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ABSTRACT 

This study investigates the applicability of time reversal concept in modern acoustics to 

structural health monitoring. A time reversal method has been adapted to guided-wave 

propagation to improve the detectability of local defects in composite plate structures. 

Specifically, wavelet-based signal processing techniques have been developed to enhance the 

time reversibility of Lamb wave in thin composite plates. The validity of the proposed method is 

demonstrated through experimental studies in which input signals exerted at piezoelectric (PZT) 

patches on a quasi-isotropic composite plate are successfully reconstructed using the time 

reversal method. The development presented here will allow some progress in in-service 

monitoring of aerospace, automotive, civil, and mechanical systems. 

1. INTRODUCTION 

There has been a significant increase in using solid composites in load-carrying structural 

components, particularly in aircraft and automobile industries. With the advances in sensor and 

hardware technologies that can generate and detect Lamb waves, many studies have been 

proposed to use Lamb waves for detecting defects in composite structures [1,2,3,4]. In particular, 
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many researchers have recognized the potential use of PZT actuators/sensors for Lamb wave 

based structural health monitoring. [2,4,5]. 

Lamb waves are mechanical waves whose wavelength is in the same order of magnitude as 

the thickness of the plate. The analysis and interpretation of Lamb waves can be complicated due 

to their dispersive and multimodal natures. The various frequency components of Lamb waves 

travel at different speeds and the shapes of wave packets change as they propagate through a 

solid medium. Multiple symmetric and anti-symmetric wave modes are generated as the driving 

frequency for wave generation increases.  

Recently, attention has been paid to the time reversal method developed in modern acoustics 

to compensate the dispersion of Lamb waves and to improve the signal-to-noise ratio of 

propagating waves [6,7,8,9]. Though the experimental results showed the spatial focusing and 

time compression properties of time reversal Lamb waves, the results were not directly usable 

for damage detection of plates [8]. Instead, a pulse-echo time reversal method, that is, the time 

reversal method working in pulse echo mode has been employed to identify the location and size 

of defects in a plate [7,8,9]. In the pulse-echo time-reversal method, Lamb waves are generated 

by a tuneburst input and the associated responses are recorded by an array of sensors, called a 

time reversal mirror, surrounding the plate boundary. If there is any defect along the wave 

propagation paths, echoes are produced by the defect and recorded by the time reversal mirror. 

The recorded echoes are then reversed in a time domain and reemitted by the same time reversal 

mirror, which acts as an actuator array this time. As the reemitted signals converge on the defect 

location, amplified echo signals will be produced by the defect. By iterating this pulse-echo time-

reversal process, the identification of the defect can be improved. However, if there exist 

multiple defects in a plate, this iterative pulse-echo process tends to detect only the most distinct 
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defect, requiring more sophisticated techniques to detect multiple defects. Furthermore, the 

pulse-echo process seems impractical for structural health monitoring applications, because a 

dense array of sensors is required to cover the entire boundary of the plate being investigated.  

In this study, an enhanced time reversal method is proposed to utilize time reversal Lamb 

waves directly for damage detection of plates. In the enhanced time reversal method, an input 

signal can be reconstructed at an excitation point (point A) if an output signal recorded at another 

point (point B) is reemitted to the original source point (point A) after being reversed in a time 

domain as shown in Figure 1. This time reversibility of waves is based on the spatial reciprocity 

and time-reversal invariance of linear wave equations [10,11]. The uniqueness of the enhanced 

time reversal method lies in the development of signal-processing techniques that extend the 

conventional time reversal acoustics, which is applicable only to body waves, to Lamb waves. In 

particular, a specific input waveform and a wavelet-based signal filtering technique are 

employed to enhance the time reversibility of Lamb waves. When it comes to damage detection, 

damage causes wave distortions due to wave scattering and it breaks down the linear reciprocity 

of the wave propagation. Simultaneous actuation and sensing needed for the enhanced time 

reversal method can be readily implemented in the current active PZT sensing system in which 

multiple defects in a plate can be detected. The validity of the proposed method is demonstrated 

through the experimental studies of a quasi-isotropic composite plate, in which input signals 

exerted at PZT patches are successfully reconstructed during the time reversal process. 

