclusively shown the accuracy of the unit in identifying damage with a 
30% energy savings as compared to wirelessly transmitting the raw time-history data.     
 
Plenty of opportunity exists for extending this work to encompass additional embedded 
algorithms for localized execution in the wireless sensing unit.  Data compression methods hold 
promise in reducing the amount of data transmitted over the wireless network between wireless 
sensor nodes.  Investigation of lossless and lossy compression methods is currently underway.  
Additional damage detection methods can be explored for embedding as well as system 
identification methods.   
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