
 Page 1 of 12

Reference NEESgrid Data Model for Shake Table Experiment

Jun Peng 1, Kincho H. Law 1, and Gokhan Pekcan 2
1 Stanford University, Stanford, CA 94305
2 University of Nevada, Reno, NV 89557

1 Introduction
The primary goal of NEESgrid data/metadata effort is to work collaboratively with
NEESgrid team and the NEES community and to help define data requirements and needs
for the George Brown Jr. Network for Earthquake Engineering Simulation instigated by the
National Science Foundation. The NEESgrid promotes NEES as a distributed virtual
laboratory for earthquake engineering research and simulation. The “collaboratory” will
allow researchers gain remote, shared access to experimental equipment and data. This
report serves to outline current tasks and approaches to define data models for supporting
the activities involved in earthquake engineering simulations.

In order to facilitate collaboration within the NEES framework, one of the key services that
NEESgrid needs to support is with respect to the data and metadata, for earthquake
engineering simulations. Following the NEESgrid Data and Metadata Advisory Group
meeting that was held at the Argonne National Laboratory on November 5, 2003, a NEES
Data/MetaData Task Group (DMD-TG) was formed to actively define and coordinate the
data/metadata development tasks. Complete list of contributing members involved in this
development is given in the Acknowledgements section of this report. The goal of DMD-TG
is to develop and deploy end-to-end solutions that put tools and capabilities into the hands of
the NEES community. The high level outline of this effort is to develop models for data
representation based on existing data efforts combined with new information. For this
purpose sample data sets are being developed that demonstrate the features of the data
models along with scenarios for the use of the data and models. Ultimately, associated
specifications for the tools necessary to support entering, importing, storing, searching, and
extracting data from the repository are being established.

One major task of data/metadata effort is to develop a reference data model for supporting
the major activities involved in earthquake engineering simulations. There are many
existing data modeling techniques and tools that are available to help design and structure
the data. A brief review of these relevant techniques and approaches has been reported
earlier [1]. A data model is defined as the grammar, vocabulary and content that represent
all types of “information” stored in one format or another in a “system”. The grammar
defines the relationships among elements in the system; the vocabulary defines the
terminology used to describe these element; content defines what is to be included in the
system. A data model is in essence a representation of the data and their relationship and
provides a conceptual or implementation view of the data. Ideally, the data model should be
independent of hardware/software platforms so that its implementation can be universal.

Within the scope of the NEESgrid data/metadata effort, data is defined as all of the project
related information and encompasses observational (or acquired) data recorded during
experiments by means of sensors, cameras and the like; computational (or generated) data

 Page 2 of 12

for and as a result of simulations, post-processing, etc.; literature in the form of reports,
journal papers, drawings, etc. It is noted that the utilities and tools to facilitate the
processing, visualization, interpretation and dissemination of data are also included within
the scope. Associated descriptive and related data, i.e. metadata, are expected to be
generated and published in the prescribed (by NEESgrid) formats and language (e.g. XML,
RDF, NEESML, etc.). It is expected that a set of functional system-wide services for
storage, retrieval, and management of data and metadata associated with a project will be
available as part of the NEESgrid infrastructure. These services will be based on specialized
data models with only limited content populated by elements that are most critical to (1) the
execution of a project, i.e. conduct and control of experiments and simulations; (2) the
equipment, collection of sensor and video/image data, visualization; (3) the storage, retrieval
and management functions. However, it must be noted that the so-called limitations on the
content and elements will not prevent future extensions of the data models and the
integration of new project related elements in the NEESgrid infrastructure.

Based on the experience gained from the review and the suggestions/feedback from
NEESgrid team and the NEES community, a reference data model has been developed. The
preliminary design of the reference data model is presented in the following sections. A
brief summary is also presented that discusses the approach currently undertaken to develop
a project data model for NEES experimentations. Although the reference data model is
intended to focus on the data requirements for shake table experiments, large portion of the
model should be of sufficient generality to be useful for other types of experiments, such as
centrifuge, Tsunami, or even field tests. In fact, the upcoming version of the data model will
include details for the applications in centrifuge and geotechnical areas, currently being
developed by the University of Southern California team.

