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ABSTRACT 
 
 Wireless sensors have been proposed for use in structural health monitoring 

systems because they offer low-installation costs and automated data processing 
functionality.  A wireless sensor prototype is described for use in large-scale civil 
structures situated in zones of high seismic activity.  When networked together, 
the distributed computational resources of the wireless sensor network can be 
leveraged to automate the process of screening post-seismic ambient response 
data for signs of structural damage.  To validate the performance of the proposed 
wireless monitoring system, a three-story half-scale steel structure is instrumented 
with a wireless monitoring system assembled from a network of six wireless 
sensors.  Attached to the wireless monitoring system is a heterogeneous array of 
sensing transducers including strain gages and accelerometers.  White noise and 
seismic ground motion records are applied to the base of the structure using a 
shaking table.  Autoregressive time series models are calculated by the wireless 
sensors using structural response data.  Pattern classification methods are then 
adopted to classify the structure as damaged or undamaged using the 
autoregressive time series coefficients as feature vectors.  To simulate damage in 
the structure, the steel columns are modified at the base of the structure with 
reduced column sections.  The proposed damage detection methodology is shown 
to be capable of identifying the reduced column sections as damage.   

 
  

Introduction 
 

Civil infrastructure systems remain vulnerable to damage over their operation life spans.  
Structural damage can be introduced into a structure from a number of sources including normal 
wear and tear and excessive live loading (e.g. seismic and blast loads).  Structural health 
monitoring has been proposed by the structural engineering community to assist owners in 
monitoring their structures for signs of deterioration.  To produce a structural health monitoring 
system, two components are needed: an underlying monitoring system and damage detection 
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algorithms.  The structural monitoring system is responsible for the reliable collection of 
response data measured using sensors installed in the structure.  Once data is collected by the 
monitoring system, damage detection algorithms are necessary to automate the task of 
interrogating the data for signs of structural distress and deterioration.  Today, the majority of 
structural monitoring systems offered by the commercial sector are tethered.  Extensive lengths 
of coaxial wire are installed in the structure to provide a direct communication link between 
sensors and a centralized data repository.  Unfortunately, the installation and maintenance of 
wires in complex civil structures can be expensive; published data suggests the cost of structural 
monitoring systems can be in excess of a few thousand dollars per sensor channel (Celebi 2002).  

Wireless sensors have the potential to radically change how future structural health 
monitoring systems are deployed.  Initial interest in wireless sensors was prompted by the use of 
wireless communication for data transfer in the monitoring system.  Clearly, the elimination of 
extensive lengths of wire give wireless monitoring systems the advantage of easier installations 
and substantially reduced costs.  The excitement that surrounds wireless sensors is not due solely 
to their cost advantages; rather, wireless sensor designs require embedded computing 
components (e.g. microcontrollers) for autonomous operation in the field.  Microcontrollers 
included in wireless sensors can be utilized to perform local data processing at the sensor itself.  
This computing feature is what sets wireless sensors apart from traditional sensors interfaced to a 
cable-based monitoring system.  In particular, the computing power integrated with wireless 
sensors can be used to screen structural response data for signs of structural damage.  

Many researchers have explored the use of wireless sensors within structural monitoring 
and structural health monitoring systems. For example, Straser and Kiremidjian (1998) are early 
proponents for the adoption of low-cost wireless sensors in structural monitoring systems.  Since 
their seminal study, a wide range of academic wireless sensor prototypes have been proposed by 
Lynch (2002), Casciati et al. (2003), and Shinozuka (2003).  In addition to these efforts, other 
researchers have explored the application of generic wireless sensor solutions offered by the 
commercial sector to civil structures.  A wireless sensor platform particularly popular, termed 
the Mote system, was developed at UC-Berkeley and commercialized by companies such as 
Crossbow and Intel.  Researchers such as Ruiz-Sandoval, Spencer Jr., and Kurata (2003) and 
Glaser (2004) have applied Crossbow MICA Mote wireless sensors to monitor lab structures. 

