

Technical Report NEESgrid-2004-40

www.neesgrid.org
(Whitepaper Version: 1.0)

Last modified: 9/16/2004

Reference NEESgrid Data Model

Jun Peng and Kincho H. Law

Department of Civil and Environmental Engineering1

1 Stanford University, Stanford, CA 94305

Feedback on this document should be directed to junpeng@stanford.edu

Acknowledgment: This work was supported primarily by the George E. Brown, Jr. Network for
Earthquake Engineering Simulation (NEES) Program of the National Science Foundation under Award
Number CMS-0117853.

mailto:junpeng@stanford.edu

NEESgrid TR-2004-40 Page 2

1 Introduction .. 4
1.1 Purpose.. 4
1.2 Definition .. 5
1.3 Scope... 5

2 Data Modeling Tool and Approach.. 5
2.1 Protégé – Data Modeling Tool.. 5
2.2 Object-Oriented Data Modeling.. 6

3 Relevant Data Models .. 7
3.1 Oregon State Model .. 7
3.2 Ontology of Science.. 8
3.3 Berkeley CUREE/ Kajima .. 9
3.4 SensorML.. 10
3.5 Specimen Models.. 10

4 Overview of the Reference Data Model... 11
4.1 SiteInformation ... 13

4.1.1 Organization ... 13
4.1.2 Person ... 13
4.1.3 Site.. 14

4.2 Activity ... 15
4.2.1 Project... 15
4.2.2 Task .. 16
4.2.3 EventGroup... 17
4.2.4 Event... 17
4.2.5 MultiSiteActivity .. 17
4.2.6 Layout of Activity Classes ... 18

4.3 Apparatus .. 19
4.3.1 PrimaryEquipment.. 19
4.3.2 SecondaryEquipment.. 20
4.3.3 TertiaryEquipment.. 22
4.3.4 Specimen .. 23

4.4 ApparatusSetup ... 23
4.4.1 PhysicalSetup ... 24
4.4.2 DAQSetup .. 24
4.4.3 InputDataSetup ... 25

4.5 DataElement.. 25

Peng and Law www.neesgrid.org 9/16/2004

NEESgrid TR-2004-40 Page 3

4.5.1 Publication.. 26
4.5.2 File.. 26
4.5.3 InputData .. 27

4.6 ComplexDataType .. 27
4.6.1 Folder.. 27
4.6.2 RolePerson.. 28
4.6.3 Unit ... 28
4.6.4 Measurement .. 28
4.6.5 DateTime .. 28
4.6.6 Angle .. 29
4.6.7 Location.. 29
4.6.8 ApparatusLocation.. 30

5 Validation and Usability Test... 30
5.1 Mini-MOST Experiment... 30
5.2 Inputting Experimental Data... 30
5.3 Browsing Experimental Data .. 31

6 Summary and Discussions.. 38
Acknowledgements .. 38
References .. 39

Peng and Law www.neesgrid.org 9/16/2004

NEESgrid TR-2004-40 Page 4

1 Introduction
The primary goal of the NEESgrid data/metadata effort is to work collaboratively with the NEESgrid
System Integrator team and the NEES community to help define data requirements and needs for the
George Brown Jr. Network for Earthquake Engineering Simulation, instigated by the National Science
Foundation. The NEESgrid promotes NEES as a distributed collaborative laboratory for earthquake
engineering research and simulation. The “collaboratory” will allow researchers gain remote, shared
access to experimental equipment and data.

Reference data models have been developed for supporting the major activities involved in earthquake
engineering experiments and simulations. The current data modeling efforts include the development of
reference data models for shake table experiments [26], centrifuge experiments [30], and computer
simulations [8]. The development of NEESgrid data models is based on the experience gained from the
review of the state of practice in data representations, data modeling tools, relevant data models, and the
suggestions/feedback from the NEESgrid team and the NEES community [23]. Sample data sets have
been utilized to demonstrate the features of the data models, along with scenarios for their use.
Preliminary validation and usability tests have been performed on the developed reference data model
[24]. The usability test has demonstrated that the data model is sufficiently comprehensive to save and
organize experimental data, such as data from Mini-MOST [21] experiments.

1.1 Purpose
In order to facilitate collaboration within the NEES framework, one of the key services that NEESgrid
needs to support is with respect to the data and metadata for earthquake engineering simulations. It is
well known that engineering design and manufacturing activities generally involve a large set of
independent but interrelated data items [14, 15]. Traditional hierarchical, network, and relational
database models, which are designed for highly structured commercial applications, do not adequately
support technical engineering problem domains. To support the expressive concepts and the semantic
content of engineering data, object oriented data models are often employed. Influenced by the field of
artificial intelligence, semantic relationships such as classification, association, aggregation and
generalization can be used for organizing and structuring engineering data [16]. Besides the mechanism
needed to represent and manipulate data, data model development requires some knowledge on the
intended use of the data [17]. Earthquake engineering experiments also require semantically rich data
models to facilitate storage and retrieval of experimental data.

Following the NEESgrid Data and Metadata Advisory Group meeting that was held at the Argonne
National Laboratory on November 5, 2003, a NEES Data/MetaData Task Group (DMD-TG) was
formed to actively define and coordinate the data/metadata development tasks. A complete list of
contributing members involved in this development is given in the Acknowledgements section of this
report. The high level objective of this effort is to develop data models for earthquake engineering
experiments and simulations. For this purpose sample data sets are being developed that demonstrate
the features of the data models along with scenarios for the use of the data and models. Specifications
for the tools necessary to support entering, importing, storing, searching, and extracting data from the
repository are being proposed and developed.

Peng and Law www.neesgrid.org 9/16/2004

NEESgrid TR-2004-40 Page 5

1.2 Definition
One major task of the data/metadata effort is to develop a reference data model for supporting the major
activities involved in earthquake engineering simulations. There are many existing data modeling
techniques and tools that are available to help design and structure the data. A brief review of these
relevant techniques and approaches has been reported earlier [23]. A data model is in essence a
representation of the data and their interrelationship and provides a conceptual or implementation view
of the data. A data model can be viewed as the “grammar”, “vocabulary” and “content” that represent
the types of “information” stored in a “system”. The grammar defines the relationships among the data
elements in the system; the vocabulary defines the terminology used to describe these elements; the
content defines what is to be included in the system. The data model should be independent of
hardware/software platforms so that its implementation can be universal.

Within the scope of the NEESgrid data/metadata effort, data is defined as all of the project related
information and encompasses observational (or acquired) data recorded prior to the experiments and
during the experiments by means of sensors, cameras and the like; computational (or generated) data
generated as a result of modeling, simulations, post-processing; and literature in the form of reports,
journal papers, drawings, etc. Associated descriptive and related data, i.e. metadata (or data about the
data), are defined and published in a prescribed (by NEESgrid) format and language (as of this writing,
the metadata is represented in OWL (Web Ontology Language) [20] format). It is expected that a set of
functional system-wide services for storage, retrieval, and management of data and metadata associated
with a project will be available as part of the NEESgrid infrastructure. These services will be based on
specialized data models with only limited content populated by elements that are most critical to (1) the
execution of a project, i.e. conduct and control of experiments and simulations; (2) the equipment,
collection of sensor and video/image data, visualization; and (3) the storage, retrieval and management
functions. However, it should be noted that the so-called limitations on the content and elements will
not prevent future extensions of the data models and the integration of new project related elements in
the NEESgrid infrastructure.

1.3 Scope
This document starts with a description of the NEESgrid data modeling approach and a brief review of
several related data models. The overview and details of the developed reference NEESgrid data model
are then presented. A brief summary is also provided to discuss the approach and findings in
developing the reference data model for NEES experiments. This report serves to outline current tasks
and approaches to define data models for supporting the activities involved in earthquake engineering
experiments. The data model for supporting computer simulations has been described elsewhere in Ref
[8]. Although the NEESgrid reference data model is intended to focus on the data requirements for
shake table and centrifuge experiments, a large portion of the model should be of sufficient generality to
be used for other types of experiments, such as pseudo-dynamic, Tsunami, or field tests.

2 Data Modeling Tool and Approach
There are many existing data modeling techniques and tools that are available to help design and
structure the data. A review of data modeling formats, approaches, tools, and a few existing data
models has been presented in Ref [23]. This section briefly discusses the tool selected for developing
the NEESgrid data model and the basic concepts of object-oriented data modeling.