2 Data Modeling Tool and Approach

2.1 Protégé-2000 – Data Modeling Tool
There are many data modeling or software design tools that can be used to facilitate the
design of a data model for specific application. In our work, we select Protégé-2000, which
is an open-source software package designed to help developing knowledge-based systems
[2]. Protégé-2000 (http://protege.stanford.edu) is a useful tool to build ontology for
knowledge-based systems. Ontology represents explicit formal specifications of the terms
in the domain and relations among them [3].

As an open source software, Protégé-2000 has attracted a wide variety of plug-ins from
around the world to enhance its capabilities. Some of these software plug-ins allow a model
developed in Protégé-2000 to be exported in many standard formats, including UML
(Unified Modeling Language [4]), OWL (Web Ontology Language,
http://www.w3.org/2001/sw/WebOnt/), XML Schema (http://www.w3.org/XML/Schema),
and RDF (Resource Description Framework, http://www.w3.org/RDF/).

In Protégé-2000, a graphical user interface (GUI) is provided to facilitate ontology
development. The interface enables the modeling of an ontology of classes to describe a
particular subject with a set of concepts and their relationships. The interface also allows
direct entering of specific instances of data and the creation of a knowledge base. Figure 1

 Page 3 of 12

shows an example of the GUI, with classes view shown in the left window, and detailed
attributes view of a class (Project) shown in the lower right window.

 Figure 1 – Protégé-2000 Interface

2.2 Object-Oriented Data Modeling
Object-oriented data modeling approach is employed in the development of NEESgrid data
model. In an object-oriented data model, information is modeled as objects, which can be
any sorts of (real or abstract) entities [5]. The general representation of certain type of
objects is called a class, which represents explicit description of concepts in a domain. The
creation of an object of a certain class is called instantiation. The relationship between an
object and a class can be viewed analogically in a procedural language in that a variable
being a particular instance of a pre-defined type such as an integer. For example, Project is
modeled as a class, and a MOST experiment [6] is an object instance of the Project class.

An object encapsulates certain related data as slots, which are also called attributes or
properties. Slots can have different facets describing the value type, allowed values, the
number of the values (cardinality), and other features of the values the slot can take. A
value-type facet describes what types of values can fill in the slot. Some common value
types are string, number, Boolean, enumerator, and object instance. Allowed objects and the
variety of values (e.g. minimum number, maximum number) of a slot are often referred to as
a range of a slot. Slot cardinality defines how many values a slot can have, such as single
(at most one value) or multiple (more than one value). For example, “minute” is a slot of
class Time. The cardinality of minute is single, the data type of minute is integer, and the
range is from 0 to 59.

An object connects with other related objects via some relationships. The relationship types
commonly used include classification, association, aggregation and generalization. These
relationships types may in turn impose certain “object-oriented” features and integrity
constraints to help maintain consistency and correctness of the data in the model. One

 Page 4 of 12

important feature of object-oriented modeling is the concept of class hierarchies, with slots
of a superclass being inherited by its subclasses. This inheritance feature allows us to
define the common slots used by several classes at the highest possible level in the
hierarchy, which avoids the duplication of slots at the lower levels. A class can have
subclasses that represent concepts that are more specific than the superclass. For example,
we can divide the class Activity into Project, SingleSiteActivity, and MultiSiteActivity. The
class SingleSiteActivity in turn can be divided into Task, EventGroup, and Event. The
common slots for all these Activity classes are name, description, start Time and end Time.

In object-oriented data models, class can be abstract or concrete [3]. A concrete (or
physical) class can have direct instances, as in the case that a MOST experiment is an
instance of the class Project. On the other hand, abstract class cannot have any direct
instances. For example, the Activity class is defined as the general abstraction of action or
process, and thus a direct instance cannot be created. In Protégé-2000, an “A” icon next to
the class name indicates that the class is abstract, as shown in the left window of Figure 1.

