

 1

An Engineering Information Service Infrastructure for
Ubiquitous Computing

David Liu1, Jinxing Cheng2, Kincho H. Law3, Gio Wiederhold4, and Ram D. Sriram5

Abstract

This paper describes a software framework for the development of a ubiquitous computing

environment for distributed engineering information services. Two fundamental issues are

addressed: (1) universal accessibility from devices to information services, and (2) collaboration

among the parties accessing the information services. The first issue calls for the development of

device independent information services that have the flexibility to support wide range of client

devices. We introduce a mediation-based framework that enables the information clients to

calibrate the source information services to the clients’ characteristics. The second issue requires

effective integration of information services, for which we address in two ways. First, we define

an ontology standard and describe how such standard can be effectively applied for exchanging

scheduling information. Second, we illustrate an infrastructure that is particularly suitable for

the integration of engineering services. A prototype for the ubiquitous computing environment

has been developed that incorporates a variety of project management software as well as

different devices ranging from PDA, web browsers, desktop computers, and servers.

1 Ph.D. Candidate, Department of Electrical Engineering, Stanford University, Stanford, CA
94305. E-mail: davidliu@stanford.edu
2 Ph.D. Candidate, Department of Civil and Environmental Engineering, Stanford University,
Stanford, CA 94305. E-mail: cjx@stanford.edu
3 Professor, Department of Civil and Environmental Engineering, Stanford University, Stanford,
CA 94305. E-mail: law@stanford.edu
4 Professor, Computer Science Department, Stanford University, Stanford, CA 94305. E-mail:
gio@db.stanford.edu
5 Group Leader, Manufacturing Systems Integration Division, National Institute of Standards and
Technology, Gaithersburg, MD 20899. E-mail: sriram@cme.nist.gov

 2

1 Introduction
A shift to distributed computing is underway. Rapid proliferation of Internet protocols, fast

expanding computing power, coupled with broadband and mobile communication technologies

make truly ubiquitous computing possible for the first time. We will soon have an

interconnected web of small devices that provide information to people regardless of their

locations. However, ubiquitous computing is more than simply tying many wired and wireless

gadgets together. Everything from client devices, to communication networks, to software

applications needs to work together to enable two main characteristics of ubiquitous computing:

(1) universal accessibility from any device to any information service, and (2) effective

collaboration among the parties accessing information services.

Ubiquitous computing can find many applications in the engineering industry. The design and

construction industries, such applications range from field inspection, to site procurement of

materials, to interactive on-site project planning. For instance, with mobile devices, one could

readily compare the as-built site condition with the planned design information, enquire

availability of materials and receive immediate response to change orders, and gain dynamic

interactions with Internet-based services.

A Ubiquitous computing environment is highly desirable in the A/E/C

(Architecture/Engineering/Construction) industry. Productivity is now hampered due to the lack

of effective channels for prompt information access and collaboration among project personnel

in a project. A ubiquitous computing environment will help engineers, project managers, and

on-site personnel to more effectively communicate with each other. The first challenge to make

such communication effective is to provide project personnel easy access to various engineering

information services. In terms of the standard ISO model for communication, we focus our

effort in the software layer rather than the physical access layer. After making the assumption

that the communication channel and the network protocol is in place for client devices to gain

access to all information services, we have to construct information services in such a way that a

wide range of devices with drastically different characteristics can be supported. For example,

the output of a CAD design tool must be different on a high-speed graphics workstation from on

a Palm handheld device. Information needs to be filtered and presented in different granularities

appropriate to the types of client devices. In Section 2, we describe the design and

 3

implementation of a mediation-based framework that allows the incorporation of a wide range of

computing devices into a distributed engineering service environment.

The second challenge for the ubiquitous environment is to enable effective collaboration

among the engineering information services. A given task may require participation from

multiple engineering information services. There are two issues involved. First, information is

exchanged among various engineering services, for which a common data model is needed.

Second, those services need to be coordinated. The execution of a task needs to specify when

each service should be invoked, what information is required of each service, and how

information is shared among services. We describe a framework and an implementation for

seamless interoperation in Section 3. In our demonstration of the integrated services, we use the

relational database technology, the eXtended Markup Language (XML) and the Process

Specification Language (PSL). We also illustrate in Section 4 an infrastructure where

engineering information services can be effectively integrated in the A/E/C industry.

2 Distributed Information Services
Information services need to provide universal accessibility to information clients in

ubiquitous computing environments. With software getting more complex and services

becoming more powerful, it becomes essential to define a framework by which software can be

constructed to serve clients with dramatically varying computation and communication power.

The traditional approach where information services are customized for each client becomes

unmanageable when there are a large number of clients, each with different requirements for the

services. We introduce a framework for the construction of information services that separates

source-specific functionalities from client-specific functionalities. The approach assists the

construction and the management of information services that provide universal accessibility.

2.1 Mediation-based Framework
The key challenges in constructing information services are to lower the complexity of

software design and to minimize the software maintenance cost. Mediators are introduced to

cope with these issues in dynamic collaborative computing environments. Mediators [20, 22] are

intelligent middleware that sit between information system sources and clients. They provide

integrated information, without the need to integrate the actual data sources. Specifically,

mediators perform functions such as accessing and integrating domain-specific data from

 4

heterogeneous sources, restructuring the results into object-oriented structures, and extracting

appropriate information to be transmitted.

The mediation architecture is conceptually comprised of three layers, as shown in Figure 1.

