
1 
 

Regulation Retrieval Using Industry Specific 
Taxonomies  
Abstract Increasingly, taxonomies are being developed and used by industry practitioners 
to facilitate information interoperability and retrieval. Within a single industrial domain, there 
exist many taxonomies that are intended for different applications. Industry specific taxonomies 
often represent the vocabularies that are commonly used by the practitioners. Their jobs are multi-
faceted, which include checking for code and regulatory compliance. As such, it will be much 
desirable if industry practitioners are able to easily locate and browse regulations of interest. In 
practice, multiple sources of government regulations exist and they are often organized and 
classified by the needs of the issuing agencies that enforce them rather than the needs of the 
communities that use them. One way to bridge these two distinct needs is to develop methods and 
tools that enable practitioners to browse and retrieve government regulations using their own terms 
and vocabularies, for example, via existing industry taxonomies. The mapping from a single 
taxonomy to a single regulation is a trivial keyword matching task. We examine a relatedness 
analysis approach for mapping a single taxonomy to multiple regulations. We then present an 
approach for mapping multiple taxonomies to a single regulation by measuring the relatedness of 
concepts. Cosine similarity, Jaccard coefficient and market basket analysis are used to measure the 
semantic relatedness between concepts from two different taxonomies. Preliminary evaluations of 
the three relatedness analysis measures are performed using examples from the civil engineering 
and building industry. These examples illustrate the potential benefits of regulatory usage from the 
mapping between various taxonomies and regulations. 

Keywords Taxonomy interoperability, Regulation retrieval, Relatedness 
analysis, Domain specific ontology mapping 
 

1 Introduction 
Regulations are an important asset to the society. They extend the laws governing 
the country and provide standards, guidelines and requirements to corporate and 
the general public. Ideally regulations should be readily accessible and retrievable 
by interested individuals. Although well organized and hierarchically structured 
into sections and subsections, the sheer volume and complexity of regulations 
make any attempt to retrieve and to understand the relevant information a 
daunting task. To aid understanding of regulations, much prior work has been 
devoted to the analysis of regulations (Lau 2004, Lau et al. 2005), compliance 
guidance for regulations (Kerrigan 2003, Kerrigan and Law 2003), and abstraction 
and retrieval of case law (Al-Kofahi et al. 2001, Bench-Capon 1991, Brüninghaus 
and Ashley 2001, Moens et al. 1997, Schweighofer et al. 2001, Thompson 2001). 
However, efforts on developing methodologies and tools that facilitate the 
browsing and retrieval of regulations by industry practitioners according to their 
familiar terminology and vocabularies are relatively lacking. 
 Increasingly, taxonomies are being developed and used by industry 
practitioners to facilitate information interoperability and retrieval. Industry or 
application specific taxonomies represent the vocabularies that are commonly 
used by the practitioners. Interoperability is important because it allows 
practitioners to access, relate and combine information from multiple, 
heterogeneous sources and therefore increases the value of information. The lack 
of interoperability and integration poses significant economic costs to the 
engineering industries (Brunnermeier and Martin 2002, Gallaher et al. 2004). By 
capturing and representing the semantics of domain specific information in a 
formal and computer interpretable form, taxonomies have the potential to enable 
interoperability and to facilitate information retrieval. In practice, even within a 
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single industrial domain, there exist many taxonomies that are intended for 
different applications. As pointed out by Ray (2002), building a single unifying 
ontology for an entire domain is neither practical nor efficient. Instead, 
communities that need to exchange information frequently tend to develop their 
own ontologies. Therefore, even within an industry, multiple taxonomies and 
ontology standards exist. For instance, the architectural, engineering and 
construction (AEC) community has developed several terminology classifications 
and data model standards to describe the semantics of building models. Even 
though these standards are all targeted towards the same user group, the 
structures, vocabularies and coverage differ depending on the application. 
 Government regulations, on the other hand, are often organized according 
to the classification system of the agency that enforces them, rather than the 
mental models of the communities that use them (Fountain 2002). Multiple 
sources of regulations from different government agencies exist. There is a clear 
need and benefit to enable industry practitioners to browse and retrieve 
regulations utilizing their own classification models and vocabularies. One way to 
build such a bridge is to develop methods and tools that enable practitioners to 
browse and retrieve government regulations using their own terms and 
vocabularies, for example, via existing industry taxonomies. Industry practitioners 
are usually more familiar with the terminology and classification system 
represented in industry taxonomies than the agency’s organization system for 
regulations. To browse through regulations and to locate compliance 
requirements, adhering to an existing taxonomy that the users are familiar with 
minimizes learning of new classification and vocabularies. Their mental models 
may be better represented using existing taxonomies rather than agency’s 
classification for regulations. 
 In this paper, we present a systematic approach to map regulations to 
domain specific taxonomies, with the objective of facilitating the retrieval of 
relevant regulations. Section 2 briefly discusses the typical features of industry 
taxonomies and regulations considered in this study. Sections 3 and 4 review the 
techniques for mapping a single taxonomy to one or multiple regulations (Cheng 
et al. 2007, Cheng et al. 2008). Linking one taxonomy to one regulation is a trivial 
keyword extraction and latching task. Extending one taxonomy to multiple 
regulations requires clustering of relevant sections from different regulations. For 
this task, we reuse the relatedness analysis core previously developed to compute 
relevancy between regulation sections (Lau 2004). Section 5 discusses the needs 
and the challenges of mapping a single regulation to multiple taxonomies. The 
approach is to cluster relevant concepts from different taxonomies using a 
regulatory corpus to discover the relevancies between concepts. Three 
methodologies are investigated to cluster relevant concepts from different 
taxonomies in order to compute relevancy between those concepts. Cosine 
similarity and Jaccard coefficient, two vector-based similarity measures 
commonly used in the field of information retrieval are adopted to compute 
semantic relatedness between concepts from different taxonomies. The market 
basket model, a popular technique in data mining, is modified as another 
relatedness analysis measure for mapping of concepts. We explore the hierarchical 
structures of the regulation and the taxonomies to compute the relatedness scores. 
The methodologies to evaluate the similarity results and the comparison of other 
ontology mapping approaches are also discussed. Section 6 summarizes the 
results and contributions of this work. The natural next step, mapping multiple 
regulations to multiple taxonomies, is proposed as a future task. 
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2 Domain Specific Taxonomy and Regulation 
Corpus 