This paper is organized as follows: First, an analysis of Lamb waves using the Mindlin plate 

theory is described in Section 2. In Section 3, the time reversibility of Lamb waves is 

investigated by introducing a time reversal operator in a frequency domain. The wavelet-based 

signal processing techniques to enhance the time reversibility of Lamb waves are discussed in 
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Section 4. A numerical example and experimental investigations are presented in Section 5 to 

demonstrate the validity of the enhanced time reversal method. Finally, this paper is concluded in 

Section 6 with a brief summary and discussions.  

2. LAMB WAVES IN A COMPOSITE PLATE 

Lamb waves usually occur on the waveguides such as bars, plates and shells. Unlike body waves, 

the propagation of Lamb waves is complicated due to two unique features: dispersion and 

multimode [12]. Theoretically, these two features can be investigated by solving Rayleigh-Lamb 

equations defined for the symmetrical and anti-symmetrical modes on an infinite plate with a 

thickness h. 

0)cosh()sinh(4)sinh()cosh()( 222 =−+ shqhqskshqhsk  (1a) 

0)sinh()cosh(4)cosh()sinh()( 222 =−+ shqhqskshqhsk  (1b) 

where 222
lkkq −=  and 222

tkks −= . Furthermore, k denotes a wave number, and lk  and tk are 

the wave numbers for the longitudinal and shear modes, respectively. It should be noted that 

there exist multiple wave modes that satisfy Equation (1a). The dispersion curve can be 

expressed in terms of the product of the excitation frequency and the plate thickness versus the 

group velocity gC , which is defined as: 

dk
dCg
ω

=  (2) 

where ω  denotes an angular frequency. For a uniform plate with constant thickness, the 

dispersion curve can be represented as a function of the frequency as shown in Figure 2. 

As shown in Figure 2, multiple Lamb wave modes are created as the excitation frequency 

increases. The dispersive nature of waves causes the different frequency components of Lamb 

waves to travel at different speeds and the shape of the wave packet to change as it propagates 
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through a solid medium. Due to the dispersive and multimodal characteristics of Lamb waves, it 

is difficult to analyze the wave signals and to identify existence of damage. Therefore, two 

fundamental modes, namely the first symmetrical S0 mode and anti-symmetrical A0 mode are 

often selected and generated for damage detection applications because these modes are less 

sensitive to dispersion than other higher modes. For the layout of the PZT actuators and sensors 

as discussed in Section 5, the magnitude of S0 mode is rather small and negligible compared to 

that of A0 mode [2]. The discussion below focuses only on the A0 mode. 

The exact solution of the Lamb-Rayleigh equations (1a) can be quite complicated. Here, 

approximate wave equations based on the Mindlin plate theory are employed to predict the wave 

propagation of the A0 mode and to validate the experimental results [5]. In the Mindlin plate 

theory, the Navier-Cauchy equations of three-dimensional elasticity for a plate is idealized and 

simplified in terms of a deflection and two rotations along the neutral plane of the plate. 

Particularly, the Mindlin plate theory can be used for predicting the A0 mode propagating on a 

quasi-isotropic composite plate if the effective transverse-shear modulus is determined 

appropriately [13].  

When an arbitrary PZT patch A is used as an actuator and another distinct PZT patch B is 

used as a sensor as shown in Figure 3, the response voltage at the sensing PZT patch B can be 

represented as follows: 

),(ˆ)(),(ˆ ωΕω=ω rKrV BsB  (3) 

where, r , BV̂ , sK , and BΕ̂  are a wave propagation distance from the center of the actuating PZT 

patch to the sensing PZT patch, a response voltage at the sensing patch B, a mechanical-electro 

efficiency constant, and surface strain at the center of the patch B with respect to the angular 

frequency ω , respectively.  
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The surface strain at the patch B can be rewritten as follows. 