The mediation layer resides between the source access interface and the client access interface,

incorporating value-added processing by applying domain-specific knowledge. A major task for

an effective mediation service is the reduction of data volume to be shipped to information

clients, while maintaining the desired information content. The principal tool for data reduction

is abstraction, which increases the granularity. Techniques differ on how the abstraction is

obtained and on how the information granularity is controlled.

Information
Sources

Information
Clients

Application Specific
Code

Domain Specific
Code

Source Specific
Code

Client Access
Interface

Source Access
Interface

Mediators

Figure 1: Mediation Architecture

In traditional mediators, code is written to handle information processing tasks at the time the

mediators are built. We call this type of mediator static mediator. Static mediators are used

frequently when their behaviors can be established at software construction time. For instance,

Wiederhold et al. proposed a static mediator to manage security policies on accessing

information sources [21]. The information clients are each assigned with specific security

clearance levels. For each clearance level the security mediator defines the behaviors on how the

information content should be processed before the requested information is returned to the

client. Once constructed, the mediator will not change its behavior during the course of its

service.

 5

As an extension to the static mediators, we introduce active mediators to allow information

clients to specify client-defined actions in conducting information processing. Active mediators

have the ability to adapt their behaviors to the client requests and the source data streams,

providing the ability to dynamically change the granularity of information abstraction [11]. For

instance, an information client can forward a compression routine to the active mediator so that

queried information is compressed before returned. For constructing device-independent

information services, active mediators are used to dynamically adjust information-processing

behavior based on the requests from the information clients.

2.2 Mobile Class

An information-processing module dynamically loaded by the active mediators is called a

mobile class. Conceptually, a mobile class contains a function that takes (multiple) input data

elements, performs some operations on the input, and then outputs a new data element. For

instance,
Out = Func(param1, param2, param3)

represents a mobile class named Func that takes three data elements as input and produces an

output data element Out.

Java is chosen as the specification language. Mobile classes are implemented in Java language

because of Java's support for portability, its flexibility as a high-level language, and its support of

dynamic linking/loading, multi-threading and standard libraries. Mobile classes are written in

Java and compiled into byte code segments. By incorporating a Java virtual machine, the active

mediator can readily execute Java byte codes, thereby enabling the execution of mobile classes

on heterogeneous system platforms.

All mobile classes are derived from the MobileClass interface, whose definition is shown

below:

public interface MobileClass {
public DataElement execute(Vector params);

}

The interface contains a single function that represents the functionality of the mobile class. The

execute function takes a vector of data elements as input and generates a data element as output.

The mobile classes overloads the execute function to provide specific processing capability.

When invoking the mobile class, the active mediator will fill in the content of the input vector

 6

with the data obtained from the information sources. The execution of the mobile class is

supported by the Java virtual machine incorporated in the active mediator. The execute function

is invoked, and upon successful execution the mobile class returns the output data element.

There are two types of mobile classes. The call-by-value mobile classes use the parameter-

passing scheme where the input parameters contain the values of the input data elements, and the

output data element is used to store the processing result of the mobile class. The call-by

reference mobile classes, on the other hand, use the parameter-passing scheme where the input

parameters contain the references to the input data elements. The mobile class can directly

process the content of the input data elements using the references. The input data elements can

be modified, and they represent the processing result of the mobile class. The two types of

mobile classes reflect two different programming styles. The active mediator can decide to

support either one or both types of mobile classes. The programmers of the mobile classes need

to aware of the types of mobile classes that are supported.

Mobile classes can be transmitted from information clients to active mediators for execution

because of their support for heterogeneous platforms. Information clients therefore can utilize

mobile classes to conduct complex processing on the remote site of active mediators. For

instance, mobile classes can be used for data compression, data expansion, aggregation,

relational operations, etc. Figure 2 shows a sample mobile class PalmTrimmer that conducts

information extraction for clients using handheld devices. PalmTrimmer is designed for an

active mediator that integrates project information from multiple information sources. The

execution of PalmTrimmer results in trimming the project activity information, hence allowing

the condensed information to be displayed by the handheld devices. PalmTrimmer is a derived

class of MobileClass, whose execute function is overloaded to provide the specific extraction

functionality. PalmTrimmer uses call-by-reference parameter passing scheme, where the first

element in the input parameter vector for the execute function is the reference to the data fetched

from the information source. The active mediation runtime environment fills in this element

handle when the mediator loads the mobile class. PalmTrimmer operates directly on the data

element and removes everything other than the activity identifiers and the activity descriptions

from the data element. Active mediator then returns the processed data element as the result of

the information query.

 7

public class PalmTrimmer implements MobileClass
{

/* params contains root element as its first element */
public DataElement execute(Vector params) {

Element root = (Element) params.firstElement();

Vector tags = new Vector();

tags.addElement(new String(“ACTIVITYID"));
tags.addElement(new String(“DESCRIPTION"));

keepOnlyNodes(root, tags);

return null;
}

}

Figure 2: Mobile Class PalmTrimmer

Major benefits ensue from the ability to migrate the mobile classes from information clients to

information sources. First of all, mobile classes provide flexibility to the information service

providers, who no longer need to specify all the information processing functionalities when

building the mediator. Compared to the static mediation where any changes in the information

processing functionalities involves code modifications to the mediator, active mediation with

mobile classes alleviates the maintainer of the mediator much of that burden. Client specific

functionalities are specified using mobile classes, whereas functionalities that are shared by all

information clients, such as source information query, are specified within the mediator. This

approach makes the development and the maintenance of the mediators more manageable.

Secondly, mobile classes can provide performance improvement to the overall information

system. By selecting the best locations for the executions of the mobile classes, from the sites of

either the information clients or the information sources, the system can reduce the overall data

volume transmitted among various components of the system. Rather than sending data to be

executed at where the code is located, mobile classes enable code to be sent to where data is

located. When the benefit gained by the reduction of data communication traffic outweighs the

cost of migrating code, the system performance improves.