2.1 Protégé – Data Modeling Tool
There are many data modeling or software design tools that can be used to facilitate the design of a data
model for a specific application. To facilitate the development of the NEESgrid data model, we selected

Peng and Law www.neesgrid.org 9/16/2004

NEESgrid TR-2004-40 Page 6

Protégé (http://protege.stanford.edu), which is an open-source software package designed to help
develop ontology for knowledge-based systems [10]. Ontology represents explicit formal specifications
of the terms in the domain and the relations among them [22]. As open source software, Protégé has
attracted a wide variety of plug-ins from around the world to enhance its capabilities. Some of these
software plug-ins allow a model developed in Protégé to be exported in many standard formats,
including UML (Unified Modeling Language [3]), XML Schema (http://www.w3.org/XML/Schema),
RDF (Resource Description Framework, http://www.w3.org/RDF/), OWL (Web Ontology Language,
http://www.w3.org/2001/sw/WebOnt/), and others.

In Protégé, a graphical user interface (GUI) is provided to facilitate ontology development. The
interface enables the modeling of an ontology of classes to describe a particular subject with a set of
concepts and their relationships. The interface also allows direct entering of specific instances of data
and the creation of a knowledge base. shows an example of the GUI, with the view of classes
shown in the left window, and the view of detailed attributes of a class (e.g. Project class) shown in the
lower right window.

Figure 1

 Figure 1 – Protégé Interface with OWL Pulgin

2.2 Object-Oriented Data Modeling
Object-oriented data modeling approach is employed in the development of NEESgrid data model. In
an object-oriented data model, information is modeled as objects, which can be any sort of entities [27].
The general representation of a certain type of objects is called a class, which represents an explicit
description of concepts in a domain. The creation of an object of a certain class is called instantiation.
The relationship between an object and a class can be viewed analogically in a procedural language in
that a variable is a particular instance of a pre-defined type such as an integer. For example, a Project is
modeled as a class, and a MOST experiment [1] is an object instance of the Project class.

An object encapsulates certain related data as slots, which are also called attributes or properties.
Slots can have different facets describing the value type, allowed values, the number of values

Peng and Law www.neesgrid.org 9/16/2004

http://protege.stanford.edu/
http://www.w3.org/XML/Schema
http://www.w3.org/RDF/
http://www.w3.org/2001/sw/WebOnt/

NEESgrid TR-2004-40 Page 7

(cardinality), and other features of the values the slot can take. A value-type facet describes what types
of values can fill in the slot. Some common value types are string, number, Boolean, enumerator, and
object instance. Allowed objects and the variety of values (e.g. minimum number, maximum number)
of a slot are often referred to as the range of a slot. Slot cardinality defines how many values a slot can
have, such as single (at most one value) or multiple (more than one value). For example, “minute” is a
slot of class Time, with data type defined as integer, cardinality one and range from 0 to 59.

An object connects with other related objects via some relationships. The relationship types commonly
used include classification, association, aggregation and generalization [6, 28, 29]. These relationships
types may in turn impose certain “object-oriented” features and integrity constraints to help maintain
consistency and correctness of the data in the model. One important feature of object-oriented modeling
is the concept of class hierarchies, with slots of a superclass being inherited by its subclasses. This
inheritance feature allows us to define the common slots used by several classes at the highest possible
level in the hierarchy, which avoids the duplication of slots at the lower levels. A class can have
subclasses that represent concepts that are more specific than the superclass. For example, we can
divide the class Activity into Project, SingleSiteActivity, and MultiSiteActivity. The class
SingleSiteActivity in turn can be divided into Task, EventGroup, and Event. The common slots for all
these Activity classes are name, description, start Time and end Time.

In object-oriented data models, a class can be abstract or concrete [22]. A concrete (or physical) class
can have direct instances, as in the case that a MOST experiment is an instance of the class Project. On
the other hand, abstract class cannot have any direct instances. For example, the Activity class is
defined as the general abstraction of action or process, and thus a direct instance cannot be created.

3 Relevant Data Models
There have been several relevant developments that can potentially benefit the development of the data
model for NEES experiments. The following discussion focuses on reviewing some of these models
and their applicability for the NEESgrid data/metadata efforts.

3.1 Oregon State Model
Oregon State University and the Northwest Alliance for Computational Science and Engineering
(NACSE) have developed a data model for describing laboratory tsunami experiments
(http://nees.orst.edu/IT/data.model/) [2]. The model contains relationships among projects, experiments,
researchers, equipment, experimental results, etc. The model is designed for storing the experimental
data in a relational database. Figure 2 shows a high-level E-R diagram for the data model [2]. The
diagram shows that a project may have multiple experiments, an experiment may have multiple
configurations, a configuration may have multiple trials, etc. The model consists of a relatively small
number of entities to make the structure of the model simple and to keep the number of tables
manageable. A flexible scheme is used to assign attributes to entities. For instance, the Equipment
table may include entries for any number of pieces of physical equipment used in an experiment – from
strain gauges to wave basins – rather than requiring the assignment of each sensor or gauge to a
particular slot. Another feature of the model is its extendibility; for instance, the model has the ability to
incorporate new types of measurement instruments. Presently, the model is designed primarily for a
tsunami wave basin experiment. The current model lacks details on some common elements, such as
time, location, unit, and ground motion. However, the Oregon State model does provide many insights
that are valuable for the development of other NEESgrid data models.

Peng and Law www.neesgrid.org 9/16/2004

http://nees.orst.edu/IT/data.model/

NEESgrid TR-2004-40 Page 8

Figure 2 – E-R Diagram of the Oregon State Model [2]

3.2 Ontology of Science
There have been similar efforts in the Science community to develop standard models for science
projects. An Ontology of Science, which is modified from the KA² ontology developed earlier by
Knowledge Annotation Initiative of the Knowledge Acquisition Community [4], is available at
http://protege.stanford.edu/ontologies/ontologyOfScience/ontology_of_science.htm.

The Ontology of Science is designed for modeling scientific events and educational events, such as a
scientific conference, a research project, or a software development project. The ontology has a high-
level project entity. As shown in Figure 3, the project has relationship with other entities, including
people, organization, product and events. The project also has a start date and an end date, which can be
used to calculate the duration of the project. Besides the high-level modeling, the Ontology of Science

Peng and Law www.neesgrid.org 9/16/2004

http://protege.stanford.edu/ontologies/ontologyOfScience/ontology_of_science.htm

NEESgrid TR-2004-40 Page 9

also provides detailed modeling of several common elements, such as people, scientific documents,
location, and time. The ontology provides a good organizational view that could be used to organize a
collection of experimental projects.

Figure 3 – Project Model of the Science Ontology

3.3 Berkeley CUREE/ Kajima
In the structural engineering domain, Prof. Bozidar Stojadinovic of University of California, Berkeley
and his collaborators have created a framework for the integration and visualization of structural state
data (see http://www.ce.berkeley.edu/~boza/research/Curee-Kajima/). The goal of this project is to
conceptualize, develop and implement a framework for gathering, classifying and integrating structural
data collected in and around a structure, and to enable effective visualization and fusion of such data to
define the state of a structure.

Presently, the model focuses on the collection of observed data and comprehensive modeling of
collector and data type. An abstract class, Collector, is a general object that collects or generates data
about a structure. A Collector can be any type of sensor, a camera, numerical analysis, or even a person.
Each type of collector is capable of collecting different types of data and handling different types of
input and output data. The observed or generated data may include numerical data, descriptive textual
data, or visual and graphical data (such as visual imagery from a camera, hand sketch, drawings, etc.).

The sensor model of Berkeley CUREE/Kajima provides a good representative class of different types of
sensors commonly used for structural monitoring. Individual models of sensors are defined as separate
objects to allow special calibration information and permits creation of separate instances of each sensor
with individual serial numbers or characteristics. As shown in , different types of sensors, such
as accelerometers, strain gages, and thermocouples, are modeled as subclasses of Sensor. The model
has been developed using Protégé and can produce different representation formats.

Figure 4

Peng and Law www.neesgrid.org 9/16/2004

http://www.ce.berkeley.edu/~boza/research/Curee-Kajima/

NEESgrid TR-2004-40 Page 10

Figure 4 – Sensor Model of the Berkeley CUREE/Kajima

3.4 SensorML
Sponsored by the OpenGIS Consortium, SensorML (http://vast.uah.edu/SensorML/) is predisposed
toward preserving part of the vital sensor data required for both real-time and archival observations [5].
The purpose of SensorML is to provide general sensor information, to support the processing and
analysis of sensor measurements, to describe performance characteristics, and to archive properties and
assumptions regarding the sensors.

SensorML provides an XML schema for defining the geometric, dynamic, and observational
characteristics of a sensor. The root for all SensorML documents is Sensor, which represents a device
for the measurement of physical quantities. Key components of a sensor model includes sensor
identification, sensor location, constraints, platform attached by the sensor, coordinate reference system,
sensor description, and measurement characteristics.