In this study, a wireless monitoring system assembled from wireless sensor prototypes 
proposed by Wang, Lynch and Law (2005) is installed upon a half-scale steel structure in the 
laboratory.  The test structure is mounted to a shaking table where base excitations are applied 
including white noise and various seismic ground motions.  The performance of the wireless 
monitoring system is assessed by comparing structural response data collected by the wireless 
system to that collected by a traditional wired data acquisition system.   To illustrate the self-
interrogation capabilities of the wireless sensors, an autoregressive (AR) model fitting algorithm 
is embedded in the computational cores of the wireless sensors.  A damage detection method 
proposed by Sohn and Farrar (2001) is adopted to identify structural damage in the test structure 
based on the AR model coefficients calculated by the wireless sensors.   Damage is introduced 
by reducing the cross section of two columns at the base of the structure.     
 
 

Three-Story Laboratory Test Structure 
 
 A three-story half-scale steel structure is designed and constructed at the National Center 



for Research on Earthquake Engineering (NCREE) in Taipei, Taiwan.  As shown in Fig. 1a and 
1b, the three-story structure consists of a single bay with a 3 m by 2 m floor area and inter-story 
heights of 3 m.  The structure is constructed using H150x150x7x10 steel I-beam elements with 
each beam-column joint designed as a bolted connection.  To apply additional dead load upon 
each floor, concrete blocks are fastened until the total mass of each floor is precisely 6,000 kg.  
The entire structure is constructed upon a large-scale shaking table capable of applying base 
motion in 6 independent degrees-of-freedom.  The floor area of the shaking table is 5 m by 5m.   
 To monitor the response of the structure excited by various base excitations, a wireless 
monitoring system is installed.  The wireless monitoring system consists of wireless sensor 
prototypes initially proposed by Wang, Lynch and Law (2005).  Designed explicitly for 
structural monitoring applications, the wireless sensors employ commercial off-the-shelf 
electrical components, including an 8-bit low-power microcontroller, 16-bit multi-channel 
analog-to-digital converter, and long-range wireless transceiver.  When fully assembled as 
shown in Fig. 2a, the wireless sensing unit is both low-cost (less than $200 per unit) and compact 
(10 cm x 6 cm x 2 cm).  The wireless sensor offers end-users a transparent 4-channel sensing 
interface to which any type of analog sensor can be attached; to date, accelerometers, strain 
gages, linear displacement transducers and geophones have all been successfully used.  Once 
data is collected by the internal 16-bit analog-to-digital converter, the digitized response data can 
be stored in the wireless sensor’s microcontroller (Atmel ATmega128) and 128 kB static random 
access memory (SRAM) bank.  The role of the ATmega128 microcontroller is twofold: first, 
software embedded in the microcontroller is needed to coordinate the activities of the wireless 
sensor.  Second, the computing authority offered by the microcontroller can be used for self-
interrogation of structural response data.  The final element of the wireless sensor design is the 
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Figure 1.  Three-story test structure: (a) instrumentation strategy, (b) test structure mounted to 
the laboratory shake table, (c) wireless sensors installed, and (d) reduced column 
section



inclusion of the long-range 2.4 GHz Maxstream XStream wireless radio.  This radio is capable of 
line-of-sight communication ranges of 180 m when operated indoors.  Fully assembled, the 
wireless sensor is powered by 5 AA batteries that are estimated to have a life expectancy of over 
1 year when wireless sensor use is duty cycled (Wang, Lynch and Law 2005). The performance 
attributes of the wireless sensor are summarized in Table 1.            
 In total, six wireless sensors are installed in the test structure.  Of the 24 available sensor 
channels, 16 channels are employed.  As shown in Fig. 1a, three accelerometers are installed at 
each level of the structure. For example, on the top story, the three accelerometers interfaced to 
wireless sensor WSU6 are labeled as A1, A2 and A3.  Wireless sensors WSU1, WSU4, and 
WSU5 each record the lateral acceleration response of the structure base, first and second floors, 
respectively.  Accelerometers A1 through A8 are microelectromechanical systems (MEMS) 
Crossbow CXL02 accelerometers.  The CXL02 accelerometers, with an acceleration range of ± 
2g, noise floor of 0.5 mg and sensitivity of 1 V/g, are particularly well suited for structural 
monitoring applications.  For accelerometers A9 through A12, the Crossbow CXL01 MEMS 
accelerometer is selected.  The specifications of the CXL01 are similar to those of the CXL02 
except that the acceleration range of the sensor is ± 1g.  To measure strain in one of the 
structure’s columns, four 120 Ω metal foil strain gages with gage factors of 2 are mounted at the 
column base.  To measure the change in resistance of each strain gage, two wireless sensors 
(WSU2 and WSU3) are utilized.  Unlike the accelerometers, the metal foil strain gages do not 
modulate strain measurements upon a voltage signal.  Rather, a Wheatstone bridge amplification 
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Figure 2. (a) Fully assembled prototype with battery power source revealed, and (b) interface 
circuit for metal foil strain gages. 