There are many methods to create mobile classes. We have developed templates based on

which mobile classes are specified to perform simple schema-based information filtering.

Template-based information processing techniques can be found in many other technologies,

such as XSLT technology, which allows user to specify style-sheets for transforming an XML

document into another XML document [5]. The template-based approach benefits from its

 8

relative simplicity. However, templates only offer very limited functionalities, which focus

mainly on string based searching and text matching. Mobile classes provide richer

functionalities than templates. For instance, logical and arithmetic operations come handy in the

Java programming language, giving the mobile classes the ability to perform operations such as

complex logical comparisons and aggregations that are important for information abstraction.

Our approach allows programmers to use templates for developing mobile classes skeletons,

which can be further extended with more complex functionalities.

2.3 Active Objects

Software applications collaborate by exchanging information. A project-scheduling program

may need to obtain schedule information from a modeling tool and send the analysis results to an

information retrieval program. The lack of a reliable, simple and universally deployed data

exchange model has long impaired effective interoperations among heterogeneous software

applications. In order to achieve data interoperability, applications typically need to map their

data models and formats to other applications, requiring what is often called ‘legacy wrapping’

[7]. There are several problems associated with this approach. First, every connection between

two applications will most likely require custom programming. For each pair of applications, a

custom wrapper needs to be built. If many applications are involved, a lot of programming effort

will be needed. Furthermore, maintenance of the custom wrappers is very expensive. Any data

model and format changes in an application will affect all wrappers that have one end connecting

to the application. Also, data corruption and parameter mismatch can cause unpredictable

results, and debugging and error handling becomes difficult since many wrappers need to be

looked at simultaneously. Because of its fragility, legacy wrapping incurs high maintenance

cost.

The notion of objects developed in the object-oriented programming methodology can be

effectively utilized for communicating information between various applications, as

demonstrated previously for mediators [16] and for the building industry [18]. When the

underlying resources are modeled as objects, the connections among the resources can be

encapsulated. Objects can be represented in many data formats. Although XML is not strictly

object-oriented, we choose XML as our information representation format based on XML's

nature of extensibility, structure, and validation as a language [19]. As a simple textual

 9

language, XML is quickly gaining popularity for data representation and exchange on the Web.

XML is a meta-markup language that consists of a set of rules for creating semantic tags used to

describe data. An XML element is made up of a start tag, an end tag, and content in between.

The start and end tags describe the content within the tags, which is considered the value of the

element. In addition to tags and values, attributes are provided to annotate elements. Thus,

XML files contain both data and structural information. In essence, XML provides the

mechanism to describe a hierarchy of elements that forms the object.

An active object is a special type of XML object. In active objects, two types of elements are

defined: data elements and active elements. A data element is a regular XML element that

describes the structure and data contents of an object. An active element, on the other hand, no

longer describes the content of an object but rather contains a mobile class that can be applied to

conduct information processing. The mobile class is presented in the form of serialized byte

codes, encoded in legal string characters for XML documents. The mobile class will be decoded

into normal Java byte codes before being invoked by an active mediator.

Figure 3 shows a sample active object that contains an active element. The active object

specifies a query request for activity information from an information service. The active

element named PalmTrimmer contains a mobile class, which is identified by setting the active-

node attribute to “yes”. The Java source code of the mobile class is shown in Figure 2, and the

compiled byte code is enclosed in the active element. When active mediator processes the

request, the active object will be separated into two components. The string “ACTIVITY”

specified in the active object is used to query the information sources, which return the result in

the form of an XML object. The mobile class is then used to extract useful information from the

XML object and return the filtered information to the client.

<REQUEST>
<QUERY>

ACTIVITY
</QUERY>
<PalmTrimmer active-element=“yes”>

...
encoded byte code for PalmTrimmer mobile class goes here ...
...

</PalmTrimmer>
</REQUEST>

Figure 3: A Sample Request Active Object and Active Node Source Code

 10

Active object is a key component of active mediation technology. It enables information

clients to define dynamic code segments that can be used by information services to conduct

client-specific information processing. The responsibility to provide client-agnostic information

content remains with source information service, while the responsibility to define client-specific

information abstraction and reduction are shifted to individual information clients.

2.4 Active Mediator Architecture

Active mediator is the information-processing engine that resides between source information

services and information clients. It is used to mediate the queried data content obtained from the

source information services. Active mediator can handle active objects, hence providing the

information clients the ability to expand the functionalities of the active mediator. Figure 4

illustrates the architecture of an active mediator. The active mediator conceptually consists of

four functional units and two code segment repositories:

1. The Mobile Class Handler is responsible for identifying mobile classes and decoding

mobile class byte codes.

2. The Mobile Class Cache is a temporary storage for the Java byte codes of mobile classes.

The cache is used to avoid duplicate loading of the mobile classes. The byte codes of a

mobile class are first looked up from the mobile class cache. When a cache miss occurs,

the mobile class fetcher is used to load the byte codes.

3. The Mobile Class API Library stores utility classes that make the construction of mobile

classes more convenient. For instance, the Java Development Kit library [1] is provided as

part of the mobile class API library.

4. The Mobile Class Runtime is the module where mobile classes are executed. The

runtime invokes appropriate mobile classes to conduct dynamic information processing.

5. The Exception Handling module provides a comprehensive set of policies to handle

abnormalities in loading or processing mobile classes. Our current implementation

prohibits any results from getting through the mediator in the case of an exception. In

addition, the conditions are logged for future maintenance.