An important concept of SensorML is SensorGroup. A SensorGroup can be of two types, sensor
package and sensor array. A sensor package is composed of multiple sensors that operate together to
provide a collective observation or related group of observations. For example, a collection of sensors
can be used in a combined fashion to create a sensor that measures, for example, temperature, strain,
wave velocity and direction. A sensor array is a set of sensors of the same type at different locations.
These locations may be within a single sensor frame, a different location on a single mount, or on
different platforms. A sensor array produces observations that are used to build a spatial coverage.

SensorML provides a good prototype and a rich model for describing sensor information. It is
particularly useful for in-situ experimental applications involving spatially distributed information.

3.5 Specimen Models
There have been many attempts to construct universal data (product) models to capture detailed
descriptive information about building structures. The purpose of most of the existing models is to
develop data exchange and sharing standards for CAD systems.

The CIMSteel Integration Standard (CIS/2) (http://cic.nist.gov/vrml/cis2.html) is the logical product
model and electronic data exchange format for structural steel project information [7]. The CIS/2
standard is based on STEP (STandard for the Exchange of Product Data [12]) and is proposed to
describe structures and engineering information, testing procedures and industry specific information.
CIS/2 has been implemented for describing steel framed structures, from nuts and bolts to materials,

Peng and Law www.neesgrid.org 9/16/2004

http://vast.uah.edu/SensorML/
http://cic.nist.gov/vrml/cis2.html

NEESgrid TR-2004-40 Page 11

loads to frames and assemblies. Adopted by the American Institute for Steel Construction, many steel
structure software packages now provide CIS/2 import and/or export capabilities.

Another industry standard related to building structure is the Industry Foundation Classes (IFC)
(http://www.eccnet.com/step/) developed by a consortium, the International Alliance for Interoperability
(IAI), to provide data exchange and sharing capabilities for the building and construction industry [11].
The IFC is a data representation standard and file format for defining architectural and constructional
CAD graphic data. The IFC uses text-based structures for storing the definitions of objects encountered
in the building industry.

While various domain models have been developed for the building industry, they are either too specific
(CIS/2 for steel, for example) or too general (IFC for all phases of a building project) to be useful for
describing a specimen or a test model typically used in earthquake engineering experiment and
simulation. Although these models could share many insights to describe a structural component, they
may not be useful for experimental test applications.

4 Overview of the Reference Data Model
As depicted in Figure 5, the NEESgrid data/metadata task group is working towards producing end-to-
end solutions that integrate the site specifications database, the project level model, domain specific data
models, and common elements. To capture all these data, the reference data model is designed to
include six base classes, namely SiteInformation, Activity, Apparatus, ApparatusSetup, DataElement,
and ComplexDataType [25]. The high-level class diagram of the reference data model is presented in

, which shows the association relationship among classes. (The ComplexDataType class, which
is employed to support other base classes, is not shown in the figure.) The association relationship
exists between classes when an object of one class knows/contains an object of another class. For
example, a Project object knows about its Tasks objects, a Project also contains Organizations, Sites,
and RolePersons. RolePerson is in turn defined as the combination of a Person and his/her role in a
Project. The arrow in denotes the direction of the relationship contains; i.e., A B indicates
that class A knows/contains class B.

Figure 6

Figure 6

This section presents details of the six defined groups of base classes and some of their subclasses. In
the discussions below, each class is described with a table that has the following four columns:

 Slot Name: which is the name associated with a slot of a class. Slot of a class is defined as the
property describing a feature and/or an attribute.

 Type: which defines what type of values can fill in the slot. Slot type can be primitive (such as
String, Integer, Float, and Boolean) or instance-type. The instance-type slots allow definition of
relationships between individuals. Slots of instance-type must also define a list of allowed classes
(started with a colon ‘:’ sign in the tables) from which the instances can come. For example, a slot
hasTasks for the class Project may have instances of the class ‘:Task’ as its values.

 Cardinality, which defines how many values a slot can have. There are three types of cardinality
used in the data model, including key value (must have one value, normally used to identify an
object, denoted as ‘1’), single cardinality (allowing at most one value, denoted as ‘0:1’), and
multiple cardinality (allowing any number of values, denoted as ‘0:*’).

 Description: which is documentation that describes the definition, meaning, and usage of a
particular slot.

Due to the object-oriented feature of inheritance, all the slots of a superclass are inherited by its
subclasses. For the sake of simplicity, the inherited slots are not listed for a subclass, but rather only the
slots specific to the subclasses are presented. In the following, we will use the convention that class
names are started with capital letters and the slots names are started with lower-case letters.

Peng and Law www.neesgrid.org 9/16/2004

http://www.eccnet.com/step/

NEESgrid TR-2004-40 Page 12

NEES

Site A Site CSite B

Equipment People

Experiments Trials

Equipment People

Experiments Trials

Data Data Data

Tsnumai
Specimen

Shake Table
Specimen

Geotech
Specimen

Centrifuge
Specimen

Units Sensors Descriptions

Site
Specifications
Database

Project
Description

Domain
Specific
models

Common
Elements

Data /
Observations

Figure 5 – Overall Data Model for NEESgrid (Courtesy of Chuck Severance)

Project

Task

EventGroup

Event

1 SensorSetup

DAQCableWaveFormSetup

OutputData

Sensor

Publication

Person

Organization

InfrastructureSetup

SepcimenSetup

PrimaryEquipment

Site

File

SoftwareSetup

DAQSystem

SetupFile

DAQSetup

Specimen

DAQChannel

RolePerson

WaveForm Software

Activity

ApparatusSetup Apparatus

DataElement

SiteInformation

Figure 6 – High-level Class Diagram of the Reference Data Model

Peng and Law www.neesgrid.org 9/16/2004

NEESgrid TR-2004-40 Page 13

4.1 SiteInformation
A typical experiment site is hosted by certain Organization, and the site has personnel playing different
roles, facilities, equipments and other information. The class hierarchy of SiteInformation is shown in
Figure 7. This group of classes is intended to be associated with the site specifications database [13]
that is currently under development by the NEES community. There are no properties (slots) defined for
the base SiteInformation class.

Figure 7 – Class Hierarchy of SiteInformation (generated by Protégé)

4.1.1 Organization
The Organization is defined as an administrative and functional unit, including the personnel of such a
unit. Detailed description of the Organization class is shown in the following table.

Slot Name Type Cardinality Description
name String 1 The name of this particular Organization.
NEESCode String 1 A unique reference code assigned by the NEES Consortium.
address String 0:1 A place where an organization resides.
description String 0:1 A simple description of the object.
homePage String 0:1 Official web site of the Organization.

The subclasses of the Organization, namely Committee, ResearchLab, SponsorAgent, Company,
University, and Department, share the same slots and properties as the Organization class. These
subclasses are introduced in the reference data model to differentiate different types of Organizations.

4.1.2 Person
The Person class represents all of the personnel who participate in projects and experiments. Detailed
description of the Person class is shown in the following table.

Slot Name Type Cardinality Description
firstName String 1 A given name or the name that occurs first in a given name.

lastName String 1 Surname; a name shared in common to identify the members
of a family.

title String 0:1 A description or role of a person.
personID String 1 Unique identification number assigned for a person.

Peng and Law www.neesgrid.org 9/16/2004

NEESgrid TR-2004-40 Page 14

phoneType String 0:* The type of phone or fax number of the Person.
phoneNumber String 0:* Digital telephone number or fax number.
address String 0:* Places where a Person works at or lives in.

email String 0:*
Email addresses such as "name@location.org", used within a
system for sending and receiving messages electronically over
a computer network.

homepage String 0:* The URL of the homepage of the Person.

affiliation :Organization 0:*
The Organization with which the Person is associated. If the
Person is an employee, this would be the company that
employs the Person.

otherInfo String 0:* Other information about the Person, such as his/her
responsibilities to a Project.

4.1.3 Site
The Site class is modeled to represent large-scale facilities, such as the site that hosts shake table or
centrifuge equipment. A Site is defined as having an inventory of devices, equipments, and personnel.
The relationships of the Site class with other classes are shown in Figure 8. Detailed description of the
Site class is shown in the following table.

Figure 8 – Relationship of Site with Other Classes (generated by Protégé)

Slot Name Type Cardinality Description
name String 1 The name of a unique Site.
shortDescription String 0:1 A short description of a Site.
longDescription String 0:1 More detailed description of a Site.
hasPrimary
Equipments

:Primary
Equipment 0:* A list of PrimaryEquipment belonged to the Site.

hasSecondary
Equipments

:Secondary
Equipment 0:* A list of SecondaryEquipment belonged to the Site.

hasTertiary
Equipments

:Tertiary
Equipment 0:* A list of TertiaryEquipment belonged to the Site.

hasRole
Persons

:Role
Person 0:* A Site has a list of RolePersons, which represent Persons

who play different roles for the Site.
hostedBy :Organization 0:1 The organization where a Site is hosted by.