3 Description of the Reference Data Model
As depicted in Figure 2, the NEESgrid data/metadata task group is working towards
producing end-to-end solutions that integrate site specifications database, project level
model, domain specific data models, and common elements. To capture all these data, the
reference data model is designed to include six base classes, namely SiteInformation,
Activity, Apparatus, ApparatusSetup, DataElement, and ComplexDataType. The high-level
class diagram of the reference data model is presented in Figure 3, which shows the
association relationship among classes. (The ComplexDataType class, which is employed to
support other base classes, is not shown in the figure.) The association relationship exists
between classes when an object of one class knows/contains an object of another class. For
example, a Project object knows about its Tasks objects, a Project also contains
Organizations, Sites, and RolePersons. RolePerson is in turn defined as the combination of
a Person and his/her role in a Project. The arrow in Figure 3 denotes the direction of the
relationship contains; i.e., A Æ B indicates that class A contains class B. In the following,
the six base classes are briefly described.

 Page 5 of 12

NEES

Site A Site CSite B

Equipment People

Experiments Trials

Equipment People

Experiments Trials

Data Data Data

Tsnumai
Specimen

Shake Table
Specimen

Geotech
Specimen

Centrifuge
Specimen

Units Sensors Descriptions

Site
Specifications
Database

Project
Description

Domain
Specific
models

Common
Elements

Data /
Observations

Figure 2 – Overall Data Model for NEESgrid (Courtesy of Chuck Severance)

Project

Task

EventGroup

Event

1 SensorSetup

DAQCableWaveFormSetup

OutputData

Sensor

Publication

Person

Organization

InfrastructureSetup

SepcimenSetup

PrimaryEquipment

Site

File

SoftwareSetup

DAQSystem

SetupFile

DAQSetup

Specimen

DAQChannel

RolePerson

WaveForm Software

Activity

ApparatusSetup Apparatus

DataElement

SiteInformation

Figure 3 – High-level Class Diagram of the Reference Data Model

 Page 6 of 12

3.1 SiteInformation
A typical experiment site is hosted by certain organizations, and the site has personnel
playing different roles, facilities, equipments and other information. In the reference data
model, Site is modeled as the aggregation of other component classes, such as RolePerson,
Organization, PrimaryEquipment, and SecondaryEquipment. The relationship of Site with
other related classes is shown in Figure 4. This group of classes is intended to be associated
with the site specifications database [7] that is currently under development by the NEES
community.

Figure 4 – Relationship of Site with Other Classes (generated by Protégé)

3.2 Activity
The Activity class is designed to support project level modeling. As shown in Figure 3, the
Activity class has four hierarchical layers.

� A Project is a collection (organized group) of tasks designed to achieve specific goals
and objectives of a project. A Project can be sponsored by one or more funding sources.
A Project includes one or more related Tasks. For example, the CUREE-Caltech
Woodframe project had many tasks/activities to study the performance of woodframe
structures, with the objective to reduce earthquake losses to woodframe construction
(http://www.curee.org/projects/woodframe/index.html).

� A Task belongs to a particular Project and contains one or more EventGroups. Each
Task typically serves a specific role in a Project. In case of an experiment, each Task
has a distinct InfrastructureSetup; any changes to the InfrastructureSetup would initiate a
new Task. For example, Task 1.1.1 of the CUREE-Caltech Woodframe project refers to
the shake table test of a simplified two-story single-family house [8].

� An EventGroup is defined as a collection of Events. Any change to the data acquisition
setup, sensor setup or the specimen setup would initiate a new EventGroup. The
sequence of EventGroups in a Task is determined by their startTime. For example, Test
Phase 6 of the Task 1.1.1 of the CUREE-Caltech Woodframe project is identified as an

 Page 7 of 12

EventGroup because the test structure (specimen) has been changed after Test Phase 5
[8].

� An Event, which is the atomic level of Activity, refers to each single run of an
experiment or a simulation. Events within an EventGroup may have different input
motions, loading protocols, etc. The sequence of Events in an EventGroup is determined
by their startTime. Two types of Event are defined in the model, namely
ExperimentEvent and SimulationEvent. An example Event is a particular test within
Test Phase 6 of Task 1.1.1 of the CUREE-Caltech Woodframe Project. For each event,
output, such as sensor readings or simulation results, are generated and recorded.