6. The Data Mediator provides information integration for the underlying information

sources. It provides the functionalities that a static mediator would provide, incorporating

information-processing logic specific to the application domain.

 11

The Mobile Class Handler is the functional unit that processes all incoming client requests,

dividing active object requests into queries and mobile classes. The queries are forwarded to the

Data Mediator and the mobile classes are decoded and stored into the Mobile Class Cache.

Queries received by the Data Mediator are reformulated into source queries based on the domain

knowledge acquired by the mediator, and the source queries are forwarded to the source

information services. The data returned from the services are represented as XML objects,

which are further integrated according to the domain specific logic incorporated in the Data

Mediator. The integrated objects are then forwarded onto the Mobile Class Runtime. The

runtime environment loads relevant mobile classes from the Mobile Class Cache and the Mobile

Class API Library. The mobile classes are invoked with their execute function to process the

objects. Finally, the results are returned to the information client.

Active Mediator

Mobile
Class

Handler

Mobile
Class

Runtime

Exception
Handling

Mobile
Class
API

Library

Information
Client

Mobile Class
Cache

Object
Constructor

Data
Mediator

Source
Information

Services

Figure 4: Active Mediation Architecture

The active mediation system can be deployed without changes to either the information client

or the source information service, enabling a smooth transition from a legacy information service

infrastructure to one using active mediation framework. The Data Mediator functions as the data

integrator for the source information services. A regular query without enclosed mobile classes

will simply flow through the components of the active mediator without invocation of any

mobile classes, in which case the active mediator has the same function as a static mediator.

 12

Conceptually, the active mediation layer resides between source information services and

information clients. In practice, the active mediation layer may either be separated from or be

combined with other layers. Figure 5 illustrates two alternative approaches when deploying

active mediation framework. The first approach, as shown in Figure 5(a), makes active

mediation a separate layer from the source information service. To warrant implementation of

the mediation service as a distinct module, there must be sufficiently much added value to

overcome the cost of adding a layer and its interfaces in the information processing flow. On the

other hand, the benefits and costs to be considered are only partially related to performance.

Having identifiable and maintainable service modules provides significant long-term

management benefits.

When the source service interfaces are not well defined, alternatively, we could build active

mediation into the source information service, as illustrated in Figure 5(b). Building a separate

layer of active mediation requires source services to expose their functionalities through external

interfaces, including those that are not required by information clients but needed by the active

mediators. The cost of modifying the existing source services may prove to be very high and

outweigh the benefit of modularity and manageability brought by a separate active mediation

layer. On the other hand, building the active mediation inside the source services enables active

mediator direct access to the functionalities offered by the services, both internal and external to

the services.

Source
Information

Services

Information
Clients

Active
Mediator

Source
Information

Services

Information
Clients

Active
Mediator

(a) (b)

Figure 5: Incorporation of Active Mediation with Information Services

 13

2.5 Device-Independent Information Services

Information services usually lack the ability to adjust their behaviors to clients with different

characteristics and requirements. Most services are designed with a specific type of clients in

mind. Retrofitting existing services to be device-aware is a very expensive exercise and goes

against the good software design principle of separating client specification and server

functionality. Moreover, it is infeasible to cover all existing and to foresee all future client

device types. The key in constructing device-independent information services thus lies in

separating the information content that a service provides from the presentation of the content.

Active mediation is a natural solution in that it gives the users of the information services the

ability to specify how information should be abstracted and filtered. As shown in Figure 6, many

clients with different characteristics may be requesting information from the same set of

information services. The clients require different granularity and presentation for the same

piece of information provided by the source services. This is achieved by having clients provide

information processing routines in the form of mobile classes. An intermediate active mediation

layer is inserted between the information clients and the source services. The active mediator

invokes the mobile classes on the source information and conducts client specific information

processing.

The source information services remain device-independent. The services provide information

content based on the source queries that contain no identifying information about the types of the

clients. The information content is passed to the active mediator for further processing. As an

example, information content may contain data in the form of XML objects and presentation

styles in the form of XML style sheet. The active mediator invokes appropriate mobile classes to

process the information content obtained from the source services. The processed content is then

returned to the clients.

We partition the process of constructing device-independent information services into two

phases using the active mediation framework. The first phase focuses on constructing source

services to provide modular and object-oriented information content. The second phase focuses

on developing information processing routines for each client device type. As client devices

have drastically different characteristics, they require different levels of abstraction for

information content. For instance, a handheld Palm device requires high abstraction levels so

that content can be transferred through a thin communication channel and presented on relatively

 14

small screen space. Whereas, a high-speed workstation has the capability to digest and present

more information, therefore requires less abstraction. Certainly, the design process is iterative.

Feedback loops are necessary to adjust source information services so that information

abstraction can be done more effectively and efficiently.

The key benefit of active mediation framework is the separation of information processing

responsibilities between information clients and information services. New client device types

can be added into the existing computing environment by developing new information

processing routines. No modifications are necessary in either the source information service, or

the active mediator, or the other client devices. With active mediation, we can develop device-

independent information services that provide universal accessibility to current and future

information clients.

Messaging Bus / Internet

PDALaptopWorkstation

Information Content

Information Abstraction

Information Client

Active
Object
Query

Source
Query

Source
Content

Client-Specific
Content

Object
Constructor

Source
Information

Services

Active Mediator

XML
Objects

XML
Style
Sheet

Figure 6: Active Mediation in Information Service Construction

3 Integration of Information Services
When multiple information services are used collaboratively, effective interaction among

information services is an important aspect of ubiquitous computing. Information services need

to be integrated so that they can exchange information despite the difference in how their data is

 15

represented. In addition, when multiple information services are involved with a given task, a

coordination mechanism needs to be in place so that services can be invoked in order and their

data can be directed to the next appropriate services for further processing.