 

Table 1.     Performance specifications of the wireless sensor prototype. 
 

Attribute Specification 
Sensing Channels 4 
Sample Rate 100 kHz 
Sensor Inputs 0 – 5 V 
Memory for Embedded Algorithms 128 kB 
Memory for Data Storage 128 kB 
Clock Frequency 8 MHz 
Radio Carrier Band 2.4 GHz 
Communication Range (outdoor/indoor) 180 m/ 5 km 
Power Source  (Lithium-ion recommended) 5 AA Batteries 
Power Consumption (radio off/radio on) 150 mW/ 380 mW 

 



circuit proposed by Lynch (2002) is adopted to convert changes in the foil resistance to 
measurable voltage signals.  The proposed interface circuit for metal foil strain gages is shown in 
Fig. 2b.  The strain gages are labeled as S41 through S44 in Fig. 1a.   
 

Seismic Base Excitation 
 
 The first objective of this study is to assess the accuracy of the wireless monitoring 
system.  To quantify the wireless monitoring system accuracy, a traditional wired monitoring 
system is installed in parallel.  Accelerometers and metal foil strain gages are installed in 
identical locations to the sensors employed by the wireless monitoring system.  To measure 
acceleration, Setra 141A capacitive accelerometers are placed at locations A1 through A12 (see 
Fig. 1a) and are interfaced to the wired data acquisition system.  The Setra 141A accelerometers 
can measure accelerations in a ± 4g range with a noise floor of 0.4 mg.  Four strain gages are 
mounted adjacent to the gages mounted at locations SG41 through SG44; these four gages are 
interfaced to bridge circuit channels of the data acquisition system.  The laboratory data 
acquisition system consists of multiple Pacific Instrument Series 5500 data acquisition chassis.  
Each 5500 chassis offers high-resolution data acquisition on 16 channels.   
 To excite the steel structure, various base excitations are applied by the shaking table.  
Table 2 summarizes the excitations during the laboratory study.  It should be noted that the white 
noise and seismic ground motion records are applied uni- and bi-axially.   The direction oriented 
parallel to accelerometer A9 is denoted as the Y-direction while the orthogonal direction 
(aligned with A10) is denoted as the X-direction.   
 The response of the test structure to the Chi-Chi 1999 earthquake TCU082 seismic 
ground record is shown in Fig. 3.  Although the response of the structure is measured at all of the 
sensor locations, the response measured at sensor location A1, A3, A6 and SG42 are presented in 
Fig. 3.  When comparing the response of the structure measured by the wireless and wired 
monitoring systems, nearly identical results are observed.  It can be concluded that the wireless 
monitoring system is suitable for accurately recording the seismic response of civil structures.   
 

Two-Tier Time Series Damage Detection Methodology 
 

 While many researchers have proposed the use of modal frequencies as a primary 
damage indicator, the method lacks sensitivity in structures where environmental factors also 
contribute to modal frequency shifts (Doebling et al. 1996).  To fully account for the 
environmental and operational variability of structures, a damage detection methodology based 

 

Table 2.     Applied ground excitations during dynamic testing of the steel structure 
 

Excitation Y-Direction X-Direction 
White Noise (Uniaxial) - 60 gal RMS 
White Noise (Uniaxial) - 100 gal RMS 
White Noise (Biaxial) 200 gal RMS 100 gal RMS 
White Noise (Biaxial) 100 gal RMS 50 gal RMS 
Kobe 1995 50 gal RMS 100 gal RMS 
Chi-Chi  1999 (TCU076) 80 gal RMS 100 gal RMS 
Chi-Chi 1999 (TCU082) 80 gal RMS 100 gal RMS 
El Centro 1940 50 gal RMS 150 gal RMS 