Peng and Law www.neesgrid.org 9/16/2004

NEESgrid TR-2004-40 Page 15

4.2 Activity
The Activity class is designed to support project level modeling. Common properties of Activity classes
include objective, description, startDatetime, endDatetime, and others. The duration of an Activity can
be calculated by using the startDateTime together with the endDateTime of an Activity. The
startDateTime of an Activity can also be used to identify which Activity happens first, i.e. to sort out the
sequence of several Activities. There are four basic types of Activities, including Project, Task,
EventGroup, and Event. As shown in the class hierarchy of the Activity class (Figure 9), direct
subclasses of the Activity class include Project, SingleSiteActivity, and MultiSiteActivity. Detailed
description of the Activity class is shown in the following table.

Slot Name Type Cardinality Description
name String 1 The name of an Activity.
shortDescription String 0:1 A short description of an Activity.
longDescripton String 0:1 More detailed description of an Activity.
local
TimeZone String 0:1 Local time zone in effect at the time the activity started.

startDateTime DateTime 0:1 The beginning time of an Activity.
endDateTime DateTime 0:1 The ending time of an Activity.

Figure 9 – Class Hierarchy of Activity (generated by Protégé)

4.2.1 Project
A Project is a collection (organized group) of related tasks carried out by certain organizations and
designed to achieve specific goals. A Project can be sponsored by one or more funding sources. A
Project includes one or more related Tasks. For example, the CUREE-Caltech Woodframe project was
sponsored by CUREE (Consortium of Universities for Research in Earthquake Engineering), had many
tasks/activities to study the performance of woodframe structures, and with the objective to reduce
earthquake losses to woodframe construction (http://www.curee.org/projects/woodframe/index.html).
Detailed description of the Project class is shown in the following table.

Peng and Law www.neesgrid.org 9/16/2004

http://www.curee.org/projects/woodframe/index.html

NEESgrid TR-2004-40 Page 16

Slot Name Type Cardinality Description
objectives String 0:* The objectives of a project.

contractID String 0:1 NSF sponsorship number or other identification number
for a NEES project contract.

NEESCode String 1 A unique reference code assigned by the NEES
Consortium for the Project.

keyWords String 0:* Key words and references for finding information.

Acknowledge
ments String 0:*

Acknowledgements represent financial support,
contributions of special instrumentations, or other types of
sponsorship associated with the Project.

executedBy :Organization 0:* A list of organization(s) that execute the Project.
hasTasks :Task 0:* A collection of Tasks that associated with the Project.
has
MultiSiteTasks :MultiSiteTask 0:* A list of MultiSiteTasks that associated with the Project.

hasSites :Site 0:* A list of Sites at which the project executed.
has
Sponsors :Organization 0:* A Project has sponsors identified as Organizations.

has
RolePersons :RolePerson 0:* A Project has identified RolePerson, which represents a

Person plays a particular role in an Activity
has
Publications :Publication 0:* A Project has Publications identified with them, and/or

produced through the Project.

4.2.2 Task
A Task belongs to a particular Project and contains one or more EventGroups. Each Task typically
serves a specific role in a Project. In case of an experiment, each Task has a distinct
InfrastructureSetup. In other words, any changes to the InfrastructureSetup would initiate a new Task.
For example, Task 1.1.1 of the CUREE-Caltech Woodframe project refers to the shake table test of a
simplified two-story single-family house [9]. Detailed description of the Task class is shown in the
following table.

Slot Name Type Cardinality Description
keyWords String 0:* Key words and references for finding information.
has
RolePersons :RolePerson 0:* A Task has several identified RolePersons.

has
Publications :Publication 0:* A Task has Publications identified with them, and/or

produced through the Task.
has
EventGroups :EventGroup 0:* A Task has a list of EventGroups, which is defined as a

collection of Events.

hasInfrastructure
Setups

:Infrastructure
Setup 0:*

A Task has a list of InfrastructureSetups. Any major
changes to the InfrastructureSetup would initiate a new
Task.

Peng and Law www.neesgrid.org 9/16/2004

NEESgrid TR-2004-40 Page 17

4.2.3 EventGroup
An EventGroup is defined as a collection of Events. Any change to the data acquisition setup, sensor
setup or the specimen setup would initiate a new EventGroup. The sequence of EventGroups in a Task
is determined by their startDateTime. For example, Test Phase 6 of Task 1.1.1 of the CUREE-Caltech
Woodframe project is identified as an EventGroup because the test structure (specimen) has been
modified after Test Phase 5 [9]. Detailed description of the EventGroup class is shown in the following
table.

Slot Name Type Cardinality Description
hasEvents :Event 0:* An EventGroup has a list of associated Events.

hasDAQSetups :DAQSetup 0:*
An EventGroup has a list of DAQSetups, which represent
the setup of electronic devices whose primary purpose is to
acquire data.

hasSensor
Setups

:Sensor
Setup 0:*

An EventGroup has a list of SensorSetups, which define
the setup of Sensors, and the setup of Sensors with respect
to Specimen.

hasSpecimen
Setups

:Specimen
Setup 0:* An EventGroup has a list of SpecimenSetups, which define

the setup of Specimen with respect to PrimaryEquipment.

4.2.4 Event
An Event, which is the atomic level of Activity, refers to each single run of an experiment or a
simulation. Events within an EventGroup may have different input motions, loading protocols, etc. For
each Event, certain outputs, such as sensor readings or simulation results, are generated and recorded.
The sequence of Events in an EventGroup is determined by their startDateTime. Three types of Event
are defined in the model, namely ExperimentEvent, ProcessedEvent and SimulationEvent. An example
ExperimentEvent is a particular test within Test Phase 6 of Task 1.1.1 of the CUREE-Caltech
Woodframe Project [9]. Detailed description of the Event class is shown in the following table.

Slot Name Type Cardinality Description

testType String 0:1 Types of tests such as shake table, centrifuge, tsunami,
reaction wall, various field tests, and etc.

hasWave
FormSetups

:WaveForm
Setup 0:* An Event has a list of WaveFormSetups, which are

essentially the input.
hasOutput
Data :Folder 0:* An Event has output data, which includes raw or processed

data. The output can be organized in Folders.

4.2.5 MultiSiteActivity
MultiSiteActivity is a collection of Tasks, EventGroups and Events that may be carried out at more than
one Site. MultiSiteActivity is used to establish the link among related Activities, which may be carried
out at different Site but serve to achieve a common goal. MultiSiteActivity class has several subclasses,
including MultiSiteTask, MultiSiteEventGroup, and MultiSiteEvent. The details of MultiSiteActivity
class and its subclasses are shown in the following table.

Peng and Law www.neesgrid.org 9/16/2004

NEESgrid TR-2004-40 Page 18

Slot Name Type Cardinality Description

MutiSiteActivity

hasSite :Site 1:* A list of Sites where all the MultiSiteActivities are
carried out.

MultiSiteTask is defined as a collection of Tasks, which are related and may be carried out at
different Sites. MultiSiteTask contains one or more MultiSiteEventGroups.
hasTasks :Task 0:* A MultiSiteTask has a list of Tasks associated with it.
hasMultiSite
EventGroups

:MultiSite
EventGroup 0:* A MultiSiteTask has a list of MultiSiteEventGroups.

MultiSiteEventGroup is defined as a collection of EventGroups which are related and may be carried
out at different Sites. MultiSiteEventGroup contains one or more MultiSiteEvents.
has
EventGroups :EventGroup 0:* A MultiSiteEventGroup has a list of EventGroups.

EventGroup is defined as a collection of Events.
hasMultiSite
Events

:MultiSite
Event 0:* A MultiSiteEventGroup has a list of MultiSiteEvents.

MultiSiteEvent is defined as a collection of Events which are related and may be carried out at
different Sites. The Event can be an experiment or a simulation.

hasEvents :Event 0:* A MultiSiteEvent has a list of Events. Event is defined
as one run of an experiment or a simulation.

4.2.6 Layout of Activity Classes
The reference data model explicitly models certain Activities that are carried out at multiple Sites.

 shows an example project that has a single site Task (e.g. Task1) and a MultiSiteTask (e.g.
M_Task1). The MultiSiteTask M_Task1 has Tasks that are undertaken at both Site1 and Site2. The
MultiSiteEvent M_E1 has an Event E2 at Site1 and an Event E4 at Site2, and the MultiSiteEvent M_E2
has an Event E3 at Site1 and an Event E5 at Site2. As shown in , although Project does not
directly contain Task2 that takes place at Site2, Task2 can still be accessed from the Project since
M_Task1 contains Task2. This design enables the support of the types of experiments (such as the
MOST experiment [1]) that are carried out either simultaneously or independently at several Sites.