Terms such as taxonomy, ontology, and classification have been used to describe 
conceptualization schemes for managing knowledge bases, supporting 
interoperability in Semantic Web, and facilitating integration across systems and 
applications. As noted by Gruber (1995), ontology is an “explicit specification of 
a conceptualization,” which is “the objects, concepts, and other entities that are 
presumed to exist in some area of interest and the relationships that hold among 
them.” Taxonomy, on the other hand, is a hierarchical classification structure in 
which the descendants in the tree structure inherit or share some common 
properties held by their ancestors. For some, a taxonomy is but one example of an 
ontology. For others, the two terms are often synonymous and interchangeable. 
For most industrial ontology and taxonomy standards or classification systems, 
they are similar in that both describe concepts and entities, which are organized in 
a subclass hierarchy through the “is-a” relationship. As a result, domain specific 
concepts and the hierarchical relationships between those concepts in an industrial 
ontology standard or classification system can often be extracted to construct a 
domain specific taxonomy. Thus, within the context of this paper, an ontology 
standard or a classification system is treated as a taxonomy with an explicit 
hierarchical classification structure of concepts and entities.  
 We work with taxonomies and regulatory corpus from both the building 
industry and the environmental protection industry (Kerrigan 2003, Kerrigan and 
Law 2003, Lau 2004, Lau et al. 2005). To illustrate their organization and 
structure, we present briefly here the ontology standards and classification 
systems that are commonly used in the building industry. For the AEC industry, 
there are a few ontologies that describe the semantics of building models, such as 
the CIMsteel Integration Standards (CIS/2) for the steel building and fabrication 
industry (Crowley and Watson 2000), the Industry Foundation Classes (IFC) 
initiated by the CAD vendors for design description of building components 
(International Alliance for Interoperability 1997), and the OmniClass construction 
classification system (OmniClass) for the construction specification, materials and 
product components (Construction Specifications Institute 2006).  

Figures 1 and 2 show excerpted examples of the OmniClass and IfcXML 
standard respectively. Typical of ontology standards, both are organized 
hierarchically with implicit “is-a” type relationships defined accordingly. 
OmniClass consists of 15 tables, each of which represents a different facet of 
construction information. Each term is associated with a unique ID. For example, 
the term “Sound and Signal Devices” is associated with the ID “23-85 10 11 11”. 
For the IfcXML, the Industry Foundation Class objects are expressed in an XML 
structure that defines the hierarchical relationship between elements and entities. 
Preprocessing is necessary to extract the terminologies and concepts from the 
ontology standards for subsequent analyses and usages. 

Regulations are voluminous and cover a broad range of scopes and topics. 
Increasingly, regulatory documents are available online and are organized in XML 
structure. The International Building Code (IBC) (International Conference of 
Building Officials 2006), which represents the code of practice in the building 
industry, is employed as one of the regulatory document corpora. Figure 3 shows 
an IBC section and its representation in XML structure. One notable feature of 
regulations is that they are typically organized into sections and subsections, each  
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Fig. 1  Excerpt from OmniClass Construction Classification System 

 
Fig. 2  Excerpt from the schema of Industry Foundation Classes, IfcXML 

 

Fig. 3  An IBC section and its representation in XML structure 

<LEVEL level-depth="8" style-id="0-0-0-304" style-name="Section3" style-name-escaped="Section3" toc-
section="true"> 
 <RECORD id="0-0-0-5529" number="5529" version="3"> 
  <HEADING>[F] 907.2.11.3 Emergency voice/alarm communication system.</HEADING> 
  <PARA> 
   <DESTINATION id="0-0-0-3521" name="IBC2006907.2.11.3"/> 
   <CHARFORMAT bold="1" hidden="0" italic="0" strike-out="0" underline="0">[F] 907.2.11.3
Emergency voice/alarm communication system. </CHARFORMAT> 
  </PARA> 
 </RECORD> 
 <LEVEL level-depth="0" style-id="0-0-0-0" style-name="Normal Level" style-name-
escaped="Normal-Level" toc-section="false"> 
  <RECORD id="0-0-0-5530" number="5530" version="3"> 
   <PARA style-id="0-0-0-15" style-name="Body3" style-name-escaped="Body3">An emergency
voice/alarm communication system, which is also allowed to serve as a public address system, shall be
installed in accordance with NFPA 72, and shall be audible throughout the entire special amusement
building.</PARA> 
  </RECORD> 
 </LEVEL> 
</LEVEL> 
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of which contains contents with a specific topic or scope. The tree hierarchy of 
regulations provides useful information that can be explored, for example, to 
locate similar sections and to build e-government services (Lau 2004, Lau et al. 
2005). 

3 One Taxonomy to One Regulation 
Mapping one taxonomy to one regulation is a simple linguistic keyword latching 
task. To latch a keyword to a document, the keyword is automatically stemmed 
and matched with every single word or phrase of the stemmed text in the 
document using boolean matching. The keyword is then tagged to the document if 
the keyword is matched to the text. There are many commercial tools available to 
latch keywords from documents into a taxonomy. These tools usually import a 
taxonomy file and produce a hyperlinked user interface to help users locate the 
documents of interest. As noted earlier, an industry taxonomy is hierarchically 
organized as a classification tree which is generally less than 10 levels deep. Node 
labels in the taxonomy tree are treated as concept keywords, and they are mapped 
to sections in the regulation where they appear.  

For mapping purposes, the concept terms from the two ontology standards 
are preprocessed to eliminate supplementary information such as the IDs in the 
OmniClass, the type names and attributes in the IfcXML, and the duplicated 
terms. Concept terms are then tokenized and stemmed before latching to the 
regulation. As regulations tend to be voluminous, we use a section or subsection 
(i.e. any numbered and titled section) as a unit of interest. Figure 4 shows the 
International Building Codes (IBC) displayed here in XML format and latched 
with the OmniClass concepts. With the concept terms of a taxonomy linked to the 
regulation document, users can easily traverse the taxonomy and browse relevant 
sections of the regulation. 

