
Incorporating Uncertainty in Watershed Management Decision-Making:  A 
Mercury TMDL Case Study

William Labiosa1, James Leckie1, Ross Shachter2, David Freyberg1, and James 
Rytuba3

1Department of Civil and Environmental Engineering, Stanford University, Terman 
Engineering Center, 380 Panama St., MC-4020, Stanford, CA 94305-4020;  email: 
labiosa@stanford.edu
2Department of Management Science and Engineering, Stanford University, Terman 
Engineering Center, 380 Panama St., MC-4026, Stanford, CA 94305-4026
3U.S. Geological Survey, 345 Middlefield Road, MS 901, Menlo Park, CA  94025

Abstract

Water quality impairment due to high mercury fish tissue concentrations and high 
mercury aqueous concentrations is a widespread problem in several sub-watersheds 
that are major sources of mercury to the San Francisco Bay.  Several mercury Total 
Maximum Daily Load regulations are currently being developed to address this 
problem.  Decisions about control strategies are being made despite very large 
uncertainties about current mercury loading behavior, relationships between total 
mercury loading and methyl mercury formation, and relationships between potential 
controls and mercury fish tissue levels.  To deal with the issues of very large 
uncertainties, data limitations, knowledge gaps, and very limited State agency 
resources, this work proposes a decision analytical alternative for mercury TMDL 
decision support.  The proposed probabilistic decision model is Bayesian in nature 
and is fully compatible with a “learning while doing” adaptive management 
approach.  Strategy evaluation, sensitivity analysis, and information collection 
prioritization are examples of analyses that can be performed using this approach. 

Introduction

This paper demonstrates a decision analytical model of mitigation/load 
allocation decisions for a simple mercury Total Maximum Daily Load (TMDL) 
setting  example.  Such a model can be used throughout the TMDL decision process, 
including initial information gathering decisions, load allocation/mitigation decisions, 
and post-implementation monitoring decisions.  The essential insight is that 
information gathering/monitoring decisions, whether made before or after allocation 



decisions, draw their value from making better load allocation/mitigation decisions.  
For this reason, information gathering decision models build on load allocation/ 
mitigation decision models.  Our load allocation/mitigation decision model integrates 
a Bayesian (probabilistic) network model of environmental system response to 
mitigation decisions with a valuation model, allowing insights into the credibility of 
compliance with multiple numerical standards, insights into sensitivity of conclusions 
to small changes in model parameters, and, if a value model can be defined, the 
determination of optimal strategies.  

The approach uses a Bayesian network model of the relationships between 
potential mercury control efforts, total mercury loadings, methyl mercury 
concentrations, and mercury fish tissue levels in the Cache Creek watershed, a major 
source of mercury to the Bay Delta.  Simulations of the probability distributions of 
the environmental variables of interest are made using stochastic empirical models.  
Model input uncertainty and model error are explicitly included and propagated 
through the model using Bayesian network algorithms.  Various control scenarios can 
be explored through probabilistic modeling of the downstream effects on the 
environmental targets of interest. 

This modeling approach allows the creation of a decision framework that 
integrates the various sources of uncertainty in a complex and highly uncertain 
TMDL decision situation.  The various sources of uncertainty are integrated as 
decision risk, allowing decision makers to transparently consider value trade-offs 
between compliance costs and uncertainties in meeting the various environmental/ 
ecological targets.  Advantages of the approach include decision basis transparency, 
integration of uncertainty as decision risk, and the explicit consideration of values. 

A Decision Analytical Approach to TMDL Setting Decisions

At the highest level, decision analysis divides the framed decision problem 
into alternatives, information, and preferences.   In the context of public 
environmental decision making, these could be cast as:  1) decision framing/strategy 
generation; 2) information modeling/synthesis/forecasting; and 3) multiattribute 
utility analysis, negotiation among interest groups, or other methods of eliciting and 
representing preferences.  Each of these aspects of decision are described in detail 
elsewhere (e.g., Merkhofer, 1999; Labiosa et al., 2003, and references cited within).  
The goal of decision analysis is to create decision clarity in a complex decision 
problem.  We present a watershed management example to demonstrate its potential.