),()()(ˆ),(ˆ ωωω=ωΕ rGKIr aAB  (4) 

where, AÎ , aK  and G  are an input voltage at the patch B, a counterpart of mechanical-electro 

efficiency sK  in Eq (3), and an impulse response function of the patch B as a result of the input 

at the patch A, respectively. Specifically, the impulse response function G  is obtained by 

applying Hankel and inverse Hankel transform in the spatial domain and Fourier transform in the 

time domain into the wave equations based on the Mindlin plate theory [13].  
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where D , 1γ , a , )(J1 ⋅  and  are the flexural stiffness of the plate, the ratio of dilatational wave to 

vertical wave motion of the plate at the wave number 1k , the radius of PZT patch A, the first 

order Bessel function, and the zeroth order Hankel function of first kind, respectively. The wave 

numbers, 1k  and 2k  determined at the A0 mode and the second flexural A1 mode of the plate, 

respectively. The propagation of the A0 mode can be numerically simulated using Eq.(4). Later 

on this numerical prediction will be compared with experimental results.  

3. TIME REVERSAL LAMB WAVES IN A COMPOSITE PLATE 

The origin of the time reversal method traces back to the time reversal acoustics [9,11]. In time 

reversal acoustics, an input body wave can be exactly reconstructed at the source location if a 

response signal measured at a distinct location is time-reversed (literally the time point at the end 

of the response signal becomes the starting time point) and reemitted to the original excitation 

location. This phenomenon is referred to as time reversibility of body waves and has found 
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applications in lithotripsy, ultrasonic brain surgery, nondestructive evaluation, and acoustic 

communications [9]. 

While the time reversal method for non-dispersive body waves in fluids has been well-

established, the study of the time reversal method for Lamb waves on plates is still relatively 

new. Because of the dispersion characteristic of Lamb waves, wave packets traveling at higher 

speeds arrive at a sensing point earlier than those traveling at lower speeds. However, during the 

time reverse process at the sensing location, the wave packets, which travel at slower speeds and 

arrive at the sensing point later, are reemitted to the original source location first. Therefore, all 

wave packets traveling at different speeds concurrently converge at the source point during the 

time reversal process, compensating the dispersion. The application of the time reversal method 

to Lamb wave propagation can compensate the dispersion effect, which has limited the use of 

Lamb waves for damage detection applications [7,8]. The effect of dispersion on the time 

reversal analysis of Lamb waves in a homogeneous plate was first studied by Wang et. al [5] by 

introducing the time reversal operator into the Lamb wave equation based on the Mindlin plate 

theory. 

While a number of experimental evidences have shown that the dispersion of Lamb waves is 

well compensated through the time reversal process, the time reversibility of Lamb waves has 

not been fully investigated unlike that of body waves. This study aims not only to alleviate the 

Lamb wave dispersion characteristics but also to perform a full reconstruction of the input 

signals via wavelet-based signal processing techniques. 

 

Time Reversibility of Lamb Waves in a Thin Plate 

Once a response signal due to the original input signal at PZT patch A is measured at PZT 

patch B, the reconstructed input signal at PZT patch A of Figure 3 can be obtained by reemitting 
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the response signal at PZT patch B with the signals being reversed in time. Note that the time 

reversal operation of a signal in a time domain can be represented as the complex conjugate of 

the signal in a frequency domain. Therefore, the time reverse operation of the response signal in 

the time domain at PZT patch B is equivalent to the complex conjugate of Eq.(3) in the 

frequency domain. 

),(ˆ)(),(ˆ *** ωΕω=ω rKrV BsB  (6) 

where, a superscript * denotes a complex conjugate. 

The reconstructed signal at PZT patch A from the reemitted signal at PZT patch B can be 

represented in a similar fashion as Eq. (3). 

),(ˆ)(),(ˆ ωΕω=ω rKrV AsA  (7) 

where 

),()()(ˆ),(ˆ * ωωω=ωΕ rGKVr aBA  (8) 

Using Eqs.(4), (6) and (8), the reconstructed signal in Eq.(7) can be rewritten as follows. 