Figure 10

Figure 10

Peng and Law www.neesgrid.org 9/16/2004

NEESgrid TR-2004-40 Page 19

Project

EG1

Task2Task1 M_Task1

EG2 EG4

E1 E4E3E2

M_EG1

M_E1 M_E2E5

EG:
EventGroup

M_EG:
MultiSiteEventGroup

E:
Event

M_E:
MultiSiteEvent

M_Task:
MultiSiteTask

Site 1 Site 2

Figure 10 – Layout of an Example Project

4.3 Apparatus
Apparatus is defined as any equipment, specimen, or computational resource that may be used in an
Activity. In the current version of the reference data model, the direct subclasses of Apparatus include
Specimen, PrimaryEquipment, SecondaryEquipment and TertiaryEquipment. Explicit modeling of
Specimen is not considered in the reference model [23]. Instead, only the most basic modeling is
provided (as a collection of descriptive files, drawings, and/or photos). This design reflects current
approach used to describe specimen in earthquake engineering experiments. However, the Specimen
class can be extended to support other, more detailed, models. Detailed description of the Apparatus
class is shown in the following table.

Slot Name Type Cardinality Description
name String 1 The name of an Apparatus.
shortDescription String 0:1 A short description of an object.
longDescription String 0:1 More detailed description of an Apparatus.

hasInfoFolder :Folder 0:* The Folder that contains all the related information (in the
forms of files) of an Apparatus.

4.3.1 PrimaryEquipment
PrimaryEquipment is the major equipment that is used for the execution of an experiment with respect
to a specific research area. As shown in , direct subclasses of PrimaryEquipment are
ShakeTableEquipment, CentrifugeEquipment, WaveBasinEquipment, FieldTestEquipment, and
LargeScaleTestEquipment. Detailed description of individual PrimaryEquipment will be contained in
the site specifications database [7]. Other types of PrimaryEquipment can be added to the data model as
needed.

Figure 11

The current description of the PrimaryEquipment class is shown in the following table. These
properties are shared by all its subclasses. More sophisticated modeling of different types of
PrimaryEquipment can be added to the data model if necessary.

Slot Name Type Cardinality Description

Peng and Law www.neesgrid.org 9/16/2004

NEESgrid TR-2004-40 Page 20

manufacturer String 0:1 Entity that manufactured the apparatus.
operators Person 0:* Persons who operate the PrimaryEquipment

hasFigures :VisualFile 0:* A PrimaryEquipment has a list of Figures, such as Photos and
Drawings.

Figure 11– Class Hierarchy of PrimaryEquipment (generated by Protégé)

4.3.2 SecondaryEquipment
SecondaryEquipment may be a component of the PrimaryEquipment or may be a piece of equipment
that facilitates the execution of an Event, data collection, and/or observation. Detailed description of the
SecondaryEquipment class is shown in the following table.

Slot Name Type Cardinality Description
owner :Organization 0:1 The organization that the SecondaryEquipement belongs to.
manufacturer String 1 The manufacturer of the apparatus.

serialNumber String 1 Part (serial) number of the apparatus, usually given by the
manufacturer.

manufacturer
ModelNumber String 1 Model number that uniquely identifies the manufacturer.

manufacturer
PartNumber String 1 Part number that identifies apparatus; this number is unique to

the manufacturer

hasFigures :VisualFile 0:* A SecondaryEquipment has a list of Figures, such as Photos
and Drawings.

The class hierarchy of SecondaryEquipment is shown in . The direct subclasses of the
SecondaryEquipment class include Sensor, ControlSystem, TelepresenceDevice, DAQDevice,
HydraulicActuator, and ShakingSystem. Other types of SecondaryEquipment can be added to the data
model as needed.

Figure 12

Peng and Law www.neesgrid.org 9/16/2004

NEESgrid TR-2004-40 Page 21

Figure 12 – Class Hierarchy of SecondaryEquipment (generated by Protégé)

One important type of SecondaryEquipment is the equipment and sensors used for data acquisition.
Data schemas for describing sensors are available – one example is the SensorML [5] developed by
OpenGIS Consortium. The reference data model includes a sensor model that is designed specifically to
support earthquake engineering experiments. The data acquisition equipment is modeled as a collection
of classes, including Sensor, DAQCable, DAQChannel, and DAQSystem. Figure 13 shows the
relationships and the slots of these classes. Typically a data acquisition system involves at least three
main components: (1) the sensors which respond to a physical stimulus and generate analog voltage
signals; (2) a DAQchannel (a.k.a. signal conditioner as part of a DAQSystem) which receives the signal
and uses predefined filter, gain, offset, excitation, sensitivity (calibration) information for Analog-to-
Digital (A/D) and Engineering Unit (EU) conversions; and (3) a PC unit which uses some
communications link (serial port, phone modem, radio modem, etc.) to retrieve the data. It is noted that
A/D hardware can be either external to or part of the signal conditioner.

DAQChannel

DAQSystemSensor

DAQCable PC and/or
External A/D

Sampling

owner
manufacturer
serialNumber
otherInfo

owner
manufacturer
serialNumber
otherInfo
channelid
filter
samplingRate
gain
offset
excitationVoltage
unit

owner
manufacturer
serialNumber
otherInfo
cableid
length
connectorType

owner
manufacturer
serialNumber
otherInfo
sensorid
type
calibrationInfo
lastCalibrationDate
outputQuantity
minRange
maxRange

Figure 13 – Setup and Modeling of DAQ Devices

 Sensor

Sensor represents a device for the measurement of physical quantities. Key components of sensor
modeling include sensor identification, sensor location, constraints, platform attached by the sensor,
coordinate reference system, sensor description, and measurement characteristics. Detailed description
of the Sensor class is shown in the following table.

Peng and Law www.neesgrid.org 9/16/2004

NEESgrid TR-2004-40 Page 22

Slot Name Type Cardinality Description

sensorType String 0:1 Information sensed by the Sensor, e.g. acceleration, pressure,
displacement, strain, temperature, and etc.

minRange :Float
Measurement 0:1 The minimum measurable quantity.

maxRange :Float
Measurement 0:1 The maximum measurable quantity.

calibrationInfo :File 0:1 A file that contains calibration information, expressed as
formula, table, etc.

lastCalibration
Date DateTime 0:1 The date of last calibration.

outputQuantity String 0:1 Quantity that sensor puts out in response to the input, it can
be voltage, current, charge, or human read.

additional
Specifications String 0:* Any additional information about the Sensor, e.g. dimension,

weight, etc.

 DAQChannel

A DAQ (Data Acquisition System) channel is a digital computing means that accepts as its input a set of
digital signals from which it generates as its output a second set of digital signals. DAQChannel collects
signals from a connected Sensor, processes and transforms the signals, and transfers the signals to a
DAQSystem for recording. Detailed description of the DAQChannel class is shown in the following
table.

Slot Name Type Cardinality Description
channel
Location :DAQSystem 0:1 The DAQ (Data Acquisition System) System that the

DAQChannel connects to.
channelFilter String 0:1 Filter type of the DAQChannel, such as Butterworth.

channelGain Float 0:1
An increase in signal power, voltage, or current by an
amplifier, expressed as the ratio of output to input. Also
called amplification.

channelUnit :Unit 0:1 A unit of measure of the DAQ (Data Acquisition) channel.
channel
Offset

:Float
Measurement 0:1 The offset value (measurement) of the DAQChannel.

excitation
Voltage

:Float
Measurement 0:1 The voltage measurement of the excitation current.

hasSensor :Sensor 0:1 A Sensor that the DAQChannel is connected to.

hasDAQCable :DAQCable 0:1 The cable that connects a Sensor to a DAQ (Data
Acquisition System) Channel.

samplingRate :Float
Measurement 0:1 The frequency of sampling per unit time; the number of data

points per unit time that a DAQ channel records data.

4.3.3 TertiaryEquipment
TertiaryEquipment is modeled as other general laboratory infrastructure details. The class is used for
certain information requested by the NEES Site Specification Database. In the current version of the

Peng and Law www.neesgrid.org 9/16/2004

NEESgrid TR-2004-40 Page 23

data model, subclasses of TertiaryEquipment include ElectricalPower, HydraulicPower, and LAN.
More detailed TertiaryEquipment modeling can be added to the data model if needed.