4 One Taxonomy to Multiple Regulations 
The mapping from one taxonomy to multiple regulations leads to a classic 
problem of information overload. It results in a Google-like user interface for each 
taxonomy node, where sections from different regulations are displayed. For 
example, a user might want to browse through state regulations governing  

  
Fig. 4 Regulation in XML format latched with taxonomy concepts (left) and users’ view of the 
modified regulation (right) 



6 
 

chlorine levels in drinking water. If the user search the drinking water regulations 
in Alabama and Arizona using the keyword “chlorine”, over 30 sections in each 
regulation would be located. The relevancy of these 60 regulation sections to 
chlorine levels is not identified. The user would quickly become frustrated with 
information overload. For web content, the lack of document structure poses a 
major challenge to search engines when computing relevancy. Therefore, 
intelligent retrieval and presentation of web results become a key issue for search 
on the Internet (Bonnel et al. 2006). Fortunately, regulatory documents are much 
more organized than web content, and we propose to solve the problem of 
information overload by clustering relevant sections from different regulations 
and pivoting on one regulation that the user is most familiar with. For instance, an 
engineer from Montgomery might be familiar with Alabama state code, but not 
Arizona state code. Nonetheless, if the engineer needs to design a water 
distribution system that provides water to Phoenix from lakes near Montgomery, 
searching and understanding of both state regulations would be required for 
compliance checking. In this case, finding the relevant Arizona regulations on 
chlorine levels might be a difficult job. As the engineer is more familiar with 
Alabama code, we believe that it is beneficial to map the taxonomy to Alabama 
code first, and then branch out to suggest related sections from the Arizona code. 
In general, focusing on one regulation as the basis for locating relevant sections 
and allowing users to switch the focus to other regulations significantly reduce 
information overload. 

The discussion above poses two major challenges towards developing such 
a system: a suitable user interface and a methodology for determining relevant 
regulations. Figure 5 shows a user interface that demonstrates a scenario of 
locating related sections from the two state regulations. After traversing down the 
taxonomy tree to the concept “chlorine,” users are shown a list of matched 
sections from the Alabama regulation. As discussed in the previous section, 
matching sections to taxonomy concept is a simple keyword latching task. 
Selecting Section 335.7.6.15 of the Alabama code shows that there are 15 
recommended sections from the Arizona regulation. A user can stay focused on 
the regulation of their choice, and at the same time acquire relevant or related 
sections from other regulations as needed. As such, the user determines the 
amount of information he or she is exposed with in a structured retrieval model. 
 

(AL) 

(AZ) 

 
Fig. 5  Arizona regulation sections pivoting on Alabama regulations 
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To discover related sections from different regulations and determining 
their relevancies, we reuse the relatedness analysis core previously developed 
(Lau 2004, Lau et al. 2005), which compares sections from different regulations 
based on shared features using a cosine similarity measure (Larsen and Aone 
1999, Salton 1989). The goal is to identify the most strongly related sections using 
not only a traditional term match but also a combination of feature matches, and 
not only content comparison but also structural analysis. Regulations are first 
compared based on conceptual information as well as domain knowledge through 
a combination of feature matching. Regulations also possess specific structures, 
such as a tree hierarchy of sections and the referential structure. These structures 
provide useful information for locating related sections and are, therefore, 
leveraged in the similarity analysis as well. The methodology and the relatedness 
analysis approach for finding similar sections from different regulations have been 
discussed in detail elsewhere (Lau 2004). 

5 Multiple Taxonomies to One Regulation 
As mentioned, multiple taxonomies exist within a single industry domain. Most 
industry practitioners are familiar with the vocabularies of at least one taxonomy; 
but, they frequently need to deal with other, possibly unfamiliar, taxonomies 
(Begley et al 2005, Lipman 2006). Mapping a regulation with a single taxonomy 
limits the usability of the system. We thus attempt to map multiple taxonomies to 
a regulation.  

Traversing a regulation and finding relevant and related sections using 
multiple taxonomy trees is a challenging task. One solution is to merge the 
taxonomies into a new and unified taxonomy. There have been much research 
efforts on ontology merging (de Bruijn et al. 2004, Noy 2003, Stumme and 
Maedche 2001). The merged ontology which unifies and replaces the original 
ontologies can be used for data mediation and interoperability but not as front-end 
representation format. Since users would need to learn the structure and 
terminology of the newly merged ontology in order to browse the regulations, this 
would defeat the intent of using existing and thus familiar taxonomies to help 
search for relevant regulations. Another solution is to first map one taxonomy to 
the regulations, and then relate other taxonomies to the mapped taxonomy. Using 
the same argument from Section 4, focusing on one taxonomy that a user is 
familiar with is a good starting point to traverse regulations. Once the user reaches 
a taxonomy concept of interest, related concepts and entities from other 
taxonomies can be suggested and the user can shift the focus from one taxonomy 
to another. 

Figure 6 illustrates the proposed approach using the OminClass and IFC 
taxonomies, and the International Building Code (IBC) regulation (International 
Conference of Building Officials 2006). The OmniClass is altered from its 
original representation to display a widget upon mouse-over that includes an 
ordered list of matching IBC sections and a ranked list of relevant IFC concepts. 
In this scenario, the user is more familiar with the OmniClass hierarchical 
structure and starts browsing IBC using this taxonomy. To locate the regulation 
sections related to the installation of steel decking, the user traverses the term 
“steel decking” from the OmniClass hierarchy to find the matching IBC 
regulation sections as well as the relevant IFC concepts. When the user moves the 
cursor over the IFC concept “slab”, using the same analysis, an ordered list of IBC 
sections that are related to slab and a ranked list of relevant OmniClass concepts  
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Fig. 6  Traversing the IBC using OmniClass taxonomy with relevant concepts from IFC taxonomy 
 
are also suggested. To further illustrate the usefulness of mapping multiple 
taxonomies with a regulation, Figure 6 also displays two IBC sections that are 
related to decking design and construction. Section 2209.2, which is retrieved 
using the OmniClass term “steel decking”, provides the references for the 
composite slabs of concrete and steel decks, whereas Section 1607.9.2, which is 
retrieved using the IFC concept “slab”, describes load reduction for floor slab in 
general. Section 2209.2 is suggested because the term “steel decking” occurs in 
that section. However, Section 1607.9.2 cannot be retrieved using the term “steel 
decking” since the section uses a more generic term “slab system” instead of 
“decking.” If our system can relate “steel decking” to “slab,” we can present users 
with both sections regardless of which term the users traverse or search with. 