3.1 Information Modeling

Information modeling plays an important role in distributed service integration. Information

in different applications usually has different representations. Even for the same type of

application, the internal representations of the information are also different. To cope with the

issue of different representations among applications, we need an ontology standard to model

information. Ontology refers to a collection of terms and their relationships, enabling consistent

communication in a domain.

There have been many efforts to develop product data standards for data exchange in the

A/E/C industry, such as STEP [14], IFC [8], ifcXML [10], aecXML, etc. Most of the current

ontology standards however focus mainly on product data and do not provide extensive

information about the process and task specifications that are important data attributes for project

management applications.

3.1.1 Process Specification Language
PSL (Process Specification Language) was initiated by NIST (National Institute of Standards

and Technology) and is emerging as an international standard for process representation [17].

The goal is to create a language for the exchange of process information among different

applications. The development of PSL is motivated by two basic reasons. First, there are not

many existing standards for exchanging process information. Second, current ontology

standards lack a formal logic to define relationships and constraints. PSL is based on first order

logic and situation calculus, which make it an ideal candidate standard for representation of

process information and for project and workflow management.

PSL is based on KIF (Knowledge Interchange Format), which is designed for knowledge

interchange among disparate computer systems [6]. KIF has declarative semantics, and is

logically comprehensive. Figure 7 shows the overall organization of PSL, which includes the

PSL core, the PSL outer core and PSL Extensions [17]:

 16

• The PSL core is a set of axioms based on KIF. The PSL core includes four basics classes:

Object, Activity, Activity_Occurrence and Timepoint. Relations are defined among the

classes, for example:

(occurrence-of activity-occurrence activity)

(before timepoint timepoint)

• PSL outer core consists of a small set of generic extensions, including Subactivity

Extension, Activity-Occurrence Extension and States Extension. For example, relations

may be defined using the PSL outer core extensions as:

(subactivity-occurrence activity-occurrence activity-occurrence)

(subactivity activity activity)

• PSL extensions include ontology modules such as generic activities, ordering relations

and schedules. Each module is motivated by a set of applications and covers concepts in a

specific application domain. Below are some example relations in the PSL extensions:

(before-start activity-occurrence activity-occurrence activity-occurrence)

(before-start-delay activity-occurrence activity-occurrence activity-occurrence

duration)

Activity
Occurrences

Complex Activities

Atomic Activities

Subactivity Occurrence Trees

PSL-Core

Discrete State

Figure 7: PSL Ontology

 17

We have extended the PSL core by including extensions that model the essential information

related to project management applications [3]. Due to its logic framework, PSL can potentially

be used to check consistency of project information by using a reasoning tool [4].

3.1.2 Implementation of PSL Wrappers
Once the PSL ontology for a specific application domain is defined, software wrappers, which

act as a bridge between common (PSL) representation and proprietary representations (for each

application), need to be built. PSL wrappers are used to retrieve project information from the

applications, and are also used to update project information in these applications. The basic

process of using PSL for project information exchange can be illustrated in Figure 8 and consists

of three major steps -- ontology mapping, communicating with applications, outputting or

parsing PSL files. It is not unusual that the same term is often associated with different

meanings in different applications. To exchange project information, first we need to map the

concepts in different applications into PSL ontology, so that they are PSL compliant.

PSL

Convert to PSL format PSL parser

Map PSL ontology to
individual software concepts

 Retrieve information from applications

 P3: Primavera Automation Engine
 MS Project: VBA

Map concepts into
PSL ontology

 Feed information into applications

 P3: Primavera Automation Engine
 MS Project: VBA
 4D Viewer: Plain text

P3 MS
Project 4D Viewer

Figure 8: PSL Wrappers

Different wrappers are developed to transfer and retrieve information to and from different

applications. The application software considered in our current prototype infrastructure

includes Primavera P3TM, MS ProjectTM, and 4D Viewer [15]. The applications can exchange

 18

information using PSL as the ontology standard. To enhance the accessibility of the project

information from these applications, we also build a translator between PSL and database. We

have designed a database schema according to the PSL ontology and developed a translator in

Java to convert information from database to PSL file and vice versa.

3.2 Coordination of Distributed Information Services

Information services collaborate to accomplish a task. A couple of issues need to be resolved

for the functionalities from individual services to be composed together. First, information

services need to be provided in such a way that their functionalities can be accessed and

composed. Second, an environment is needed to support the composition and execution of the

collaborating services.

3.2.1 Composition of Megaservices
The vision of composing functionalities from multiple software services is echoed by the

megaprogramming framework, where a composed service is called megaservice [2, 23]. A

megaservice specifies the actions and relationships among the involved information services.

Though distributed and heterogeneous, information services can be utilized as if they were

locally available to the megaservice.

Megaservices automate the executions of the involved information services that collaborate by

sharing information. Figure 9 shows a sample megaservice that involves three engineering

information services. The megaservice retrieves a project model using the ModelRetriever

service, then conduct scheduling on the model using the Scheduler service, and finally notify the

related parties about the change via the ChangeManager service. The shared information passed

around the services is identified by the common parameter names. For instance, the project

model fetched by the ModelRetriever service is passed to the Scheduler service as an input

parameter.