The reference data model explicitly models certain Activities that are carried out at multiple
Sites. The class hierarchy of Activity in the reference data model is shown in Figure 5. In
the reference data model, SingleSiteActivity is defined as Activity that is carried out only at
a single Site, whereas MultiSiteActivity is defined as a collection of SingleSiteActivities.
Figure 6 shows an example project that has a single site Task (Task1) and a MultiSiteTask
(M_Task1). The M_Task1 has Tasks that are undertaken at both Site1 and Site2. The
MultiSiteEvent M_E1 has an Event E2 at Site1 and an Event E4 at Site2, and the
MultiSiteEvent M_E2 has an Event E3 at Site1 and an Event E5 at Site2. As shown in
Figure 6, although Project does not directly contain Task2 that takes place at Site2, Task2
can still be accessed from the Project since M_Task1 contains Task2. This design enables
the support of the types of experiments (such as the MOST experiment) that are carried out
either simultaneously or independently at several Sites.

Figure 5 – Class Hierarchy of Activity (generated by Protégé)

 Page 8 of 12

Project

EG1

Task2Task1 M_Task1

EG2 EG4

E1 E4E3E2

M_EG1

M_E1 M_E2E5

EG:
EventGroup

M_EG:
MultiSiteEventGroup

E:
Event

M_E:
MultiSiteEvent

M_Task:
MultiSiteTask

Site 1 Site 2

Figure 6 – Layout of an Example Project

3.3 Apparatus
Apparatus is defined as any equipment, specimen, or software that may be used in an
Activity. In the current version of the reference data model, the direct subclasses of
Apparatus include Specimen, SoftwareProgram, PrimaryEquipment, and
SecondaryEquipment. Explicit modeling of Specimen or SoftwareProgram is not
considered in the reference model. Only the most basic modeling is provided (as a
collection of descriptive files, drawings, and/or photos). This design reflects current
approach used to describe specimen in earthquake engineering experiments. However, if so
desired, the Specimen class can be extended to support other, more detailed, models.

PrimaryEquipment is the major equipment that is used for the execution of an experiment
with respect to a specific research area. Direct subclasses of PrimaryEquipment are
ShakeTableEquipment, CentrifugeEquipment, WaveBasinEquipment, FieldTestEquipment,
and LargeScaleTestEquipment. Further description of individual PrimaryEquipment is
assumed to be contained in the site specifications database [7]. New types of primary
equipment can be added to the model as needed.

SecondaryEquipment may be a component of the PrimaryEquipment or may be a piece of
equipment that facilitates the execution of an Event, data collection, and/or observation.
One important type of SecondaryEquipment are the equipment and sensors used for data
acquisition. Data schemas for describing sensors are available; one example is the
SensorML [9] developed by OpenGIS Consortium. The reference data model includes a
sensor model that is designed specifically to support earthquake engineering experiments.
The data acquisition equipment is modeled as a collection of classes, including Sensor,
DAQCable, DAQChannel, and DAQSystem. Figure 7 shows the relationships and the slots
of these classes. Typically a data acquisition system involves at least three main
components: (1) the sensors which respond to a physical stimulus and generate analog
voltage signals; (2) a DAQchannel (a.k.a. signal conditioner as part of a DAQSystem) which
receives the signal and uses predefined filter, gain, offset, excitation, sensitivity (calibration)

 Page 9 of 12

information for Analog-to-Digital (A/D) and Engineering Unit (EU) conversions; and (3) a
PC unit which uses some communications link (serial port, phone modem, radio modem,
etc.) to retrieve the data. It is noted that A/D hardware can be either external to or as part of
the signal conditioner. DAQDevice model will be further detailed in future versions of the
data model.

DAQChannel

DAQSystemSensor

DAQCable PC and/or
External A/D

Sampling

� owner
� manufacturer
� serialNumber
� otherInfo

� owner
� manufacturer
� serialNumber
� otherInfo
� channelid
� filter
� samplingRate
� gain
� offset
� excitationVoltage
� unit

� owner
� manufacturer
� serialNumber
� otherInfo
� cableid
� length
� connectorType

� owner
� manufacturer
� serialNumber
� otherInfo
� sensorid
� type
� calibrationInfo
� lastCalibrationDate
� outputQuantity
� minRange
� maxRange