),(),()()()()()(ˆ),(ˆ **** ωωωωωωω=ω rGrGKKKKIrV sasaAA  (9) 

Performing an inverse Fourier transform, the reconstructed input signal AV~  at PZT patch A can 

be obtained in the time domain as: 

∫
∞

∞−

−ω ωωωωωω
π

= derGrGKKItV tTi
asasAA

)(*** ),(),()()()(ˆ
2
1)(~  (10) 

where, asK  denotes the product between aK  and sK , and T represents the total time period for 

the signal.  If the time reversibility of waves were satisfied, the reconstructed signal )(~ tVA  in 

Eq.(10) would be identical to the time-reversed original signal )( tTI A − . To directly compare 

with the original input signal )(tI A  at PZT patch A, Eq.(10) should be shifted as:  
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Here, TRK  is a constant determined by the electro-mechanical efficiency of the PZT patch, and 

TRG  is referred to as a time reversal operator of Lamb waves in the Mindlin plate theory. In 

Equation (12), the time reversibility is achieved only if TRK  and TRG  are independent of the 

angular frequency ω . That is, for the time reversal operation, the wave components at different 

frequency values should be uniformly amplified throughout the whole frequency range. As 

shown in Figure 4, for Lamb wave propagation, however, the time reversal operator TRG  varies 

with response to frequency, indicating that the wave components at different frequency values 

are non-uniformly amplified. Therefore, the original input signal cannot be properly 

reconstructed if a broadband input signal is used. 

To alleviate this problem, a narrow-band excitation signal incorporated with a signal 

processing based on a multi-resolution analysis is employed in this study so that the time 

reversibility of the reconstructed signals can be preserved within an acceptable tolerance. Note 

that when a single frequency input is used, the frequency dependency shown in Equation (12) 

disappears, allowing proper reconstruction of the original input signal. In Section 4, the time 

reversibility is further improved by incorporating a well-designed narrowband input waveform 

with the wavelet transform.  
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Application of Time Reversal Lamb Waves to Delamination Detection in a Composite Plate  

Intact composites possess atomic linear elasticity as water and copper do. The atomic elastic 

material is well described by the classical linear elastic constitutive law and linear wave 

propagation equations. However, it should be noted that the atomic elastic materials demonstrate 

nonlinear mesoscopic elasticity that appears to be much like that in rock or concrete if they have 

been damaged. Nonlinear mesoscopic elastic materials have hysteretic nonlinear behaviors 

yielding acoustic and ultrasonic wave distortion, which gives rise to changes in the resonance 

frequencies as a function of drive amplitude, generation of accompanying harmonics, nonlinear 

attenuation, and multiplication of waves in different frequencies [14,15]. It has been also shown 

that cracks and delamination with low-aspect-ratio geometry are the scattering sources creating 

nonclassical nonlinear waves, which arise from hysteresis in the wave pressure-deformation 

relation [16]. Wave scattering can be also caused by either horizontal or vertical mode 

conversion in which the energy of the incident Lamb waves at a specified driving frequency is 

redistributed into neighboring Lamb wave modes as shown in Figure 2. Because delamination 

changes the internal geometric boundary conditions in a composite plate, diffraction and 

reflection of the waves can also produce wave scattering when the incident Lamb waves pass 

through delamination.  

Because the time reversibility of waves is fundamentally based on the linear reciprocity of 

the system [10,11], the linear reciprocity and the time reversibility break down if there exists any 

source of wave distortion due to wave scattering along the wave path. Therefore, by comparing 

the discrepancy between the original input signal and the reconstructed signal, damage such as 

crack opening-and-closing, delamination and fiber breakage could be detected.  



  

 11

In most of conventional damage detection techniques, damage is inferred by comparing 

newly obtained data sets with baseline data previously measured from an initial condition of the 

system. Because there might have been numerous variations since the baseline data were 

collected, it would be difficult to blame structural damage for all changes in the measured signals. 