4.3.4 Specimen
Specimen is a primary component of the data model. A Specimen is one of many Apparatus used in
conducting an Activity. One or more Specimens may be created for a Project. An Event or EventGroup
is conducted utilizing the Specimens. Detailed description of the Specimen class is shown in the
following table.

Slot Name Type Cardinality Description

hasDescriptions :Descriptive
File 0:* A Specimen has narrative descriptions and notes, which can

be represented as DescriptiveFiles.

hasFigures :Visual
File 0:* A Specimen has a list of Figures, such as Photos and

Drawings.

hasSensorSetups :SensorSetup 0:* A specimen has a list of associated SensorSetups, which
define the setup of Sensors with respect to Specimen.

4.4 ApparatusSetup
Universal modeling of the arrangement and setup of apparatus for all experiments is very difficult if not
impossible. Not only are there different types of experiments (such as shake table, pseudo-dynamic
tests, centrifuge, and tsunami) and different materials (such as concrete, steel, wood, etc.), but also the
geometry of the specimen, the arrangement of sensors, and the configuration of PrimaryEquipment may
be too complicated and cumbersome to model. For example, the “as-built” locations of sensors may be
different from the prescribed “design” locations, and the precise physical locations (i.e., the coordinate
x, y, z values) of sensors are often difficult to record. Therefore, it is recommended that the
development of ApparatusSetup model be focused on tools and methodologies that can capture and
organize CAD drawings, sketched drawings and notes, photos, narrative descriptions, electronic notes,
etc.

The class hierarchy of AppartusSetup in the current reference data model is shown in Figure 14. The
InfrastructureSetup models the assembly and arrangement of the PrimaryEquipment used for a specific
Task; any changes in InfrastructureSetup would trigger the launch of a new Task. The SpecimenSetup
deals with the information on how the specimen is set up with respect to PrimaryEquipment. The
SensorSetup includes the arrangement (location, orientation, etc.) of Sensors used in an experiment.
The DAQSetup models the physical and electrical setup of one or more devices whose primary purpose
is to acquire data. Any major change to SpecimenSetup, SensorSetup, or DAQSetup initiates a new
EventGroup. The InputDataSetup deals with the choice and organization of input data to an Event.
Any change to a new InputDataSetup indicates the beginning of a new Event.

Figure 14 – Class Hierarchy of ApparatusSetup (generated by Protégé)

Peng and Law www.neesgrid.org 9/16/2004

NEESgrid TR-2004-40 Page 24

The ApparatusSetup class defines three slots, which are shown in the following table.

Slot Name Type Cardinality Description
name String 1 The name of the ApparatusSetup.
shortDescription String 0:1 A short description of the ApparatusSetup.
longDescripton String 0:1 More detailed description of the ApparatusSetup.

4.4.1 PhysicalSetup
The PhysicalSetup models the physical setup of Apparatus, including related infrastructure,
specimen(s), and sensor(s). The following table presents the detailed description of the PhysicalSetup
class and its subclasses, including InfrastructureSetup, SensorSetup, and SpecimenSetup.

Slot Name Type Cardinality Description

PhysicalSetup: The physical setup of the related Apparatus, including related infrastructure,
specimen(s), and sensor(s).
setup
Descriptions

:Descriptive
File 0:* The text descriptions or notes that describe the setup.

setupFigures :VisualFile 0:* The figures and drawings that illustrate the setup.
Locations (URI) to these image files need to be provided.

InfrastructureSetup: The assembly and arrangement of the PrimaryEquipment and certain
SecondaryEquipment used for a specific Task. General laboratory infrastructure is described under
TertiaryEquipment and will not be modeled in InfrastructureSetup.
hasPrimary
Equipments

:Primary
Equipment 0:* Defines the PrimaryEquipments that are associated with

the InfrastureSetup.
hasSecondary
Equipments

:Secondary
Equipment 0:* Defines the SecondaryEquipments that are associated with

the InfrastureSetup

SensorSetup: The arrangement (location, direction, etc.) of Sensors used in an EventGroup.
hasSensors :Sensor 0:* A SensorSetup sets up multiple Sensors.

hasSensor
Locations

:Apparatus
Location 0:*

Indicates the sensor and its associated location. The
location is represented in a coordinate system, which can
be either global or local.

SpecimenSetup: The setup of specimen is modeled by this class. It is focused on how the specimen is
set up with respect to PrimaryEquipment.
hasPrimary
Equipments

:Primary
Equipment 0:* A list of PrimaryEquipments that are used for the setup of

Specimens.
hasSpecimens :Specimen 0:* A SpecimenSetup defines the setup of a list of Specimens.

4.4.2 DAQSetup
DAQSetup represents the setup of one or more electronic devices whose primary purpose is to acquire
data. It can be simple or complex, depending upon the needs. Typically a data acquisition system
involves at least three main components. First, sensors respond to a physical stimulus and transmit
signals or change electrical property such as resistance. Second, a datalogger measures the electrical

Peng and Law www.neesgrid.org 9/16/2004

NEESgrid TR-2004-40 Page 25

signal, converts it to a number and stores either that value or some statistics on that value (average,
maximum, minimum, standard deviation, etc.). Third, a PC uses some communications link (serial port,
phone modem, radio modem, etc.) to retrieve the data from the datalogger. Detailed description of the
DAQSetup class is shown in the following table.

Slot Name Type Cardinality Description

hasDAQ
Channels

:DAQ
Channel 0:*

DAQSetup has a list of DAQChannels, which collect signals
from a connected Sensor, process and transform the signals,
and transfer the signals to a DAQSystem for recording.

hasFigures :VisualFile 0:* DAQSetup has a list of Figures, such as Photos and Drawings.

hasSetupFiles :Numerical
File 0:* DAQSetup has a list of NumericalFiles that define the setup of

DAQ Devices.

4.4.3 InputDataSetup
The InputDataSetup models the input signals to an ExperimentEvent. One type of input signal is
waveform, which may be the record of a previous earthquake event or synthetic signals. A subclass of
the InputDataSetup class is WaveFormSetup, which models the setup of a waveForm for specified
Event(s). Detailed description of the WaveFormSetup class is shown in the following table.

Slot Name Type Cardinality Description

hasDirection :Location 1

WaveFormSetup has a defined direction from which the Wave
was generated. The direction may be relative (to some part of
the experiment apparatus) or measured using a coordinate
system.

hasWaveForm :WaveForm 1 A WaveFormSetup has a specified WaveForm.

scaleFactor Float 1 A real number that is used to modify the original value of a
quantity.

4.5 DataElement
DataElement represents all types of data that may serve as the input or be generated/processed during an
Activity. The DataElement normally serves as Input/Output to an Activity. Types of DataElement
include text document, publication, earthquake record, photo, CAD drawing, movie, etc. In the
NEESgrid data/metadata effort, it is assumed that the data is saved in or translated into computer-
readable format. Therefore, a DataElement object is represented in the format (such as a file) that can be
saved in computer memory, on disks, or in some kind of data storage repository. Figure 15 presents part
of the class hierarchy of the DataElement class. Several subclasses of the Publication class are not
shown in for the purpose of keeping the figure readable. There are no properties (slots)
defined for the DataElement class.

Figure 15

Peng and Law www.neesgrid.org 9/16/2004

NEESgrid TR-2004-40 Page 26

Publication

Figure 15 -- Class Hierarchy of DataElement (generated by Protégé)

4.5.1 Publication
Subclasses within this class relate to any scientific document published in a conference or by a research
institution, such as Book, Journal, Proceedings, TechnicalReport, Thesis, and etc. More types of
Publications can be added later if needed. Detailed description of the Publication class is shown in the
following table.

Slot Name Type Cardinality Description

title String 1 A descriptive or general heading (as of a chapter in a book) of a
Publication

authors :Person 0:* The Persons that originate, write, and/or create the Publication.
year String 1 The year when the Publication was published.

keyWords String 0:* Words used as a reference point for finding other words or
information.

URI String 0:1 Indicates the location or identifier of a file object at which the
Publication resides.

4.5.2 File
This class represents an object that can be saved in memory, on disks, or in the repository. A file can be
saved in any computer-readable format. Subclasses of the File class include NumericalFile, VisualFile,
InputFile, DataFile, and DescriptiveFile. Detailed description of the File class is shown in the following
table.

Slot Name Type Cardinality Description
name String 1 The name of the File.
description String 0:1 A simple description of the object.
URI String 1 Indicates the location or identifier of a file object.

Peng and Law www.neesgrid.org 9/16/2004

NEESgrid TR-2004-40 Page 27

4.5.3 InputData
InputData is defined as the control signals to the Apparatus. A wavelet or waveform is built up of many
sinusoidal waves of varying frequency and amplitude. The variation in frequency and amplitude of a
particular wavelet can be shown as a frequency spectrum. By assuming a waveform in a model for the
earth, an artificial seismic reflection record can be manufactured. A one-dimensional synthetic
seismogram is formed by simply convolving a waveform with a reflection coefficient.