Figure 7 – Setup and Modeling of DAQ Devices

3.4 ApparatusSetup
Universal modeling of the arrangement and setup of apparatus for all experiments is very
difficult if not impossible. Not only are there different types of experiments (such as shake
table, pseudo-dynamic tests, centrifuge, and tsunami) and different materials (such as
concrete, steel, wood, etc.), but also the geometry of specimen, the arrangement of sensors,
and the configuration of PrimaryEquipment may be too complicated and cumbersome to
model. For example, the “as-built” locations of sensors may be different from the “design”
locations, and the exact physical locations (i.e., the coordinates x, y, z values) of sensors are
very hard to be recorded. Therefore, it is recommended that the development of
ApparatusSetup model be focused on tools and methodologies that can capture and organize
CAD drawings, sketched drawings and notes, photos, narrative descriptions, electronic
notes, and etc.

The class hierarchy of AppartusSetup in the current reference data model is shown in Figure
8. The InfrastructureSetup models the assembly and arrangement of the PrimaryEquipment
used for a specific Task; any changes in InfrastructureSetup would trigger the launch of a
new Task. The SpecimenSetup deals with the information on how the specimen is set up
with respect to PrimaryEquipment. The SensorSetup includes the arrangement (location,
orientation, etc.) of Sensors used in an experiment. The DAQSetup models the physical and
electrical setup of one or more devices whose primary purpose is to acquire data. Any major
change to SpecimenSetup, SensorSetup, or DAQSetup initiates a new EventGroup. The
InputDataSetup deals with the choice and organization of input data to an Event. Any
change to a new InputDataSetup indicates the beginning of a new Event.

 Page 10 of 12

Figure 8 – Class Hierarchy of ApparatusSetup (generated by Protégé)

3.5 DataElement
DataElement represents all types of data that may be generated or processed during an
Activity. The DataElement normally serves as Input/Output to an Activity. Types of
DataElement include text document, publication, earthquake record, photo, CAD drawing,
movie, etc. In NEESgrid data/metadata effort, it is assumed that the data is saved in or
translated into computer-readable format. Therefore, a DataElement object is represented in
the format (such as a file) that can be saved in computer memory, on disks, or in some kind
of data storage repository.

3.6 ComplexDataType
ComplexDataType is defined in the reference data model to represent any data type that is
not a simple data type such as integer, Boolean, or character string. In the current version of
the reference data model, the following ComplexDataType are provided:

� Folder, which is a collection of DataElements as files.

� RolePerson, which is defined as the combination of a Person and his/her role in an
Activity or in an Organization.

� Unit, which is modeled as a name and its description. Currently there is a prototype unit
library included in the reference data model. The unit library supports certain basic unit
conversion. Other types of unit representation, such as the compact representation [10],
can also be incorporated, if needed.

� Measurement, which is defined as a value with associated unit.

� Date/Time, which is externally represented as year, month, day, hour, minute, second,
millisecond, etc., and internally saved as a long integer.

� Geometry/Location, the geometry/location is needed for finding sensor location,
representing specimen model, and etc. The spatial location is currently modeled as the
values in a coordinate system (i.e. x, y, z values). It should be noted that, very often,
geometry/location information are specified within CAD drawings or text documents,

 Page 11 of 12

etc. Referencing scheme may be added to relate an entity to the source that defines the
location.

4 Summary and Discussions
In this report, a reference NEESgrid data model currently under development has been
presented. The intention of this document is not to give a detailed description of the data
model, but rather to present the preliminary design and to solicit feedbacks and comments
from the NEES community. Although the reference data model is focused on shake table
experiments, many of the features can be applied or extended to centrifuge, tsunami,
pseudo-dynamic and other types of experiments. Six base classes and the relationships
among these classes are defined and they represent the essential elements to support the end-
to-end solution of NEESgrid data efforts. We believe the proposed reference data model is
sufficiently flexible that new classes can easily be introduced; the slots of a particular class
can be added, deleted, or modified; and the relationships among the classes can be altered.
Other models, such as specimen model, unit model, geometry/location model, and Site
model, can be appended to (or even replace certain parts of) the reference model. Data
model development is an iterative and evolving process, and the reference data model will
continue to be tested, validated, modified and revised, even beyond the current development
effort.