For instance, there might have been operational and environmental variation of the system once 

the baseline data have been collected. Therefore, data normalization, which attempts to 

distinguish signal changes originated from structural damage from those caused by natural 

variations of the system, needs to be addressed [17].  

In this study, the dependency on the baseline data measured at some previous time point is 

completely eliminated by instantly comparing the original input signal and the reconstructed 

input signal. Furthermore, the active PZT sensing system employed in this study allows an easy 

implementation of the time reversal process. The generation of the input signal, excitation of the 

actuation PZT, and acquisition of the response signal are fully automated, and the entire time 

reversal process for one particular path takes less than a minute.  

4. AN ENHANCED TIME REVERSAL METHOD USING WAVELET SIGNAL 
PROCESSING 

In the previous section, we have described the basic concept of time reversal analysis for Lamb 

wave propagation based on Mindlin plate theory. In this section, we discuss the use of wavelet-

based signal processing techniques to enhance the time reversibility of Lamb waves in the 

presence of background noise.   

 
Active Sensing using a Known Input Waveform 
 

First, a carefully designed narrowband input waveform is exerted onto a structure to 

minimize the frequency dependency of the time reversal operator and to maintain high signal-to-
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noise ratio of the time reversal process. The advantage of using the narrowband input signal is to 

prevent the time reversal operator in Eq (12) from having large variations around the driving 

frequency. In addition, the use of a known and repeatable input further makes the subsequent 

signal processing for the time reversal process much easier and repeatable. A similar approach to 

noise elimination in ultrasonic signals for flaw detection can be found in [18]. A Morlet wavelet 

function, as defined below, with a driving frequency around a specified narrowband frequency 

range is adopted as an input waveform [19].  

)5cos(e)( 22

tt t−=ψ  (13) 

A proper selection of the driving frequency is critical for successful generation of Lamb waves in 

a given structure. Further discussion on the selection of the driving frequency can be found in 

Sohn et al. 2004 [17]. 

 

Automated Signal Selection Process based on Wavelet Transform 
 

As discussed in Section 2, the time reversal analysis based on the Mindlin plate theory is 

limited only to the A0 mode. However when Lamb waves travel in a thin plate, a response signal 

consists of several wave modes as illustrated in Figure 5. Some of the modes are symmetric 

modes associated with the direct path of wave propagation and/or signals reflected off from the 

edges of the plate. There are also additional anti-symmetric modes reflected off from the edges. 

Because these reflected modes are very sensitive to the changes in boundary conditions, our 

primary interest lies in investigating the A0 mode corresponding only to the direct path between 

the actuating PZT and the sensing PTZ. Note that this A0 mode traveling along the direct path 

between the actuator and the sensor is insensitive to changing boundary conditions. Therefore, 

only the A0 mode portion of the signal needs to be extracted from the raw signal to minimize 
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false warnings of damage due to changing operational conditions of the system. Because this 

signal component of our interest, the A0 mode, is time and frequency limited, the two-

dimensional time-frequency representation of the signal can be a useful tool for simultaneous 

characterization of the signal in time and frequency, in particular for characterizing dispersive 

effects and analyzing multimodal signals. For this purpose, an automated selection procedure 

based on wavelet analysis is developed.  

The basic concept of this automated selection procedure is as follows: If the signal shape that 

needs to be extracted for damage detection is known a priori, optimal extraction can be achieved 

using a matched mother wavelet that models the shape of the signal component [20]. The 

automated selection procedure is schematically shown in Figure 6. First, the continuous wavelet 

transform of the signal, ),( suWf , is obtained by convolving the signal f(t) with the translations 

(u) and dilations (s) of the mother wavelet: 

dtt
s

tfsuWf su )(1)(),( *
,ψ∫

∞

∞−

=  (14) 

where 







 −

= ψψ
s

ut
s

tsu
1)(*

,  (15) 

The Morlet wavelet, same as the previously defined input signal, is used as a mother wavelet 

)(tΨ  for wavelet transform. Then a complete set of daughter wavelets )(*
, tsuψ  is generated from 

the mother wavelet by the dilation (s) and shift (u) operations. Note that each value of the 

wavelet coefficient ),( suWf is normalized by the factor s1  to ensure that the integral energy 

given by each wavelet is independent of the dilation s.  