 



upon a pattern recognition framework is proposed by Sohn and Farrar (2001).  Their method 
begins with the stationary response time-history of the structure at a single measurement 
location.  Using the response data, y, an autoregressive (AR) time series model is fit to the data. 
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The residual error of the fitted AR time series model, rAR, and the structural output, y, are then 
used to fit a second autoregressive with exogenous input (ARX) time series model. 
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The final residual error of the ARX model, εARX, is identified as the damage sensitive feature of 
the proposed method.   
 To accommodate for environmental variability, AR-ARX time series models are 
determined for the structure in its undamaged state when exposed to different operational 
conditions.  These AR-ARX time series models form a database of baseline models describing 
the structure in its undamaged state.  When the structural response is recorded for the structure in 
an unknown state (damage or undamaged), an AR time series model is fit to the structural 
response data.  The coefficients of this AR model are then compared to the library of AR-ARX 
coefficients corresponding to the undamaged structure.  The undamaged AR-ARX model pair 
closest (based on the Euclidian distance of the AR coefficients) to that of the AR coefficients of 
the unknown structure, is selected from the library.  If the structure in the unknown state is not 
damaged, then the AR-ARX model pair corresponding to the undamaged structure will fit the 
response data of the unknown structure well.  If the selected AR-ARX model pair does not fit the 
data well, then the structure is identified as damaged.  The metric for determining the quality of 
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Figure 3. Response of the test structure to Chi-Chi TCU082 strong ground motion record 
 



the model fit is the standard deviation of the ARX model residual error. The ratio of the standard 
deviation of the ARX model residual error when using the unknown structure’s response data  as 
input to the standard deviation of the AR-ARX database model residual error is determined.   
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Damage is concluded when the ARX error standard deviation is above an established threshold, 
h.  Sohn and Farrar (2001) provide guidance on how to appropriately select the order of the AR 
and ARX models (as designated by the number of coefficients used in each) as well as setting the 
damage ratio threshold.   
 The AR-ARX time series damage detection method is well suited for automated 
execution by a wireless monitoring system.   The damage detection method is implemented in 
the wireless monitoring system installed in the laboratory test structure. As shown in Fig. 4a, the 
computational power of the wireless sensor is used to calculate AR models to unknown 
(damaged versus undamaged) structural response data.  After the AR coefficients are 
determined, the wireless sensor will wirelessly transmit the coefficients to a data repository 
where the database of AR-ARX model pairs corresponding to the undamaged structure are 
stored.  The repository will select the appropriate AR-ARX model pair based on minimization of 
the Euclidian distance between the AR coefficients.  After the closest AR-ARX model pair is 
selected, the coefficients of the AR-ARX model pair are transmitted to the wireless sensor.  
Using the stored response data previously used to fit the AR model, the wireless sensor will 
determine the residual error of the AR-ARX model pair.  Using Eq. 3, damage is diagnosed 
when the ratio of the standard deviation of the AR-ARX model pair residual error exceeds an 
established threshold.   
 The wireless sensor is therefore asked to determine AR models for the response data it 
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Figure 4.  (a) Implementation of the AR-ARX damage detection strategy in a wireless 
monitoring system, and (b) AR model calculated by the wireless sensor at A3 



collects.  Embedded in the computational core of the wireless sensor is the numerically stable 
Burg’s method for determination of the AR coefficients (Lynch et al. 2004).  The end user of the 
system is free to select the number of AR model coefficients to be calculated.  To illustrate the 
accuracy of the AR model fitting algorithm embedded, Fig. 4b presents the AR predicted 
response of the roof acceleration (at sensor location A3) compared to the true response.  The AR 
model calculated in this example has 10 coefficients.       
 