StrongMotion is a subclass of the InputData class. The StrongMotion class represents input strong
ground motions. For future implementation, it can be linked to the existing strong ground motion
databases. Detailed description of the StrongMotion class is shown in the following table.

Slot Name Type Cardinality Description
name String 1 The name of the InputData.
description String 0:1 A simple description of the InputData.

motionRecord :Numerical
File 1 The strong motion record, usually organized as columns of

real numbers.
recordUnit :Unit 0:1 The Unit in which a time series record is presented.

samplingRate :Float
Measurement 0:1 The frequency of sampling per unit time; the number of data

points per unit time that records StrongMotion data.

scaleFactor Float 0:1 A real number that is used to modify the original value of a
quantity.

peak
Acceleration

:Float
Measurement 0:1

Maximum absolute value of acceleration that is recorded or
that can be achieved by an apparatus. The peak acceleration or
rate of change of velocity with respect to time in a specified
time series record.

peak
Velocity

:Float
Measurement 0:1 Maximum absolute value of velocity that is recorded or that

can be achieved by an apparatus.
peak
Displacement

:Float
Measurement 0:1 Maximum absolute value of displacement that is recorded or

that can be achieved by an apparatus.

4.6 ComplexDataType
ComplexDataType is defined in the reference data model to represent any data type that is not a simple
data type such as integer, float, boolean, or character string. There are no properties (slots) defined for
the ComplexDataType class. In the current version of the reference data model, the following
ComplexDataType are provided.

4.6.1 Folder
This class represents a named or designated location where an object (DataElements, including Files,
InputData, and Publications) can be saved in memory, on disks, or in the repository, in any computer-
readable format. Detailed description of the Folder class is shown in the following table.

Slot Name Type Cardinality Description
name String 1 The name of the Folder.
description String 0:1 A simple description of the Folder.

hasFiles :DataElement 0:* A Folder has a list of DataElements, which can be File,
InutData, Parameter or Publication.

Peng and Law www.neesgrid.org 9/16/2004

NEESgrid TR-2004-40 Page 28

4.6.2 RolePerson
This ComplexDataType is defined to represent a particular role that a person plays in an Activity.
Possible roles include principle investigator, co-investigator, research associate, postdoctoral assistant,
graduate assistant, undergraduate student, technician, and etc. Detailed description of the RolePerson
class is shown in the following table.

Slot Name Type Cardinality Description
hasPerson :Person 1 A RolePerson has a Person.

hasRole String 1

RolePerson has a role within a project, such as principle
investigator, co-investigator, research associate, postdoctoral
assistant, graduate assistant, undergraduate student, technician,
and etc.

isActive Boolean 0:1 Indicator as to whether a Person is active or inactive, related to a
specified project.

4.6.3 Unit
A precisely specified quantity in terms of which the magnitudes of other quantities of the same kind can
be stated. (Note: A good way to model unit is yet to be determined.) A detailed description of the Unit
class is shown in the following table.

Slot Name Type Cardinality Description
name String 1 The name of the Unit.
description String 0:1 A simple description of the Unit.

conversion Float 0:1 The conversion rate from one Unit to another. For instance, a foot
equals to 12 inches.

relativeTo :Unit 0:1 A way to describe a value, as relative to another particular Unit.

4.6.4 Measurement
The Measurement class represents the dimensions, capacity, or amount of something ascertained by
measuring a measured quantity. A subclass of the Measurement class is FloatMeasurement, which is
the Measurement described using real number(s), single-precision floating point. Float is a primitive
data type (size/format: 32-bit IEEE 754). A detailed description of the FloatMeasurement class is
shown in the following table.

Slot Name Type Cardinality Description

value Float 1 A numerical quantity that is assigned or is determined by
calculation or measurement.

hasUnit :Unit 1 Defines a specified Unit of measure.

4.6.5 DateTime
The time at which an event occurs, recorded as required. DateTime is externally represented as year,
month, day, hour, minute, second, millisecond, etc., and is internally saved as a long integer. A detailed
description of the DateTime class is shown in the following table.

Peng and Law www.neesgrid.org 9/16/2004

NEESgrid TR-2004-40 Page 29

Slot Name Type Cardinality Description
year Integer 1 A period of approximately the duration of a calendar year.

month Integer 1
A measure of time corresponding nearly to the period of the
moon's revolution and amounting to approximately 4 weeks or 30
days or 1/12 of a year.

day Integer 1 The 24-hour period during which the earth completes one rotation
on its axis.

hour Integer 1 The time of day determined on a 24-hour basis.
minute Integer 1 A unit of time equal to one sixtieth of an hour, or 60 seconds.
second Integer 1 The 60th part of a minute of time.
millisecond Integer 1 One thousandth of a second.

4.6.6 Angle
The Angle is the measurement of an angle or of the amount of turning necessary to bring one line or
plane into coincidence with or parallel to another. A detailed description of the Angle class is shown in
the following table.

Slot Name Type Cardinality Description

degreeType String 1
The hemisphere (N, E, S, W) is attached to the degrees as an
attribute. Note: the values of '+' for N and E, and '-' for S and W
are also permitted.

degree Integer 1 A unit of latitude or longitude, equal to 1/360 of a great circle.

minute Integer 1 A unit of angular measurement equal to one sixtieth of a degree,
or 60 seconds.

second Integer 1 The 60th part of an angular measurement.

4.6.7 Location
The geometry/location is needed for finding sensor location, representing a specimen model, etc. The
spatial location is currently modeled as the values in a coordinate system (i.e., x, y, z values). It should
be noted that, very often, geometry/location information are specified within CAD drawings or text
documents, etc. Referencing scheme may be added to relate an entity to the source that defines the
location.

In the reference NEESgrid data model, Location is defined as an abstract class to represent a place
where some objects, equipment or sensors are located or positioned. There are no slots defined for the
Location class. A subclass of the base Location class is SpatialLocation, which is given in terms of
spatial coordinates. The coordinate system can be either global or local, depending on if the
relativeToLocation is specified. Detailed description of the SpatialLocation class is shown in the
following table.

Slot Name Type Cardinality Description

name String 1 A word or set of alphanumeric characters by which any entity is
identified or distinguished from others.

description String 0:1 A simple description of the object.
coordX Float 0:1 The X location given in terms of spatial coordinates.

Peng and Law www.neesgrid.org 9/16/2004

NEESgrid TR-2004-40 Page 30

coordY Float 0:1 The Y location given in terms of spatial coordinates.
coordZ Float 0:1 The Z location given in terms of spatial coordinates.
coordUom :Unit 0:1 The unit of measurement for the defined coordinate system.
location
Method String 0:1 A description of the method by which the location reference point

coordinates was obtained.

location
Accuracy String 0:1

An estimate of the accuracy of the location reference point. As this
may be subjective, the description may be quantitative or
qualitative.

relativeTo
Location :Location 0:1 The origin of the local coordinate system. If it is specified, the

coordinate system will be local.

4.6.8 ApparatusLocation
The ApparatusLocation represents the particular location of an Apparatus. It is especially used for
indicating the location of sensors. Detailed description of the ApparatusLocation class is shown in the
following table.

Slot Name Type Cardinality Description
hasApparatus :Apparatus 1 The Apparatus (e.g. Sensor) that needs a location value.
theLocation :Location 1 The physical location where the Apparatus resides.

5 Validation and Usability Test
The usability of the reference data model has been tested with legacy experimental data. At the time of
the validation tests, Project Browser and data ingestion tools were under development and were not
available. Therefore, Protégé [10] was employed as the interface to input experimental data and local
file system was used as the storage medium. For illustration purpose, this report focuses on the data set
obtained from a Mini-MOST experiment [21].

5.1 Mini-MOST Experiment
The main purpose of the Mini-MOST experiment is to show the capability of the various NEESgrid
service components using a small-scale physical experimental setup [21]. The Mini-MOST
experimental hardware, as implied by its name, is small in size and can be easily packed and shipped to
experimental sites. The Mini-MOST experiment provides a platform for students and researchers to
become familiar with the NEESgrid software and to gain first-hand experience in using the NEESgrid
services. The Mini-MOST experiment can also be utilized for educational demonstration and software
installation debugging. For the validation test of the reference data model, the data were generated from
a particular Mini-MOST test on February 28, 2004, at the University of Illinois at Urbana-Champaign.