Because the Morlet wavelet is used as a mother wavelet for wavelet transform and the 

wavelet coefficient is the correlation between the signal and the mother wavelet by definition, 
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the wavelet coefficient arrives at its maximum value when the shape of the response signal 

becomes closest to that of the Morlet wavelet. When this search of the maximum wavelet 

coefficient is performed at the input frequency, the time portion of the A0 mode can be easily 

detected by the temporal shift parameter u. Hence, this wavelet transform can be an effective 

way to reduce noise if the mother wavelet is chosen to be a good representation of the signal to 

be detected. Furthermore, the continuous wavelet transform is performed instead of the discrete 

wavelet transform to obtain a better time resolution over the full period of the signal [21]. 

Through this automated selection procedure, only the A0 mode of the response time signal is 

chosen for reemission. This selection procedure also automatically eliminates the portion of the 

response signal contaminated by electromagnetic interference.  

 

Signal Filtering based on Multi-Resolution Analysis 
 

When a narrowband signal travels through a thin solid media, the dispersive nature of the 

wave can be compensated through the conventional time reversal process. In other words, the 

time reversal process compensates a phase difference of each wave packet in a frequency domain 

by reemitting each wave packet with proper time delays. However, the frequency content of the 

traveling waves smears into nearby frequencies and is non-uniformly amplified during the time 

reversal process.  Therefore, to enhance the time reversibility of the reconstructed signal at the 

original input point, the measured response signal needs to be processed before reemitting at the 

response point. In particular, for the time reversal analysis of Lamb waves, it is critical to retain 

the response components only at the original input frequency value, because of the frequency 

dependent nature of the time reversal operator shown in Figure 4. To achieve this goal, a multi-

resolution analysis is adopted to filter out the measurement noise in response signals and to keep 
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only the response component at the driving frequency value. Multi-resolution signal processing 

based on wavelet transform has been extensively studied especially for perfect reconstruction of 

signals using quadrature mirror filters [22].  

Once the wavelet coefficients are computed from Eq.(14), the original signal can be 

reconstructed via the following inverse continuous wavelet transform [22]: 

duds
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s
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C

tf 2
0

11),(1)( 





 −

= ψ∫ ∫
∞

∞−

∞

ϕ

 (16) 

where ϕC  is a constant determined by  

ω
ω

ψ
= ∫

∞

ψ dC
0

 (17) 

In this study, the integration operation with respect to the scale parameter s in Eq. (16) is 

restricted only to near the driving frequency in order to filter out frequency components outside 

the driving frequency before transmitting the response signal back to the original input location: 
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where a and b are the lower and upper limits of the narrowband excitation frequency. The choice 

of the frequency limits is dictated by the fact that the filter must cover the frequency range of 

interest so that useful information is not lost. In fact, the wavelet transform is used as a matched 

filter to improve the signal-to-noise ratio without any loss in time resolution or accuracy and in 

many cases with improvements. This filtering processing is repeated for the reconstructed input 

signal obtained by the time reversal process. An example of this filtering process is shown in 

Figure 7. It can be seen that the filtering process reconstructs the raw response signal after 

removing frequency components outside the excitation frequency. 
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5. EXPERIMENTAL STUDY 

The overall test configuration of this study is shown in Figure 8(a). The test setup consists of a 

composite plate with a surface mounted sensor layer, a personal computer with a built-in data 

acquisition system, and an external signal amplifier. The dimension of the composite plates is 

60.96 cm x 60.96 cm x 0.6350 cm (24 in x 24 in x 1/4 in). The layup of this quasi-isotropic plate 

contains 48 plies stacked according to the sequence [6(0/45/-45/90)]S, consisting of Toray T300 

Graphite fibers and a 934 Epoxy matrix. 