9 
 

 As opposed to finding related sections from multiple regulations, the task 
here is to identify similar or related concepts from multiple taxonomies. Ontology 
mapping is an active research area and there have been many attempts to find 
similar concepts between ontology standards in various industry domains (Begley 
et al. 2005, Bicer et al. 2005, Lipman 2006). The tasks of ontology comparison 
and mapping are often performed manually by domain experts, who are familiar 
with the mapped ontologies. Such effort to identify similar concepts from multiple 
ontologies is often labor-intensive, non-scalable and inefficient. Research on 
automated or semi-automated approaches is growing in popularity, particularly for 
semantic web applications (Cheng et al. 2008, Li 2004, van Hage et al. 2005). It is 
difficult to develop mappings between two arbitrary ontologies in general. In our 
case, however, the problem is slightly more manageable because our ontologies 
are very industry specific and are targeted towards the same group of users. 
 Similar to the techniques presented earlier for mapping one taxonomy with 
multiple regulations, the relevancy between concepts from different taxonomies is 
computed using a vector comparison approach. A document corpus is used to 
relate concepts by considering their co-occurrence frequencies. This training 
corpus must be carefully selected as it represents the relevancy among concepts 
from different taxonomies. In this work, regulatory documents are used as the 
training corpus. Unlike web content, regulations are meticulously drafted and 
reviewed for accuracy and do not have random co-occurrences of phrases in the 
same section. This dramatically increases the likelihood of finding real matches. 
In our example, we use the same regulation document for the training corpus as 
well as for the targeted retrieval document.  

5.1 Statistical Relatedness Analysis Measures 

Consider a pool of m concepts and a corpus of n numbered and titled regulation 
sections. A frequency vector icv  is an n-by-1 vector storing the occurrence 
frequencies of concept i among the n sections. That is, the k-th element of icv  
equals the number of times concept i is matched in section k. For each taxonomy, 
a frequency matrix C that aggregates the frequency vectors of all the concepts 
from the taxonomy can be generated. Figure 7 shows the frequency vectors for the 
OmniClass concept “steel decking” and for the IFC concept “slab.” In the  

 

icv

Sections       OmniClass                 IFC 

N00 = N00 + 1 
N00 = N00 + 1 
N01 = N01 + 1 

N10 = N10 + 1 

N00 = N00 + 1 
N10 = N10 + 1 
N00 = N00 + 1 

N11 = N11 + 1 

jcv
 

Fig. 7  Frequency vectors for OmniClass concept “steel decking” and IFC concept “IfcSlab” 
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frequency vector for the concept “slab,” for example, the value in the row 
“109.3.2” is four, meaning that the concept “slab” occurs in IBC Section 109.3.2 
four times. In subsequent sections, we will discuss three statistical measures to 
compute the similarity score among concepts. In the example shown in Figure 6, 
to relate the OmniClass concept “steel decking” to the IFC concept “slab”, we 
compute their similarity score based on the defined measures. As shown in the 
figure, their cosine similarity score is 0.895, which ranks second among all IFC 
concepts that are relevant to “steel decking”. 

5.1.1 Cosine Similarity 

Cosine similarity is a non-Euclidean distance measure between two vectors. It is a 
common approach to compare documents in the field of text mining (Larsen and 
Aone 1999, Salton 1989). Given two frequency vectors icv  and jcv , the similarity 
score between concepts i and j is represented using the dot product: 
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The resulting score is in the range of [0, 1] with 1 as the highest relatedness 
between concepts i and j. 

5.1.2 Jaccard Similarity Coefficient 

Jaccard similarity coefficient (Roussinov and Zhao 2003, Salton 1989) is a 
statistical measure of the extent of overlap between two vectors. It is defined as 
the size of the intersection divided by the size of the union of the vector 
dimension sets: 
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Jaccard similarity coefficient is a popular similarity analysis measure of term-term 
similarity due to its simplicity and retrieval effectiveness (Kim and Choi 1999). 
Two concepts are considered similar if there is a high probability for both 
concepts to appear in the same sections. To illustrate the application to our 
problem, let N11 be the number of sections both concept i and j are matched to, N10 
be the number of sections concept i is matched to but not concept j, N01 be the 
number of sections concept j is matched to but not concept i, and N00 be the 
number of sections that both concept i and j are not matched to. These values can 
be computed by simply accumulating the number of times the corresponding 
matched or unmatched concepts occur. For instance, Figure 7 illustrates the 
calculations of N11, N10, N01 and N00 for the concepts “steel decking” and “slab”. 
The similarity between both concepts is then computed as 
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Since the size of intersection cannot be larger than the size of union, the resulting 
similarity score is between 0 and 1. 
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5.1.3 Market Basket Model 

The market basket model is a probabilistic data-mining technique to find item-
item correlation (Hastie et al. 2001). The task is to find the items that frequent the 
same baskets. The support of each itemset I is defined as the number of baskets 
containing all items in I. Sets of items that appear in s or more baskets, where s is 
the support threshold, are the frequent itemsets. 
 Market basket analysis is primarily used to uncover association rules 
between item and itemsets. The confidence of an association rule jiii k →},...,,{ 21  
is defined as the conditional probability of j given itemset },...,,{ 21 kiii . The 
interest of an association rule is defined as the absolute value of the difference 
between the confidence of the rule and the probability of item j. To compute the 
similarities among concepts, our goal is to find concepts i and j where either 
association rule ji →  or ij →  is high-interest. 