A decision analytical approach to TMDL setting decisions allows decision 
makers and stakeholders to explore scenarios, conduct sensitivity analyses, and to 
explore the consequences of  different stated preferences over outcomes.  Given the 
decision makers’ consensus on information, alternatives, and preferences, a best 
strategy can be determined.  Decision analysis does not predict optimal decisions 
“objectively”, since the decision makers’ subjective preferences and beliefs are
required by the approach.  In fact, from a decision analysis perspective, all decision 



making is subjective and thus any decision analytical tool must be modified to reflect 
the beliefs and preferences of the decision makers before use.  Decision analysis is a 
theoretically sound approach for making significant decisions under uncertainty (see, 
e.g., Howard, 1968; 1988; Keeney and Raiffa, 1976; Clemen, 1996; Merkhofer, 
1999).  There are a number of examples of the use of decision analysis for 
environmental decision making in the literature, often in the area of site selection or 
choosing between remediation, restoration, or technology alternatives (e.g., Keeney 
1980; Maguire and Boiney 1994; Reckhow 1994; Merkhofer et al. 1997; Perdek 
1997; Kruber and Schoene 1998; Merkhofer, 1999; Freeze and Gorelick 1999).  In 
addition, recent work has demonstrated that water quality management effects can be 
effectively modeled using Bayesian (probabilistic) networks, producing results that 
are comparable to more complex mechanistic models (e.g., Reckhow, 1999; Borsuk 
et al., 2001; Borsuk et al., 2002; Stow et al., 2003).

It is emphasized that decision analysis applied to group decision situations 
should be thought of as a process by which groups may discover useful insights that 
highlight where consensus may be achieved and where obstacles requiring 
clarification, negotiation, mediation, or litigation may lay.  There are many competing 
versions of decision analysis with variations on how alternatives are generated, 
uncertainty is represented, preferences are elicited, etc.  In this paper we describe a 
decision analytic approach that is based on small group elicitation of goals, 
objectives, and alternatives, a probabilistic model of natural system response, and 
several potential methods for eliciting and representing preferences.  Other related 
approaches may be just as appropriate, depending on circumstances.  

Data and Resource Limitations

Predicting total mercury and methylmercury loadings in mine- and geothermal 
source-impacted watersheds is an inherently difficult problem.  Since most of the 
total mercury mass is transported with the suspended sediment load, the many 
difficulties of modeling sediment transport apply.  Unfortunately, even larger 
uncertainties are involved in modeling the relationship between stream segment 
methylmercury concentrations and total mercury concentrations.  While several 
relevant and useful studies have been conducted, the available data are sparse relative 
to the complexity of the modeling problem and the very large uncertainties involved 
(Bloom, 2001; Domagalski et al., 2003; Domagalski; et al., 2004; RWQCB-CV, 
2004b, 2004c; Slotton et al., 2004; Suchanek et al., 2003).  In general, data collection 
budgets for TMDL development are very limited (Houck, 1999; Ruffolo, 1999). 
Other important considerations are the large costs associated with the mitigation 
efforts being considered and recent evidence that strongly suggests that background 
total mercury and methylmercury loadings may be much larger than previously 
thought in the Bear Creek and Sulphur Creek watersheds (James Rytuba, personal 
communication).  

In addition to data and modeling limitations and predictive uncertainty, the 
California Regional Water Quality Control Boards (RWQCBs) are very limited in 



number of staff that can be tasked with TMDL development (Ruffolo, 1999).  Since 
budgets are limited, the ability to contract outside expertise is also limited.  
Collectively, these issues point to a need for a decision framework that takes into 
consideration the very large uncertainties involved and the resource constraints of the 
State agencies tasked with TMDL development and implementation planning 
(Labiosa et al., 2003; NRC, 2001; Ruffolo, 1999).