A commercially available thin film with embedded piezoelectric (PZT) sensors is mounted 

on one surface of the composite plate as shown in Figure 8(b) [23]. A total of 16 PZT patches are 

used as both sensors and actuators to form an “active” local sensing system. Because the PZTs 

produce an electrical charge when deformed, the PZT patches can be used as dynamic strain 

gauges. Conversely, the same PZT patches can also be used as actuators, because elastic waves 

are produced when an electrical field is applied to the patches. These PZT sensor/actuators are 

inexpensive, generally require low power, and are relatively non-intrusive. 

The personal computer shown in Figure 8(a) has built-in analog-to-digital and digital-to-

analog converters, controlling the input signals to the PZTs and recording the measured response 

signals. Increasing the amplitude of the input signal yields a clearer signal, enhancing the signal-

to-noise ratio. On the other hand, the input voltage should be minimized for field applications, 

requiring as low power as possible. In this experiment the optimal input voltage was designed to 

be near 45 V, producing 1-5 V output voltage at the sensing PZTs. For the time reversal analysis, 

the measured response signal is amplified before being reemitted to the original source point. 

PZTs in a circular shape are used with a diameter of only 0.64 cm (1/4 in). The sensing spacing 

is set to 15.24 cm (6 in). A discussion on the selection of design parameters such as the 

dimensions of the PZT patches, sensor spacing, and a driving frequency can be found in [24].  
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The strain responses measured from the experimental study and simulated by the Mindlin 

plate theory are compared in Figure 9 for a wave propagation path corresponding to the actuating 

PZT #15 and the sensing PZT #16. The measured strain response corresponding to the first 

flexural A0 mode is well-predicted by the Mindlin plate theory as shown in Figure 9. It should be 

reminded that because the Mindlin plate theory, which approximate the Rayleigh-Lamb 

equations for an infinite plate, is used to predict only the wave propagation of the A0 mode 

corresponding to the direct path between the actuating and sensing PZTs, the additional wave 

modes reflected off from the boundaries of the plate are not predicted by the Mindlin plate theory. 

The simulated strain response is obtained from Eqs. (4) and (5). The elasticity modulus and 

Poisson ratio are approximated by assuming a quasi-isotropic composite plate [2]. It should be 

noted that the approximated elasticity modulus and Poisson ratio are properly calibrated so that 

the arrival time of the simulated and measured waves coincides. Without calibration, it is 

observed that the simulated wave travels slightly slower than the measured wave while the shape 

of the simulated and the measured waves are almost identical.  

Figure 10 illustrates the typical results of the enhanced time reversal method obtained from 

the composite plate used in this study. First, one PZT patch is designated as an actuator, exerting 

a predefined waveform into the structure [Figure 10(a)]. Then, an adjacent PZT become a strain 

sensor and measures a response signal [Figure 10(b)]. Once the traveled waves are measured at 

the response point, the measured signal is processed using the wavelet-based signal processing 

procedures described in Section 4: First, the A0 segment of the response signal is selected via the 

proposed autonomous selection scheme. Then, the wavelet-based filtering is applied to the 

response signal to retain only the response component at the driving frequency. Figure 10(c) 

shows the A0 mode selected from the response signal in Figure 10(b) after being filtered and 
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reversed in a time domain. This processed response signal is reemitted from the previous sensing 

PZT, which is now an actuator. The reconstructed response signal at the original input PZT 

location is shown in Figure 10(d). This process of the Lamb wave propagation and the time 

reversal analysis is repeated for different combinations of actuator-sensor pairs. A total of 66 

different path combinations are investigated. Finally, the original input signal and the 

reconstructed signal at the original input point are compared for the actuation PZT #1 and the 

sensing PZT #6 in Figure 11. 

Our ultimate goal is to estimate damage by comparing the shape of the original input signal 

and that of the reconstructed signal. Figure 11 demonstrates that the initial input waveform is 

well restored through the enhanced time reversal method when there is no defect in the 

composite plate tested. However, our destructive testing of the composite plate reveals that this 

time reversibility is violated once damage is introduced along the wave propagation path. 