Consider a document corpus of n sections. Using the same notation as 
earlier, let N11 be the number of sections both concept i and j are matched to, N10 
be the number of sections concept i is matched to but not concept j, and N01 be the 
number of sections concept j is matched to but not concept i. The probability of 
concept j is computed as 

 
n

NN
j 0111)Pr(

+
=  (4) 

which represents the individual probability of matching concept j to a section over 
the entire corpus. The confidence of the association rule ji →  is 
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+
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which represents the conditional probability that concept j is matched to a section 
given concept i is matched to that section. The forward similarity of the concept i 
and j, which is the interest of the association rule ji →  without absolute notation, 
is expressed as 

 
n

NN
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NjiSim 0111
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+
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+
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The value ranges from -1 to 1. The value of -1 means that concept j appears in 
every section while concept i does not co-occur in any of these sections. The 
value of 1 is unattainable because (N11 + N01) cannot be zero while confidence 
equals one. Conceptually, it represents the boundary case where the occurrence of 
concept j is not significant in the corpus, but it appears in every section that 
concept i appears. 

The market basket model can potentially discover the relationship that is 
strong in one direction but weak in another. Unlike cosine similarity and Jaccard 
similarity coefficient, similarity scores calculated by market basket model depend 
on the direction of consideration. In other words, the relatedness of concept i to 
concept j may be different from relatedness of concept j to concept i. The 
backward similarity of the concepts i and j, which is the interest of the association 
rule ij → , is expressed as 
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The first term on the right hand side is the conditional probability that concept i is 
matched to a section given concept j is matched to the section. The second term is 
the individual probability of matching concept i to a section in the whole corpus. 

To illustrate this similarity asymmetry for market basket model, Table 1 
shows the forward and backward similarity scores of the example concept 
mappings between the OmniClass and IFC taxonomies. For instance, the 
OmniClass concept “roof decking” and the IFC concept “slab” shows a high 
forward similarity score but a low backward similarity score. This implies that a 
section matching the concept “roof decking” will likely match the concept “slab,” 
but not vice versa. This similarity asymmetry could be explained by their subclass 
is-a relationship. Roof decking is one of the many kinds of slabs in the building 
industry. Regulation sections describing “roof decking” are likely related to the 
concept “slab,” but sections describing “slab” may be related to other kinds of 
slabs other than roof decking. The asymmetry of similarity scores may provide 
additional information on the types of relationship between concepts. In the later 
sections, when using the market basket model, the final similarity score is taken as 
the maximum of the forward and the backward similarity scores. 

Table 2 summarizes the similarities and differences among the three 
measures, namely the cosine similarity, Jaccard similarity coefficient and the 
market basket model. All are statistical analysis measures that leverage the co-
occurrence frequencies of taxonomy concepts in the regulatory corpus. 
Table 1  Asymmetrical similarity scores for market basket model 

OmniClass concept i IFC concept j ),( jiSim  ),( ijSim  

curtain walls IfcCurtainWall 0.992849 0.992849 

sound and signal devices IfcSwitchingDeviceType 0.998808 0.998808 

roof decking IfcSlab 0.802344 0.370313 

speakers IfcAlarmType 0.883194 0.018024 

gypsum board IfcWallType 0.568832 0.029939 

concrete IfcSlab 0.119548 0.427615 

Table 2  Similarities and differences among the three statistical analysis measures 

 Cosine Similarity Jaccard Similarity 
Market basket 

Model 

Non-Euclidean Yes Yes Yes 

Vector-based Yes Yes No 

Underlying methodology Vector space model 
Set theory 

(Intersections and 
unions) 

Probability theory and 
association rule 

Symmetrical forward and 
backward scores Yes Yes No 

Range of scores [0, 1] [0, 1] [-1, 1) 

Usage Often used as the 
baseline metric 

Computationally 
effective 

To discover potential 
item-item correlation
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5.2 Leveraging Regulation Hierarchy Structural Information 

Many related concepts can be discovered by treating each numbered and titled 
section in a regulation as an independent document, i.e. unit of interest. Using this 
approach, a concept-section frequency matrix is created to compute concept co-
occurrence in documents, which correspond to individual regulation sections. This 
approach is generally sufficient to capture most related concepts through 
relatedness analysis measures. However, some related concepts rarely co-occur in 
the same section. For instance, if two concepts contain an “is-a” relationship, such 
as door furniture and door hardware, they may be used in the same regulation 
interchangeably but in different sections. 
 The is-a-related concepts are also difficult to find if each regulation section 
is treated as if it were an independent document in relatedness analysis. The is-a-
related concepts are sometimes implicit from the hierarchical structures of a 
regulation. For example, as shown in Figure 8, “historic buildings” is a sub-
concept of “existing structures.” The two is-a-related concepts are hard to 
discover if regulation sections are treated independently in co-occurrence analysis 
because the descriptions of “historic buildings” and those of “existing structures” 
may not appear in the same regulation sections. Instead, the sections describing 
“historic buildings” are usually the subsections of the sections describing 
“existing structures.” If we consider the subsections and the parent sections in the 
calculation of similarity score between “historic buildings” and “existing 
structures,” the implicit relationship between the two concepts might become 
more obvious. Other related concepts such as “moved structures” and “historic 
buildings” may not appear in the same section since they are located in different 
branches under the same topic. As opposed to appearing in the same section, the 
sections describing “moved structures” and the sections describing “historic 
buildings” are organized as the subsections of the same section node. The 
computed relatedness between “moved structures” and “historic buildings” may 
increase if we consider the sibling sections in the computation of similarity score. 
In order to extract the implicit relationship of related concepts, it may be 
worthwhile to consider the hierarchical structure of the regulation sections. 
 Regulations contain well-organized hierarchical structures with sections 
and subsections of specific scope or topic. There are organizational and referential 
structures explicitly defined in the regulation. The organizational structure of a 
well-organized regulation can be represented as a hierarchical tree, where each 
section corresponds to a discrete node. As illustrated in Figure 9, each section has 
a parent section, a set of sibling sections and a set of child sections. In general, for 
a section with a particular scope, the parent section covers a broader scope, the 
sibling sections cover parallel scopes, and the child sections cover more specific 
scopes. Section 4 briefly discusses the usage of the regulation hierarchy structural 
information to find related sections from different regulation trees. The results 
show that the hierarchical structure in regulations helps increase prediction 
accuracy of related sections (Lau 2004, Lau et al. 2005). Here, regulation 
hierarchical structure will be leveraged to uncover semantic relationships between 
related concepts from different taxonomies in the same manner. In addition to the 
co-occurrence of concepts in individual regulation sections, our computation 
includes the consideration of the co-occurrence concepts in the parent, sibling and 
child sections. 
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Fig. 8  Example of related but rarely co-occurring concepts 
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Fig. 9  Tree hierarchy of sections in regulations 
 