 19

Model
Retriever

Network

Mega
Service

 MegaService {
 model = ModelRetriever(name)
 new_model = Scheduler(model)
 ChangeManager(new_model)
 }

Scheduler

Change
Manager

Figure 9: A Megaservice for Engineering Services

Software applications are often managed under distributed and heterogeneous administrative

environments. They run on different hardware and software platforms, and their interfaces use

different data format and network protocol. To facilitate service composition, software

applications are wrapped into information services that employ a homogeneous model to

facilitate communications and collaboration.

The FICAS (Flow-based Infrastructure for Composing Autonomous Services) metamodel [12]

is chosen as our framework to build information services. The key characteristic of the FICAS

metamodel is the explicit separation of control-flows from data-flows, which respectively

represent groups of related control messages and data messages used to exchange information

among information services. Control messages and data messages are distinguished by their use

at the recipients of the messages. Control messages are mostly short messages that trigger state

changes at the receiving services. Data messages are mostly large data packets that are given to

the receiving services for processing. For data-flow, the information service primarily concerns

about performing services on the input data and generating output data. For control-flow, the

information service primarily concerns about the state management of the service, e.g. the

completion of a task, the termination of a service, etc.

3.2.2 Service Composition Infrastructure
Service composition infrastructure is responsible for composing and executing megaservices.

FICAS is a service composition infrastructure that supports distributed data-flows [12]. As

shown in Figure 10, FICAS consists of buildtime and runtime components. The buildtime

components are responsible for composing megaservices and compiling megaservice

 20

specifications into control sequences that serve as inputs to the runtime environment. The

runtime components are responsible for the executions of the control sequences.

Composition of autonomous services starts with the megaservice specification. We have

defined the CLAS language to provide the application programmers the necessary abstractions to

describe the behaviors of their megaservices [13]. The CLAS program is translated by the

buildtime component into a control sequence that can be executed by the runtime environment.

The control sequence is language and platform independent, providing a bridge between

megaservice specification and megaservice execution.

The FICAS runtime environment is responsible for executing the control sequences. The

megaservice controller is the entity that carries out the execution of a megaservice. The

controller first converts an input control sequence into an execution plan, and then follows the

plan to coordinate control-flows among the respective services. The controller serves as the

centralized coordinator for all the control messages incurred by the megaservice. Since the

megaservice execution is carried out with parallel invocations of autonomous services, the

controller is also responsible for synchronizing control-flows and conducting performance

optimization. The service directory is created to index the information service parameters. It

keeps track of available services within the infrastructure. The directory is viewed globally as a

centralized entity, while it may be implemented as a distributed structure.

FICAS is chosen as the service composition infrastructure to support our ubiquitous

computing environment due to its ability to address the key issues in composing megaservices:

(1) Ease of composition – The compositional language CLAS provides an effective and

convenient mechanism to application programmers for specifying compositions of

functionalities provided by individual information services.

(2) Scalability – The metamodel used by the information services allows services to be

independently constructed and plugged into the service composition infrastructure, thus

facilitating the integration and management of large number of services.

(3) Performance – The runtime environment employs the distributed data-flow model,

hence avoiding the communication bottleneck at the megaservice controller. The

runtime can deliver high performance for the execution of megaservices composed of

engineering information services.

 21

FICAS Buildtime

Autonomous
Service

Directory

Communication
Network

CLAS
Program

FICAS
Controls

FICAS RuntimeFICAS Buildtime

Megaservice
Controller

Information
Service

Figure 10: FICAS Architecture

4 Ubiquitous Computing Environment
In this section, we illustrate our implementation of an engineering information service

infrastructure for the A/E/C industry. The technologies described in prior sections are utilized to

deliver ubiquitous computing. An engineering scenario is then described to demonstrate how the

service infrastructure allows prompt information access and facilitates collaborations among

project personnel.

4.1 Integrated Service Infrastructure

For a typical construction project scenario, different construction applications can reside at

different locations. Some applications may reside on the site offices, and others may reside in

the company headquarter. Project information is not shared and accessible among all project

participants at all time. It is difficult and time-consuming for project managers on the

construction sites to get the latest project information from the company headquarter and other

places. If there are some changes on the construction site, it is also hard for project managers to

evaluate the impacts of the changes on the whole project immediately, since the project mangers

may not have access to project management application and 3D/4D application on the

construction site. Project managers cannot reschedule the project on the construction site right

away using the latest information. To improve the proficiency, a ubiquitous environment is

highly desired, so that project participants can access and manage the latest project information

 22

from various engineering services, using different software applications and at different

locations.

An infrastructure shown in Figure 11 has been developed to illustrate how the ubiquitous

computing environment is developed for distributed project management services. There are

five types of clients and applications involved in the environment. The Palm PDA devices are

used to access project information via wireless modems. The web browsers provide project

information to users who usually have access to high-speed Internet connections and more

powerful computing devices. Three engineering software applications are included to manage

the design and scheduling aspects of the project. 4D Viewer is an effective tool for analyzing

and visualizing 3D architectural designs and their relationships to project schedules [9].

Primavera P3 is a specialized tool that focuses on the scheduling aspect of the project. And,

Microsoft Project is another tool used for managing project schedules.

An Oracle 8i relational database serves as the backbone information store for this distributed

service infrastructure. The active mediator acts as an intelligent bridge that connects various

devices with the database. It captures the client requests in the form of active objects from

devices such as Palm and desktop browsers. Source queries are constructed and sent to the

Oracle 8i database. The active mediator retrieves the information from the Oracle 8i database

and conduct client-specific information processing by invoking the mobile classes incorporated

in the client requests. The processed information with desired abstraction and suitable format is

returned to the clients for displaying.