Typical indications of damage include appearance of sub- and super-harmonic frequency 

components, signal attenuation and distortion. A current research is underway to classify damage 

into several types based on these distinctive changes in the reconstructed signal.  

One potential advantage of the time reversal analysis is that damage might be inspected 

without requiring any baseline data to be obtained at some previous time point. This advantage 

over conventional damage detection techniques allows minimizing false warnings of damage. 

For instance, if the operational temperature or boundary conditions of a system change after the 

baseline data are collected, most pattern recognition techniques will have difficulties in 

discerning signal changes caused by damage from those due to the temperature or boundary 

condition changes. In other words, if there are any changes in the newly measured signal since 

the baseline signal is obtained, it is hard to determine what is causing this change. However, by 
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instantly comparing the input waveform with the reconstructed signal, the time dependent issue 

of the conventional pattern recognition techniques can be eliminated, making it much easier to 

distinguish signal changes caused by damage from those caused by natural variation of the 

system.  

6. SUMMARY AND DISCUSSION 

In this study, the applicability of a time reversal method to health monitoring of a composite 

plate is investigated. In particular, a unique input waveform and signal processing techniques are 

employed to improve the time reversibility of Lamb waves. First, a narrowband excitation 

waveform is employed to address the frequency dependency of the time reversal operator. Then, 

an automated signal selection process is developed based on wavelet transform to retain only a 

segment of a raw response signal that is more sensitive to damage and less responsive to 

changing boundary conditions. In addition, a wavelet-based filtering is performed to further 

enhance the time reversibility by taking advantage of temporal and spectral differences between 

the signal component of our interest and background noise. Using an active sensing system 

mounted on a composite plate, it has been demonstrated that an input waveform exerted at an 

actuating PZT can be reconstructed at the excitation point after processing the response signal 

measured at a distance from the excitation point and reemitting the processed signal at the 

sensing location with being reversed in a time domain. Because the reconstructed signal is 

expected to be identical to the original input signal for a system with no defects, this time 

reversibility of Lamb waves will allow detecting damage by comparing a known input waveform 

with a reconstructed signal.  

Many uncharted applications of this time reversal analysis to structural health monitoring no 

doubt lie in wait. A continuous research is currently underway to classify different representative 
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damage types based on distortion characteristics between the input waveform and the 

reconstructed signal. Further research is also warranted to optimally design the parameters of the 

active sensing system such as the spacing between the PZT patches, the actuating frequency, and 

power requirement for the PZTs. It should be pointed out that the procedure developed in this 

study has only been verified on a relatively simple laboratory test specimen. To fully verify the 

proposed approach, it will be necessary to apply the proposed approach to different types of 

representative structures. 
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(a) Exerting input waves 

 
 

 
 

(b) Reemitting response waves being reversed with time 
 

Figure 1: Time reversal concept 
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Figure 2: A dispersion curve for an idealized isotropic composite plate (the abscissa is presented in term 
of the frequency with the constant plate thickness (0.64 cm) rather than the frequency-thickness product) 
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Figure 3: Generation and Sensing of Lamb waves on a plate by using PZT patches 
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Figure 4: Normalized time reversal operator of the A0 mode  
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Figure 5: A typical dynamic strain response measured at one of the piezoelectric sensors  
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Figure 6: A wavelet analysis procedure for automated signal selection  
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Figure 7 : Comparison between the raw signal and the restored signal after filtering 
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(a) Testing configuration 
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(b) A layout of the PZT sensors/actuators 

Figure 8 : An active sensing system for detecting delamination on a composite plate 
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Figure 9: Comparison between the calculated and the measured strain response of the path from 

PZT#15 to PZT#16 

×10-4 
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(a) An original input Morlet waveform  (b) A response signal at a sensing PZT  

 

Selected response signalSelected response signalSelected response signal

 
(c) A time-reversed response signal after signal 

processing 
(d) A response signal at the original actuating 

PZT 
Figure 10 : Measured time signals at various stages of the time reversal analysis 
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Figure 11: Comparison between the original input signal (solid) and the restored signal (dotted) 

after the automated selection and filtering 

 