 The concept-section frequency matrix C is modified to take the parent 
section, sibling sections and child sections into consideration. To include the 
parent section, for instance, the weighted numbers of occurrence for all the 
concepts in the parent section are added to the numbers of occurrence in the self 
section. Similarly, the numbers of occurrence in the sibling sections and the child 
sections are then added with a discounted weight. In our formulation below, we 
will denote Par(k), Sib(k) and Child(k) as the parent section, set of sibling sections 
and set of child sections of regulation section k. The k-th element of frequency 
vector icv , which is the number of times concept i is matched to section k, is 
updated as 

 ∑∑ ∈∈
+++=

)()(
)()())(()(:)(

kChildv ickSibu isipii vcwucwkParcwkckc vvvvv  (8) 

where wp, ws and wc are the weights of the parent, sibling and child sections, 
respectively. 

5.3 Leveraging Taxonomy Hierarchy Structural Information 

Taxonomy is a formal representation of domain information using a group of 
concepts and a set of relationships that are defined among those concepts. The 
parent, sibling and child relationships, referred as psc-relationships hereafter, are 
the fundamental relationships of a concept node in a hierarchically structured 
taxonomy tree. For a taxonomy concept, the parent concept represents the 
superclass, the sibling concepts capture the parallel entities, and the child concepts 
represent the subclasses. Considering the inheritance property in the taxonomy 
tree, the psc concepts for a given (self) concept from one taxonomy may be 
related to a concept from another taxonomy. Furthermore, their psc concepts may 
be semantically related. Therefore, consideration of the hierarchy structural 
information in the taxonomies may reveal or reinforce certain degree of relevancy  
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Fig. 10  Types of relationship among two concepts and their hierarchical neighbors 
 
between two related concepts. The method to incorporate taxonomy hierarchy in 
relatedness analysis is discussed in the following. 
 Figure 10 shows the two concepts, i and j, from two taxonomies and their 
psc concepts, i_psc and j_psc, respectively. The similarity score between concepts 
i and j is denoted Sim(i, j). We compute the average similarity score, denoted as 
Sim(i, j_psc), between concept i and the set of psc concepts for concept j. Note 
that the average similarity score can be readily calculated from the basic similarity 
scores for each concept pair from the two taxonomies as discussed in Section 5.1. 
The average similarity score Sim(i_psc, j) between concept j and the set of psc 
concepts for concept i, and the average similarity score Sim(i_psc, j_psc) between 
the two sets of psc concepts can be computed in a similar fashion.  

To include the psc-relationships in the relatedness analysis, the similarity 
score for each concept pair is updated by including the similarity scores from the 
self and psc concepts with some weighting factors:  
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where α0, α1 and α2 represent the weighting factors for concept pairs (self-self), 
(self-psc) and (psc-psc), respectively. The weighting factors are chosen such that 
the updated similarity score is within the range between 0 and 1. Since the major 
focus of interest is the relatedness between concept i and concept j, the similarity 
score Sim(i, j) between the two self concepts should have the greatest influence to 
the final similarity score. Therefore, α0 is chosen to be larger than α1 and α2 is the 
smallest among the three weighting factors. 

5.4 Evaluation Results 

Concepts from the OmniClass and the IFC taxonomies are extracted. For every 
taxonomy, each concept is assigned a consecutive number and twenty numbers 
are randomly generated. Twenty concepts are then randomly selected from the 
OmniClass and the IFC taxonomies respectively, and pairwise similarity scores 
are computed using the three statistical relatedness analysis measures described in 
Section 5.1. The results of concept mapping performed by domain experts are 
treated as true matches and are used to evaluate the predicted results. Root mean 
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square error (RMSE), precision, recall and F-measure are used as performance 
metrics to evaluate and compare the three measures and the use of regulation 
structural information as well as taxonomy structural information. The predicted 
results are also compared to the baseline results using a terminology-based 
approach and a lexicon-based approach. 
 Three domain experts are asked to identify the related concept pairs among 
the total of 400 possible pairs. A true value of one is assigned to the concept pairs 
that the domain expert classifies as related. All other concept pairs are assigned a 
true value of zero. As for the predicted results, two concepts are predicted as 
similar or related if the computed similarity score is larger than certain threshold 
score. Related concept pairs are assigned a predicted value of one whereas other 
pairs are assigned zero. Based on each of the three manual mappings, values of 
RMSE, precision, recall and F-measure are calculated for the three measures, the 
baseline matchers, and different regulation and taxonomy structural information 
inclusions. The averages of the values are then taken as the final results. 

5.4.1 Root Mean Square Errors (RMSE) 

Root mean square error (RMSE) is a metric to compute the difference between the 
predicted values and the true values of concept pairs so as to evaluate the accuracy 
of the prediction. Comparison between taxonomy of m concept terms and 
taxonomy of n concept terms involves m-by-n concept pairs. Therefore the RMSE 
is calculated as 

 ∑∑
= =

−=
m

i

n

j
jiji predictedtrue

mn
RMSE

1 1
,,

1  (10) 

Figure 11 shows the results of the three measures compared using RMSE for 
threshold similarity scores ranging from 0.15 to 0.9. Neither regulation hierarchy 
structural information nor taxonomy hierarchy structural information is 
considered. As illustrated in Figure 11, the market basket model results in the 
lowest RMSE for most threshold similarity scores. This means that the market 
basket model outperforms the other two measures in discovering related concept 
pairs from different taxonomies, using sections from the regulation as independent 
documents in the co-occurrence computation. Cosine similarity appears to be  
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Fig. 11  Evaluation results of the three measures using RMSE 



17 
 

average among the three statistical analysis measures. 