Example TMDL Decision Problem:  Mercury TMDL in a Mine-Impacted 
Watershed

This example presented here is a simplified abstraction from the Sulphur 
Creek mercury TMDL, a real mercury TMDL setting process in Northern, California.  
The 6500 acre watershed is part of the Cache Creek watershed in the California Coast 
Range mercury mineral belt.  Sulphur Creek, Cache Creek, and other creeks within 
the Cache Creek watershed are on the Central Valley Regional Water Quality Control 
Board’s (RWQCB) list of impaired water bodies due to elevated mercury levels in 
water (RWQCB- CV, 2004b).  These watersheds are major sources of mercury to the 
San Francisco Bay, which is also listed as impaired due to mercury contamination 
(RWQCB- SFB, 2003).  Elevated mercury fish tissue levels, high concentrations of 
mercury in the water column, and large loadings of total mercury and methylmercury 
have been observed in several parts of the Cache Creek watershed.  

Since 2000, the Sulphur Creek TMDL workgroup has been collecting 
information relevant to the setting of the mercury TMDL target and for determining a 
proposed source allocation scheme.   In addition, the CALFED Bay Delta Program, a 
Federal/California State partnership with the mission of developing and implementing 
a long-term comprehensive plan that will restore ecological health and improve water 
management for beneficial uses of the San Francisco Bay-Delta System, has 
supported several relevant research projects.  The results of these studies are 
summarized in the November 2004 draft Sulphur Creek mercury TMDL report 
(RWQCB- CV, 2004b) and the various CALFED final draft reports (available on-line 
at http://loer.tamug.tamu.edu/calfed/ FinalReports.htm).

Before representing this small watershed mercury TMDL setting process in 
terms of decision analysis, we briefly define some concepts important for 
understanding the mathematical framework used, namely, Bayesian networks.

Significant Scientific Uncertainties as Random Variables in a Bayesian Network

Bayesian networks are probabilistic models based on a coherent set of beliefs 
about the relations between system variables, in contrast to deterministic approaches 
that model system behavior on the basis of mathematical representations of 
underlying mechanisms and on empirical deterministic approaches that ignore 
uncertainty. Bayesian network models do not ignore scientific knowledge about 
system mechanisms and behavior, but instead, represent this knowledge in terms of 
causal relations between random variables and conditional probabilities that describe 



these cause and effect relationships.  In the Bayesian network model of the Sulphur 
Creek mercury TMDL setting decision situation, causal relations and conditional 
probabilities are based on what is currently known about the relations between HgT 
sources, HgT loading, MeHg production and the resulting loading, Hg fish-tissue 
burdens, and other natural-system variables. The model also includes a probabilistic 
representation of what is currently known about how mitigation efforts may impact 
the natural system.  The composite effect of uncertainty and natural variability are 
represented as conditional probability in these models.

A Bayesian network consists of a graph and probabilistic data associated with 
the nodes in the graph.  The graph consists of nodes (ovals) connected by arrows, 
where the ovals represent chance (uncertain) nodes, each of which is associated with 
a random variable.  The random variables in the Bayesian network represent the 
attributes of interest to decision-makers.  Arrows represent potential conditional-
probabilistic dependence between the various random variables and can be drawn in a 
causal direction. Graphically, an arrow from a parent node to an uncertain variable 
(child) means that the probability distribution in the uncertain variable (child) is 
conditioned by the state of the parent node. The absence of an arrow between two 
variables in a network indicates that these variables are conditionally independent 
given their parents (Shachter, 1988).  