Validation of the Embedded AR-ARX Damage Detection Method 
 
 With each wireless sensor capable of accurately fitting AR models to structural response 
data, the AR-ARX damage detection method is tested using the wireless monitoring system 
installed upon the steel test structure.  First, the structure is excited in its undamaged state using 
white noise base excitations.  For each sensor location, AR time series models are calculated 
using 10 coefficients (ai).  Using the response data and the residual error of the fitted AR model, 
a second ARX model is calculated.  In this study, the ARX models are calculated using 8 
coefficients (αi) for the structural response and 4 coefficients (βi) for the AR model error.  For 
each AR-ARX model pair in the central data repository, the standard deviation of the AR-ARX 
model residual error (σ(ε)) is also stored.  In this study, well over 24 AR-ARX model pairs are 
determined using structural responses to uni- and bi-axial white noise base excitations applied to 
the undamaged structure.  To ensure the AR-ARX model database is populated by models fit to 
response data corresponding to various operational conditions, the four different white noise 
excitations in Table 2 are utilized.  After determining a large number of AR-ARX model pairs at 
all of the sensor locations for the undamaged structure, they are assembled into separate 
databases for each sensor location.  The databases are stored remotely on the monitoring system 
data repository.      
 To validate the AR-ARX damage detection method, first the structure in an undamaged 
state is excited using white noise base excitations.  After each excitation, all of the wireless 
sensors are commanded to determine AR models using the structural response data locally 
stored.  After selecting an AR-ARX model pair from the database, the wireless sensor response 
data is used as input to the AR and ARX models.  The residual error is then determined and 
compared to the residual error stored for the AR-ARX model pair in the database.  As shown in 
Fig. 5 for sensor location A1, A3, A6 and SG42, when response data from the undamaged 
structure is used in the AR-ARX damage detection method, the standard deviation ratio of the 
AR-ARX residual error is approximately 1; this is an expected result since the structure is 
undamaged.    
 To introduce damage in the steel structure, the flanges of the column where the 4 metal 
foil strain gages are mounted are cut resulting in a reduced cross section in the column.  A 
picture of the damaged column is shown in Fig. 1d.  With the structure damaged, the structure is 
again base excited using white noise records and the damage detection methodology carried out 
at each sensor location.  After each wireless sensor determines an AR model using its response 
data, the closest AR-ARX model pair is wirelessly obtained from the remote database.  It is 
anticipated that the closest database AR-ARX model pair will not accurately predict the response 
of the damaged structure.  As a result, the standard deviation of the AR-ARX model pair residual 
error, when using the damage structure response as input, will exceed that corresponding to the 
undamaged structure’s response data used to initially fit the database model.  As seen in Fig. 5, 
for sensor location A1 and A3, the roof acceleration response seems particularly sensitive to the 



damage introduced at the base of the structure; the standard deviation ratio at both locations is 
over 2 for trials 25 through 32 (which correspond to eight different base excitations applied to 
the damaged structure).   While sensor locations A1 and A3 are capable to identify the column 
section reduction, the accelerometer at location A6 appears to lack the same sensitivity to the 
damage.  This lack of sensitivity results in a standard deviation ratio only slightly elevated for 
the damaged structural response data.  When considering the strain gage (SG42) installed in the 
immediate vicinity of the structural damage, we see the AR-ARX damage detection method is 
able to identify the reduced cross section with standard deviation ratios spanning from 1.4 to 2.1. 
  
 Next,  a second column is cut in a similar fashion to the first column.  With two column 
sections reduced, the AR-ARX damage detection method is again applied at each sensor 
location.  Similar to the findings of the first damage scenario, sensor locations A1 and A3 are 
able to identify the structure as damaged as seen for trials 33 to 48 (again corresponding to 
sixteen different white noise base excitation records).  Sensor location A6 is able to identify the 
structural damage for some of the trails with residual error standard deviation ratios exceeding 
1.5 for some of the trials.  However, the strain gage at location SG42 experiences a reduction in 
the standard deviation ratio well below 1.   
 

Conclusions 
 
 This work has explored the use of wireless sensors as building blocks of future structural 
health monitoring systems. Installation of wireless sensor prototypes upon a half-scale steel test 
structure validates the accuracy of the novel wireless monitoring system.  In addition, an AR-
ARX damage detection method has been embedded within the wireless monitoring system for 
autonomous execution.  In the proposed damage detection methodology, each wireless sensor is 
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Figure 5.  Ratio of AR-ARX two tier model residual errors for 4 selected sensor locations 
(A1, A3, A6 and SG42) 



responsible for calculation of AR model coefficients for comparison to a database of AR-ARX 
model pairs on the undamaged structure.  To validate the approach, the embedded damage 
detection algorithm is shown to exhibit sufficient sensitivity to identify column damage at many 
sensor locations.  Future work is intended to better identify how the standard deviation of the 
AR-ARX model residual error changes with damage as a function of sensor location.  This future 
pursuit will lead to improvements in the proposed embedded damage detection method.     
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