5.4.2 Precision, Recall and F-measure 

We use precision, recall and F-measure values to compare the three similarity 
analysis measures and the use of regulation and taxonomy hierarchy structural 
information. While RMSE takes both correctness and incorrectness of prediction 
into consideration, precision and recall emphasize correctness only. Precision and 
recall evaluate the accuracy of predictions and the coverage of accurate pairs. 
Precision measures the fraction of predicted matches that are correct, that is, the 
number of true positives over the number of pairs predicted as matched. Recall 
measures the fraction of correct matches that are predicted, that is, the number of 
true positives over the number of pairs that are actually matched. They are 
computed as 

 
MatchesPredicted

MatchesPredictedMatchesTrue
Precision

 
  ∩

=  (11) 
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There is always a tradeoff between precision and recall. F-measure is therefore 
used to combine both metrics. It is a weighed harmonic mean of precision and 
recall. In other words, it is the weighed reciprocal of the arithmetic mean of the 
reciprocals of precision and recall. It is computed as 

 ( )
RecallPrecision
RecallPrecisionMeasureF

+
×⋅

=−
2  (13) 

Figure 12 shows the results for the three relatedness analysis measures 
using precision, recall and F-measure. The market basket model shows the highest 
F-measure values in all cases, again, consistent with the RMSE results. In fact, 
market basket model achieves the highest recall rate with relatively high precision 
in all cases. Jaccard similarity is not preferred due to its low F-measure values, 
resulted from its very low recall rates. Cosine similarity appears to be average 
among the three measures, consistent with the RMSE results. 

As the market basket model outperforms cosine and Jaccard similarities 
using both RMSE and the F-measure, we will evaluate the impact of regulation 
hierarchy and taxonomy hierarchy using the market basket model as the similarity 
measure of choice. As shown in Figure 13, the effect of including regulatory 
structure in the analysis is inconclusive. In general, including regulation 
hierarchical information increases recall rate but reduces precision, as more 
regulatory nodes are being considered to locate related concepts. Considering 
neighboring nodes increases the chance to find related concepts that rarely co-
occur, and thus improves the recall rate; however, including neighboring nodes 
also raises the likelihood to be affected by the noises of co-occurrence, and 
therefore decreases the precision rate. Including the parent section produces a 
slightly higher F-measure in most threshold scores, likely due to the fact that 
parent relationship is one to one which minimizes the impact on precision. Others 
such as sibling and child relationships, are one to many; including such 
relationships may reduce precision with only minor improvement in recall. 
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Fig. 12 Evaluation results of the three measures using F-measure 
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Fig. 13 Evaluation results of market basket model with regulation hierarchy inclusion using F-
measure 
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Fig. 14 Evaluation results of market basket model with taxonomy hierarchy inclusion using F-
measure 
 

To evaluate the influence of taxonomy hierarchical information in the 
relatedness analysis of concepts, Equation (9) is used to update the basic 
similarity scores with α0, α1 and α2 chosen as 0.7, 0.2 and 0.1, respectively. 
Regulatory hierarchical information is not considered in the calculation. Figure 14 
shows that in this test case, consideration of taxonomy hierarchical structure does 
not improve the F-measure results. In fact, although not shown here, including psc 
concepts in relatedness analysis does improve the recall rate by 20 percent in 
general. It should be pointed out that the OmniClass and IFC taxonomies have a 
relatively flat hierarchy and many concepts possess over 20 siblings and children, 
many of which are not strongly related to the self concepts. The increase in the 
number of incorrect matches when taxonomy hierarchy is considered seriously 
reduces the precision rate. As a result, the decrease in precision rate overweighs 



20 
 

the improvement in recall rate, leading to a lower F-measure value when 
taxonomy hierarchical information is incorporated. 

5.4.3 Comparison of the Domain-based Approach with the Terminology-
based Approach and Lexicon-based Approach 

In addition to comparing the three measures with one another, we also evaluated 
our domain-based approach to a traditional lexicon-based approach and a simple 
terminology-based approach. Ontology mapping is an active research area due to 
the growing number of autonomously developed ontologies. Automated and semi-
automated ontology mapping is commonly performed using rule-based (Li et al. 
2000, Mitra 2003), terminology-based (Aumueller et al. 2005, Noy and Musen 
2003), structure-based (Melnik et al. 2002, Milo and Zohar 1998), and lexicon-
based methods (Madhavan et al. 2001, Palopoli et al. 1999). Our approach is 
comparable to a lexicon-based approach, where dictionary and thesaurus are used 
to enumerate related terms such as synonyms and homonyms. Our approach is 
also similar to a terminology-based approach, where the spelling of concept terms 
is used to identify semantic similarity linguistically. In our analysis, we use a 
domain specific corpus, i.e., a domain-appropriate regulation, and the 
preprocessed concept terms to uncover the semantic relationships among entities 
from heterogeneous taxonomies. 
 Some mappings such as (sound and signal devices, 
IfcSwitchingDeviceType) are quite obvious from the name of the concept terms. 
Although the two concept names are not textually identical, they share the term 
“device.” The descriptive keywords in the concept name provide an alternative 
means to map concepts from different ontologies. To relate descriptive phrases in 
our baseline terminology-based matcher, we tokenize keywords in concept names 
and stem the tokens using Porter Stemmer (Porter 1980). As illustrated in Figure 
15, each keyword token represents a row in the frequency matrix. In each 
frequency vector, a value of one is assigned to the rows of the keyword tokens 
that appear in the concept name. The semantic relatedness between concepts is 
determined according to the amount of keyword tokens they share. The three 
statistical analysis measures described in Section 5.1 are then used to compute the 
similarity scores. 
 A thesaurus is necessary to compare our approach to a lexicon-based 
mapping method. One of the most common thesauri is the WordNet (Miller et al. 
1993), which is a well-known lexical resource for the English language. 
Synonyms in WordNet are interlinked by means of conceptual-semantic and  
 

   
Fig. 15  Frequency matrices using terminology-based approach (left) and lexicon-based approach 
(right) 
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lexical relations. It is one of the most widely adopted synonym sources for 
ontology matching techniques including CUPID (Madhavan et al. 2001), Learned 
Ontology Model (LOM) (Li 2004), and Version Matching Approach (VMA) 
(Wang et al. 2007). As shown in Figure 15, each synonym of a concept, as 
appeared in WordNet, represents a row in the frequency matrix. 