Figure 1 shows a Bayesian network representation of the Sulphur Creek 
mercury TMDL decision problem.  This particular network is referred to as an 
influence diagram, since it contains a decision node, a value node, and random 
variables (chance nodes).  “Water year” refers to the amount of precipitation received 
for a particular water year, e.g., “wet” (W), “dry ” (D), “above-normal” (AN), 
“below-normal” (BN), and “critical” (C), as defined by the California Department of 
Water Resources.  The TMDL workgroup is considering the 2000 – 2004 water years 
in its TMDL development process, which included D, W, AN, and BN water years.  
Uncertainty in future water years could be included or ignored, depending on the 
perspective of the decision makers.  The legacy mine waste-related annual mercury 
loading aggregated over all mines in the watershed is represented by the “Annual 
Mine Total HgT Loading” node.  The associated random variable represents the 
uncertainty in this loading, given a particular set of water year characteristics and the 
uncertain effects of the TMDL strategy adopted.  In general, an arrow (arc) from the 
TMDL Strategy Decision to a variable represents the effect of the strategy on the 
decision-makers’ underlying uncertainty on the quantity in question.  The arcs from 
“Annual median [HgT]w” (total mercury concentration in the water column) and 
“Methylation Potential” (the sum total of environmental factors that promote or 
inhibit the formation of methylmercury) to “Annual Median [MeHgT]w (total 
methylmercury concentration in the water column) represent the uncertain causal 
relationship between the potentially manageable environmental factors (e.g., sulfate 
loadings from geothermal sources, the existence of water impoundments, etc.), 
median total mercury concentrations over the reach, and the resulting median 
methylmercury concentrations over the reach.  While this causal relationship is “well 



Figure 1. Bayesian network (influence diagram) for the Sulphur Creek Mercury 
Total Maximum Daily Load Setting Decision Situation

understood”, the forecasted median methylmercury concentrations are highly 
uncertain.

The “Strategy Value” node represents the valuation that the decision-maker 
places on a particular outcome, where “outcome” refers to the costs associated with 
the strategy chosen and the resulting environmental consequences.  Decision-maker 
preferences could be modeled in a number of ways, but this example uses an explicit 
multi-attribute utility model over strategy cost, annual total mercury loading at the 
compliance point, and annual methylmercury loading at the compliance point.  

The variables are related in Figure 1 by cause-and-effect and they are included 
only if they fit one or more of several criteria.  They are either:  1) potentially 
manageable (e.g., methylmercury potential in impounded water and total mercury 
loading from mines and geothermal sources); 2) predictable from available data or 
expert knowledge; or 3) observable at the scale of interest from the perspective of the 
water quality management problem.  In addition to these criteria, chance variables are 
only included if they are:  1) of interest to the decision makers and/or stakeholders or; 
2) helpful for assessing probability distributions for other variables that are of 
interest. 

Figure 2 graphically illustrates the probability data associated with the 
“Annual Mine Total HgT Loading” node, assuming a three-level discrete distribution.  

Key



Any number of levels could be used, but a large number of levels has several 
disadvantages, including computational burden.  The size of a variable’s probability 
table grows exponentially with the number of levels per parent.  If a human expert is 
involved in evaluating the uncertainty for each possible combination of levels for the 
parent variables, the number of allowable parents and levels is significantly 
constrained.  As shown, each strategy has a different uncertain effect on the predicted 
annual mine HgT loading.  “Mine Mitigation” refers to a strategy of requiring 
aggressive reductions in loadings associated with run-off from various mine wastes 
located throughout the watershed, while ignoring geothermal sources and methylation 
potential.  One perceived advantage to this strategy, from the RWQCB’s perspective,  
is that the responsibility for paying for remediation would unambiguously fall on 
current landowners (whether public or private).  “Geothermal & Mine Mitigation” 
refers to a strategy in which some geothermal sources are mitigated for total mercury 
and a less aggressive (and less expensive) set of load reductions are assigned to the 
various mine wastes.  Two advantages to this strategy are that the total costs are 
lower and more mercury is removed from the watershed.  A disadvantage is that 
geothermal sources are perceived as “background sources” and payment for 
mitigation is more ambiguous.  The final strategy, “Sediment trapping and 
methylation potential mitigation” refers to a mixed strategy of reducing the loading of 
mercury exported from the watershed with constructed traps, while taking care to 
mitigate the conditions associated with mercury methylation in the traps and 
elsewhere in the watershed.  Since there are very few fish in Sulphur Creek, this may 
be an acceptable alternative that may result in lower HgT and MeHgT loads exported 
from the watershed than the first two.  Concerns about liability for missed reduction 
targets, ambiguity about “who pays”, etc. can be explicitly reflected in the value 
model.