The engineering software applications all have different proprietary data models for describing

project schedule information. We use PSL as a common data model, through which the different

applications can communicate with each other. PSL data converter also acts as a bridge to map

between the proprietary data models and the relational data model, enabling Oracle 8i database

to serve as the backbone information store.

Functionalities from various software applications can be further composed when the

applications are wrapped as information services and their functionalities exposed via well-

defined interfaces. For instance, Primavera P3 is wrapped into a P3 Scheduling Service, which

provides functionalities such as project rescheduling. PSL data converter is wrapped into the

PSL Model Service, which provides functionalities such as extracting PSL project models from

the Oracle 8i relational database and storing PSL models into the database. As shown in Figure

 23

12, the services are composed into the rescheduling megaservice. The PSL Model Service is first

used to fetch the project model from the Oracle 8i relational database. The model is then

forwarded onto the P3 Scheduling Service for rescheduling. The rescheduled project model is

then stored back to the relational database by invoking the PSL Model Service again. Finally, a

change notification service is invoked to inform all relevant parties of the change to the project.

PSLXML

4D
Viewer

Active
Mediator

Palm Desktop
Browser

Primavera
P3

Microsoft
Project

Oracle 8i
Relational
Database

Figure 11: Software Integration for the Ubiquitous Computing Environment

Network

Rescheduling
MegaService

 RescheduleService {
 model = PSLModel(modelname, 'oracle-to-psl')
 new_model = P3Scheduling(model, 'reschedule')
 status = PSLModel(new_model, 'psl-to-oracle')
 ChangeNotify(modelname)
 }

PSL

Primavera
P3

PSL
Model

Service

P3
Scheduling

Service

Change
Notify

Service

Figure 12: Rescheduling Megaservice

4.2 An Engineering Scenario

We now look at an example scenario and demonstrate how the ubiquitous computing

environment may help facilitate personnel from different functional groups conduct

collaborations. We use the project model of the Disney Concert Hall as the test case example.

Figure 13 shows a snapshot of the construction progress using the 4D Viewer. Figure 14 is the

 24

view of the scheduling information using Primavera P3. Using PSL as the intermediate data

model, the information is shared between the relational data model and the proprietary Primavera

data model. The scheduling information can also be reviewed using a handheld Palm device, for

example by on-site personnel, as shown in Figure 15. The information is first converted into

XML model, and then the active mediator filters the information and adapts the content for the

handheld device that is reviewing the information.

Suppose, as a hypothetical example, that the duration for the activity, 18T1-33201, for erecting

a roof element is to be changed from 1 day to 40 days (see Figure 15). The change can be made

remotely using the Palm device by on-site personnel. The update will be stored into the

relational database and trigger the rescheduling megaservice. The revised schedule can be

viewed using MS Project as shown in Figure 16 and the project model can be displayed and

viewed using the 4D Viewer as shown in Figure 17. The project status can also be viewed using

a simple web browser as shown in Figure 18. The web browser adopts the same information

path as in the case of the Palm device. An XML model constructor and an active mediation are

used to generate appropriate information content for different information clients. Comparing to

the Palm device, the web browser can display much more detailed scheduling information, for

example, with the altered activity and the affected activities highlighted using different colors –

the information that project managers may find helpful to diagnose the impact of the updated

schedule.

Figure 13: Reviewing Sample Project on 4D Viewer

 25

Figure 14: Reviewing Sample Project on Primavera

http://med...!! History
SCHEDULE

Review the schedule and make
appropriate updates by changing the
value in duration:

SCHEDULEID
STARTDATE
DURATION

18T1-33201
01-31-2001
40…………………….. Update

18T1-33241
02-01-2001

http://med...!! History
SCHEDULE

Review the schedule and make
appropriate updates by changing the
value in duration:

SCHEDULEID
STARTDATE
DURATION

18T1-33201
01-31-2001
40…………………….. Update

18T1-33241
02-01-2001

Change duration of activity
18T1-33201 (“Erect Roof Elem 1”)
From 1 day to 40 days

Figure 15: Revising Project Schedule Via a Palm Device

Figure 16: Regenerated Gantt Chart in Microsoft Project

 26

Figure 17: Reviewing Updated Project on 4D Viewer

A c tu a l
C h a n g e

A ffe c te d

A c tiv itie s

Figure 18: Reviewing Updated Schedule on Web Browser

5 Summary
We have identified two main issues in enabling ubiquitous computing environment for

engineering services: accessibility and collaboration. We address the problems by acquiring

methodologies to develop services and build service infrastructures that provide universal

accessibility and promote interactivity among existing engineering services.

Active mediation is introduced as a value-added service layer that resides between source

information service and information client. It provides the information clients the ability to

specify information processing routines according to the characteristics of the client devices,

 27

hence making source information service device-independent. Alternatives to implement active

mediation services are discussed.

We have shown how PSL, XML and relational models can all be used together to effectively

model data used in various engineering service tools. By building a PSL wrapper for each

application, we can exchange project information successfully using PSL as a standard. By

building a translator between PSL and Oracle database, we greatly improve the accessibility of

the project information in various engineering services. As PSL is based on first order logic and

situation calculus, we expect that PSL play a more important role in workflow management than

an interchange standard.

In addition to effective data integration among different software tools, ubiquitous computing

requires truly integrated engineering services. We define a metamodel for information services,

based on which services can be accessed and composed in a homogeneous manner. Information

services can then be composed into megaservices that provide integrated functionalities. A

distributed data-flow service composition infrastructure is introduced to provide support for the

composition and the execution of the composed services.