Table 3 shows the result for comparing our domain-based ontology 
mapping method with a terminology-based method and a lexicon-based method 
using WordNet. The results show that our domain-based approach, in this case, 
using the regulatory document related to the taxonomies outperforms the 
terminology-based method as well as the lexicon-based method in terms of 
precision, recall and F-measure. The terminology-based matcher has a perfect 
precision because the concept terms that share the same keyword tokens are 
usually related. The terminology-based method, however, cannot identify 
semantically related concepts that are expressed using different terminology. 
Some examples of matches that are found by our domain-based matcher but not 
by the terminology-based method include (door hardware, 
IfcBuildingElementComponent), (steel decking, IfcSlab), (sound and signal 
devices, IfcAlarmType), etc. 
 Although both the lexicon-based method and our domain-based method 
utilize knowledge corpus as a bridge to discover semantic knowledge, the lexicon-
based method results in much lower recall rate and F-measure in all cases. Since  
 
Table 3  Precision and recall comparisons of domain-based ontology mapping approach to 
terminology-based and lexicon-based approaches (P: Precision, R: Recall, F: F-measure) 

Similarity score 
threshold Approaches Cosine Similarity Jaccard 

Similarity 
Market basket 

Model 

  P R F P R F P R F 

0.2 

Lexicon-based 0.50 0.03 0.06 0.00 0.00 n/a 0.00 0.00 n/a

Terminology-based 1.00 0.19 0.32 1.00 0.19 0.32 1.00 0.19 0.32

Domain-based 0.79 0.53 0.63 0.91 0.17 0.29 0.70 0.71 0.70

0.3 

Lexicon-based 0.50 0.03 0.06 1.00 0.03 0.06 0.50 0.03 0.06

Terminology-based 1.00 0.19 0.32 1.00 0.14 0.25 1.00 0.19 0.32

Domain-based 0.83 0.41 0.55 0.90 0.15 0.26 0.75 0.71 0.73

0.4 

Lexicon-based 1.00 0.03 0.06 1.00 0.03 0.06 0.50 0.03 0.06

Terminology-based 1.00 0.19 0.32 1.00 0.12 0.21 1.00 0.19 0.32

Domain-based 0.91 0.36 0.52 1.00 0.12 0.21 0.80 0.59 0.68

0.5 

Lexicon-based 1.00 0.03 0.06 1.00 0.03 0.06 1.00 0.03 0.06

Terminology-based 1.00 0.14 0.25 1.00 0.12 0.21 1.00 0.14 0.25

Domain-based 0.90 0.31 0.46 1.00 0.11 0.20 0.81 0.51 0.63

0.6 

Lexicon-based 1.00 0.03 0.06 1.00 0.03 0.06 1.00 0.03 0.06

Terminology-based 1.00 0.12 0.21 1.00 0.03 0.06 1.00 0.14 0.25

Domain-based 0.92 0.20 0.33 1.00 0.07 0.13 0.81 0.49 0.61
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many concepts have different meanings when used in different domains, the 
synonyms and definitions of identical concepts could be very different because of 
contexts. WordNet is a generic linguistic thesaurus rather than a domain specific 
document corpus. As a result, it contains little and imprecise information of the 
terminology used by the OmniClass and IFC taxonomies. The result shows that 
domain-related corpora, such as regulations and technical specifications, are 
useful in discovering the semantic relationships across multiple ontologies. 

6 Conclusion & Future Tasks 
In this paper, we consider the use of industry specific taxonomies to facilitate the 
retrieval of regulation sections pertinent to the subject of interests. Regulatory 
documents are written by government agencies who organize the materials to suit 
their own needs and intents, which may not fulfill the needs of the communities 
that use them. From industry practitioners’ standpoint, the original hierarchy 
might not be the easiest retrieval model for regulations. In this work, we propose a 
systemic approach to map industry specific taxonomies to regulations in order to 
increase usability of regulations by industry practitioners.  

This paper began by briefly describing the linking of a taxonomy to a 
regulation by latching the concept terms to the regulation sections. For the 
retrieval of related sections from multiple regulations using a single taxonomy, a 
relatedness analysis approach is suggested to compute relevancy between those 
sections. To compare sections from different regulations, cosine similarity is used 
to measure the relatedness and, regulation hierarchical information is leveraged to 
enhance the analysis. For the mapping of multiple domain specific taxonomies to 
a regulation, we propose to find related concept terms between the taxonomies. 
Specificially, regulatory document, a domain specific corpus, is employed to 
perform the relatedness analysis on the concept terms. For the relatedness 
comparison of concept pairs, three similarity measures are tested, and regulation 
hierarchical structures as well as taxonomy hierarchical structures are considered 
in the computation of similarity scores. Among the three measures, we have 
shown, using the taxonomies and regulation corpus employed in this study, that 
the market basket model performs the best in terms of RMSE and F-measure, 
which is a combination of precision and recall. When comparing with the 
terminology-based approach and the lexicon-based approach, our domain-based 
approach, utilizing domain related document as the training corpus, generally 
results in higher precision, recall and F-measure.  

In summary, the 1-1, 1-n, and n-1 mapping between taxonomies and 
regulations have been demonstrated. We plan to implement an n-n concept-
section mapping in the future, by combining the techniques of concept 
comparisons and section comparisons. Furthermore, we plan to engage potential 
users to help perform formal evaluations of the similarity measures and the 
usability of the system. To improve usability, a better user interface is much 
needed, and we plan to investigate the need to implement or adopt such 
visualization tool. An ideal user interface should facilitate access to the mapping 
of multiple taxonomies and the browsing of regulations by industry practitioners, 
rule makers and domain experts. 
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