Figure 2. Uncertainty over Annual Mine HgT Loadings (kg/yr) By Strategy.
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Uncertainty in Mitigation Costs and Decision-Maker Preferences

Best predictions and uncertainties in mitigation costs were estimated from an 
engineering evaluation and cost analysis performed by Tetra Tech, Inc. under contract 
with CALFED (Tetra Tech, 2003).  In the value model, since strategy cost is modeled 
using four discrete cost levels and three discrete loading levels were modeled for each 
loading, there are 36 (4x3x3) combinations of mitigation cost, HgT loading, and 
MeHgT loading to be valued by the decision maker.  For consensus-based decision-
making, these values would be developed by negotiation.  For a group decision-
making situation without consensus, the value of loading reductions could be 
modeled parametrically and the decision “switch points” mapped (Labiosa, 2005).

Putting It All Together:  TMDL Decision Analysis

Figure 3 shows the predicted discrete probability distribution of the typical 
annual methylmercury loading at the point of compliance for each mitigation 
strategy, given the flow conditions for the water years 2000 – 2004.  Uncertainty in 
future flow conditions could be included to forecast future loadings, but decision 
makers have chosen to think in terms of predicting “what would have happened if we 
mitigated before 2000”.  The probability distributions in Figure 3 represent the 
uncertainty in the effects of mitigation on total mercury (HgT) loading, median 
[HgT]w, the effects of mitigation on methylation potential, and the formation of 
methylmercury.  Given the estimated probability distribution over mitigation costs 
and an elicited value model over possible environmental outcomes, a best strategy 
can be determined.  In this example (abstracted from a real situation), the best 
strategy was determined to be “Sediment trapping and methylation potential 
mitigation”.  Figure 4 shows the expected strategy values (in $) for each strategy 
based on the current state of information.  While this example is monetized, this is not 
necessary to fully apply decision analysis.  For examples of using a decision 
analytical approach with an incomplete or missing value model (i.e., no consensus on 
values), see Labiosa et al. (2003).  As can be seen from the figure, the “Mine 
Mitigation” strategy has lower value than “Status Quo”, which means that doing 
nothing would be better than implementing the “Mine Mitigation” strategy, given 
current information and understanding.  As an example of the value of collecting new 
information, it should be noted that collecting more information and reducing 
material uncertainties may result in the “Mine Mitigation” be more valuable than 
“Status Quo”.  Formal value of information analyses based on sensitivity analysis can 
also be performed in a decision analytical framework to prioritize information 
collection activities (see, e.g., (Howard et al., 1972); Labiosa et al., 2003).

While decision analysis does require active involvement of decision makers relative 
to many other decision making approaches, one could argue that this fact is 
responsible for much of the power of the decision analysis process.  When decision 
analysis is properly performed, decision makers (or sub-groups) should believe the 
insights, given that the expertise and knowledge represented in the model should 



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Status Quo Mine Mitigation Geothermal & Mine
Mitigation

Sed Trap/Methyl'n
Potential Mitigation

F
re

q
u

en
cy

Loading <= 3
3 < Loading < 7
Loading >= 7

Figure 3.  Discrete probability distribution over “Annual MeHgT Loadings at 
Compliance Point” By Strategy

Figure 4. Strategy Values for the Example Mercury Total Maximum Daily Load 
Setting Decision Situation Calculated Using a Bayesian Network



reflect trusted information and that the preferences expressed should be their own.  
While the application of decision analysis in group decision making situations can be 
problematic, since individual group members may have significantly different beliefs 
and preferences that cannot be simultaneously modeled, decision analysis can be used 
to generate sub-group negotiating positions and can shed light on the sources of 
disagreement (Merkhofer, 1999).

The various decision analysis tools, including objectives hierarchies, strategy 
tables, influence diagrams, and decision trees, can be very useful aids for 
communicating, eliciting knowledge and preferences, organizing a complex decision 
situation, and generating insights that can highlight sources of disagreement and areas 
of agreement.  When properly applied, decision analysis can help decision makers 
make better decisions in terms of the consideration of uncertainty and value.
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