6 Acknowledgement
This work is partially sponsored by the Center for Integrated Facility Engineering at Stanford

University, a Stanford Graduate Fellowship, the Air Force (Grant F49620-97-1-0339, Grant

F30602-00-2-0594), and the Product Engineering Program at NIST. The Product Engineering

Program gets its current support from the NIST’s SIMA (Systems Integration for manufacturing

Applications) program. The 4D Viewer and the 4D model of the Mortenson Ceiling Project are

provided by Professor Martin Fischer and his research group at Stanford University. No

approval or endorsement of any commercial product by the National Institute of Standards and

Technology or by Stanford University is intended or implied.

7 References
[1] K. Arnold, J. Gosling, and D. Holmes, "The Java Programming Language", Java Series,

Addison-Wesley, 2000.

[2] B. Boehm and B. Scherlis, "Megaprogramming", Proceedings of DARPA Software

Technology Conference, Los Angeles, April 1992, pp. 68-82.

 28

[3] J. Cheng and K. H. Law, "Using Process Specification Language for Project Information

Exchange", Proceedings of 3rd International Conference on Concurrent Engineering in

Construction, Berkeley, CA, 2002, pp. 63-74.

[4] J. Cheng, K. H. Law, M. Gruninger, and R. D. Sriram, "Process Specification Language

For Project Information Exchange", Submitted for publication, 2002

[5] J. Clark (ed.) "XSL Transformations (XSLT) Version 1.0, W3C Recommendation 16

November 1999", World Wide Web Consortium, 1999.

[6] M. R. Genesereth and R. Fikes, "Knowledge Interchange Format Reference Manual -

Version 3", Stanford University, Report # CSD-Logic-92-1, 1992.

[7] J. Hammer, H. Garcia-Molina, W. Labio, J. Widom, and Y. Zhuge, "The Stanford Data

Warehousing Project", Data Engineering Bulletin, Special Issue on Materialized Views

and Data Warehousing, vol. 18(2), June 1995, pp. 41-48.

[8] IAI, "Industry Foundation Classes", International Alliance for Interoperability,

Washington, DC, Report, 1997.

[9] B. Koo and M. Fischer, "Feasibility Study of 4D CAD in Commercial Construction",

Journal of Construction Engineering and Management, ASCE, vol. 126(4), 2000, pp.

251-260.

[10] T. Liebich, "XML Schema Language Binding of EXPRESS for ifcXML", International

Alliance for Interoperability, Report # MSG-01-001, 2001.

[11] D. Liu, K. H. Law, and G. Wiederhold, "CHAOS: An Active Security Mediation

System", Proceedings of International Conference on Advanced Information Systems

Engineering, LNCS, vol.1789, B. Wangler and L. Bergman (eds.), Springer-Verlag,

2000, pp. 232-246.

[12] D. Liu, K. H. Law, and G. Wiederhold, "Data-flow Distribution in FICAS Service

Composition Infrastructure", Proceedings of 15th International Conference on Parallel

and Distributed Computing Systems, Louisville, KY, 2002.

[13] D. Liu, K. H. Law, and G. Wiederhold, "FICAS: A Distributed Data-Flow Service

Composition Infrastructure", Stanford University, Technical Report, 2002,

http://mediator.stanford.edu/papers/FICAS.pdf.

[14] H. Mason (ed.) "Industrial Automation Systems -- Product Data Representation and

Exchange -- Part 1: Overview and Fundamental Principles", ISO, 1994.

 29

[15] K. McKinney and M. Fisher, "Generating, Evaluating and Visualizing Construction

Schedules with CAD Tools", Automation in Construction, vol. 7(6), 1998, pp. 433-447.

[16] Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina, "Object Fusion in Mediator

Systems", Proceedings of VLDB Conference, 1996.

[17] C. Schlenoff, M. Gruninger, F. Tissot, J. Valois, J. Lubell, and J. Lee, "The Process

Specification Language (PSL): Overview and Version 1.0 Specification", National

Institute of Standards and Technology, Gaithersburg, MD, Report # 6459, 2000.

[18] J. Snyder and U. Flemming, "Information Sharing in Building Design", Proceedings of

8th International Conference on Computer Aided Architectural Design Futures, G.

Augenbroe and C. Eastman (eds.), Kluwer, 1999, pp. 165-183.

[19] W3C, "Extensible Markup Language (XML)", World Wide Web Consortium,

http://www.w3.org/xml.

[20] G. Wiederhold, "Mediators in the Architecture of Future Information Systems", IEEE

Computer, March 1992, pp. 38-49.

[21] G. Wiederhold, M. Bilello, V. Sarathy, and X. Qian, "A Security Mediator for Healthcare

Information", Proceedings of 1996 AMIA Conference, October 1996, pp. 120-124.

[22] G. Wiederhold and M. Genesereth, "The Conceptual Basis for Mediation Services", IEEE

Expert, Intelligent Systems and Their Applications, vol. 12(5), October 1997, pp. 38-47.

[23] G. Wiederhold, P. Wegner, and S. Ceri, "Towards Megaprogramming", Comm. ACM,

vol. 35(11), Nov 1992, pp. 89-99.

	Introduction
	Distributed Information Services
	Mediation-based Framework
	Mobile Class
	Active Objects
	Active Mediator Architecture
	Device-Independent Information Services

	Integration of Information Services
	Information Modeling
	Process Specification Language
	Implementation of PSL Wrappers

	Coordination of Distributed Information Services
	Composition of Megaservices
	Service Composition Infrastructure

	Ubiquitous Computing Environment
	Integrated Service Infrastructure
	An Engineering Scenario

	Summary
	Acknowledgement
	References