We would like to emphasize that the data model development is a community effort.
Suggestions and feedback from the NEES community and stakeholders are in the
development process. The reference data model described in this document is based on
version 0.4, which will be released for the review of NEES community during the second
half of April 2004. We look forward to receiving and to incorporating any valuable
suggestions from the NEES community.

Acknowledgements
This report is drafted as an interim report by the authors as part of the NEES’s System
Integration effort, WBS No. 2.4 Data and Metadata Management. The authors would like to
acknowledge the active collaboration and contributions of the NEESgrid’s Data/Metadata
task committee members (sorted alphabetically by their first name):

Andrei Reinhorn State University of New York, Buffalo
Bill Spencer University of Urbana-Champaign
Chuck Severance University of Michigan
Gokhan Pekcan University of Nevada, Reno
Hank Ratzesberger University of California, Santa Barbara
Jean-Pierre Bardet University of Southern California
Jennifer Swift University of Southern California
Jim Eng University of Michigan
Jun Peng Stanford University
Ken Ferschweiler Northwest Alliance for Computational Science and Engineering
Kincho Law Stanford University
Lelli Van Den Einde University of California, San Diego

 Page 12 of 12

The authors would like to thank Joe Futrelle of UIUC, Chuck Severance and Jim Eng of U.
Michigan for their time and discussions related to NEESgrid developments. The authors
would also like to thank Dr. Patrick Laplace of University of Nevada, Reno and Professors
Steve Mahin, Bozidar Stojadinovic and Greg Fenves of University of California, Berkeley
for their time to discuss the data and metadata issues related to earthquake engineering
experiments and simulations. Any opinions, findings, and conclusions or recommendations
expressed in this material are, however, those of the authors and do not necessarily reflect
the views of others and the National Science Foundation.

References
[1] Jun Peng and Kincho H. Law. A Brief Review of Data Models for NEESgrid, Technical

Report NEESgrid-2004-01, 2004. (http://www.neesgrid.org/documents/TR_2004_01.pdf)

[2] J. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso, M. Crubézy, H. Eriksson, N. F.
Noy, and S. W. Tu. The Evolution of Protégé: An Environment for Knowledge-Based
Systems Development, Stanford Medical Informatics, Stanford University, 2002.
(http://smi.stanford.edu/pubs/SMI_Abstracts/SMI-2002-0943.html)

[3] Natalya F. Noy and Deborah L. McGuinness. Ontology Development 101: A Guide to
Creating Your First Ontology, Stanford University, Stanford, CA, 2002.
(http://protege.stanford.edu/publications/ontology_development/ontology101.html)

[4] J. Arlow and I. Neustadt. UML and the Unified Process: Practical Object-Oriented Analysis
and Design, Addison-Wesley Pub Co., Boston, MA, 2001.

[5] J. R. Rumbaugh, M. R. Blaha, W. Lorensen, F. Eddy, and W. Premerlani. Object-Oriented
Modeling and Design, Prentice Hall, 1990.

[6] NEESgrid Team. Multi-site Online Simulation Test (MOST), 2003.
(http://www.neesgrid.org/most/index.html)

[7] Bruce L. Kutter, Daniel W. Wilson, Cherri Pancake, and Sally Haerer. Introduction to the
Site Specifications Database (SSDB), Network for Earthquake Engineering Simulation,
2004. (http://nees.orst.edu/IT/site.specs.db/cohorts/Introduction.pdf)

[8] D. Fischer, A. Filiatrault, B. Folz, C.-M. Uang, and F. Seible. CUREE-Caltech Woodframe
Project: Shake Table Tests of a Two-Story Woodframe House, Consortium of Universities
for Research in Earthquake Engineering, 2001.

[9] M. Botts (ed.). Sensor Model Language (SensorML) for In-situ and Remote Sensors,
OpenGIS Interoperability Program Report, OGC 02-026, Open GIS Consortium Inc, 2002.
(http://vast.uah.edu/SensorML/OGC-02-026_SensorML_0.07.doc)

[10] B. Hamilton. A Compact Representation of Units, Hewlett-Packard Laboratories, 1996.
(http://www.hpl.hp.com/techreports/96/HPL-96-61.pdf)