5.2 Inputting Experimental Data
Experimental data from the Mini-MOST experiment was ingested using Protégé [10] and saved as files
in a local file system. shows loading an example project named miniMOST-1 into the
system. Data are inputted using the slots (properties) as defined in the reference data model. If a slot is
defined as primitive type, such as Integer, Real Number, Time, or String, etc., we can simply type in the
value. If a slot is defined as Objects, then we can either choose a previously created object or create a
new one. If a slot is defined as type “URI” (which would normally refer to a file), we can save the

Figure 16

Peng and Law www.neesgrid.org 9/16/2004

NEESgrid TR-2004-40 Page 31

particular file by entering the URI for the file location. Other types of objects, such as Task,
EventGroups, Event, SensorSetup, InfrastructureSetup, Sensor, Specimen, and etc., can be created and
input through an interface similar to the one shown in Figure 16. All the objects related to Mini-MOST
experiment have been created and saved; the metadata and information about the data are saved as an
OWL (Web Ontology Language) (http://www.w3.org/2001/sw/WebOnt/) file. Other experimental data,
such as specimen photos and sensor readings, can be stored in a file on a web server with its URI saved
in the OWL file.

5.3 Browsing Experimental Data
For validation purpose, we implemented a project viewer to retrieve the saved data and to view the data
on a web browser according to the data model. The program is implemented using Java Servlet
technology (http://java.sun.com/products/servlet/), and the parsing of the OWL file is handled by using
Jena [19]. Figure 17 shows the front page of the project viewer with a list of saved projects. When we
click on a particular project, say miniMOST-1, the details of the project will be shown on the browser,
as illustrated in Figure 18.

Figure 16 – Using Protégé to Input Mini-MOST Experiment Data

Peng and Law www.neesgrid.org 9/16/2004

http://www.w3.org/2001/sw/WebOnt/
http://java.sun.com/products/servlet/

NEESgrid TR-2004-40 Page 32

Figure 17 – The Front Page of the Project Viewer

Figure 18 – Detailed Display of the Project MiniMOST-1

Peng and Law www.neesgrid.org 9/16/2004

NEESgrid TR-2004-40 Page 33

As defined in the reference data model, a Project is a collection (organized group) of Tasks designed to
achieve specific goals and objectives. Following the model, we can navigate and access all the Tasks
that belong to the Project. Figure 19 shows the details of a particular Task named
miniMOST_at_UIUC. One property (or a slot) of a Task object is InfrastructureSetup, which models
the assembly and arrangement of the PrimaryEquipment used for a specific Task. We can access the
details of the InfrastructureSetup object by clicking on the highlighted button as shown in . Figure 19

Figure 19 – Detailed Display of the Task miniMOST_at_UIUC

Figure 20 presents the details of the InfrastructureSetup, which essentially is a collection of texts,
documents (in the format of Word, PDF, Excel, etc.), figures and drawings stored as files. Files are
saved in a web server and their URIs are saved as metadata. The files can be dynamically downloaded
and shown on a web browser, as illustrated in . Figure 21

Each Task in a project may contain one or more EventGroups. The EventGroup object can be accessed
by clicking on the highlighted button shown in . The details of a particular EventGroup object
named miniMOST_UIUC_EventGroup_2004 are presented in Figure 23.

Figure 22

Peng and Law www.neesgrid.org 9/16/2004

NEESgrid TR-2004-40 Page 34

Figure 20 – Detailed Display of the InfrastructureSetup

(a) MiniMostWiring.pdf

(b) Mini_MOST_overall.jpg

Figure 21 – Access of Files Representing the InfrastructureSetup

Peng and Law www.neesgrid.org 9/16/2004

NEESgrid TR-2004-40 Page 35

Figure 22 – Detailed Display of the Task miniMOST_at_UIUC

Figure 23 – Detailed Display of the EventGroup

Peng and Law www.neesgrid.org 9/16/2004

NEESgrid TR-2004-40 Page 36

An EventGroup is defined as a collection of Events, each of which can be accessed from the
EventGroup object. The details of an example Event named miniMOST_test_0228 are shown in

. An Event, which is the atomic level of Activity, refers to each single run of an experiment or a
simulation. Experimental results, such as SensorReading, can be accessed from an Event object, as
shown in .

Figure
24

Figure 24 – Detailed Display of the Event miniMOST_test_0228

Figure 25

Figure 25 – Access of SensorReading for the Event miniMOST_test_0228

Peng and Law www.neesgrid.org 9/16/2004

NEESgrid TR-2004-40 Page 37

The EventGroup object also contains the objects of SpecimenSetup, SensorSetup, and DAQSetup.
 shows the details of the SensorSetup object, which belongs to the EventGroup named

miniMOST_UIUC_EventGroup_2004. Again, the setup is described in texts, documents, drawings and
picture files. Each file can be accessed by simply following the URI for the file. For example,

 shows a photo for the setup of a LVDT sensor.

Figure 26

Figure 26 – Detailed Display of the SensorSetup

Figure
27

Figure 27 – Access of Photo for the LVDT

Peng and Law www.neesgrid.org 9/16/2004

NEESgrid TR-2004-40 Page 38

6 Summary and Discussions
In this report, details of a reference NEESgrid data model have been presented. The intention of this
document is to give a description of the data model and to solicit feedback and comments from the
NEES community. Although the reference data model described in this report focuses on shake table
experiments, many of the features can be applied or extended to centrifuge, field tests, tsunami, pseudo-
dynamic and other types of experiments. Six base classes and their subclasses are presented, and the
relationships among these classes are defined. These classes represent the essential elements to support
the end-to-end solution of NEESgrid data efforts. We believe the proposed reference data model is
flexible and extendible: (1) new classes can easily be introduced; (2) the slots of a particular class can be
added, deleted, or modified; and (3) the relationships among the classes can be altered. Other models,
such as specimen model, unit model, geometry/location model, and Site model, can be appended to (or
even replace certain parts of) the reference data model.

To validate the reference data model, we have populated the model with the mini-MOST experimental
data provided by UIUC. This validation process helps evaluate the completeness, flexibility and
usability of the data model. The usability test has demonstrated that the data model is sufficiently
comprehensive to save and organize all the mini-MOST data. In addition, as the experimental data are
organized according to the data model, browsing and accessing them are fairly intuitive and
straightforward. Efforts will continue to validate, evaluate and refine the reference data model using
other experimental projects and data. In addtion, a general Project Browser for the ingestion and
browsing of NEESgrid data is currently under development by the NEES System Integrator team.

We would like to emphasize that data model development is a community effort. Suggestions and
feedback from the NEES community and stakeholders are important in the development process. The
reference data model described in this document is based on version 1.0, which has been released for the
review of the NEES community at the beginning of July 2004. Data model development is an iterative
and evolving process, and the reference data model will continue to be tested, validated, modified and
revised, even beyond the current development effort. We look forward to receiving and to incorporating
any valuable suggestions from the NEES community.

The development of NEESgrid data models, together with the current efforts of developing data
ingestion tools, the data repository, and tools that directly support experimental activities, all serve as
initial steps towards data sharing, archival and curation. Data curation implies well-planned active
management of information and involves the production, conservation, preservation and access of the
data [18]. The active management of data must ensure that the people to whom the data is relevant can
find the data. Furthermore, data curation needs to ensure supports of data/information reuse and
facilitate generation of new information and knowledge from the saved data. Continuing developments
in data curation effort are recommended.

Acknowledgements
This report is drafted by the authors as part of the NEES System Integration effort, WBS No. 2.4 Data
and Metadata Management. The authors would like to acknowledge the active collaboration and
contributions of the NEESgrid’s Data/Metadata task committee members (in alphabetical order by their
first name):

Andrei Reinhorn State University of New York, Buffalo
Bill Spencer University of Urbana-Champaign
Chuck Severance University of Michigan
Gokhan Pekcan University of Nevada, Reno
Hank Ratzesberger University of California, Santa Barbara
Jean-Pierre Bardet University of Southern California

Peng and Law www.neesgrid.org 9/16/2004

NEESgrid TR-2004-40 Page 39

Jennifer Swift University of Southern California
Jim Eng University of Michigan
Jun Peng Stanford University
Ken Ferschweiler Northwest Alliance for Computational Science and Engineering
Kincho H. Law Stanford University
Lelli Van Den Einde University of California, San Diego

The authors would first and foremost acknowledge Professor Gokhan Pekcan of University of Nevada,
Reno for his help in developing the reference data model, and Professor Bill Spencer of University of
Illinois, Urbana-Champaign and Dr. Cristina Beldica of National Center for Supercomputing
Applications (NCSA) for their encouragements and supports.

The authors would like to thank Joe Futrelle of NCSA, Chuck Severance and Jim Eng of University of
Michigan for their time and discussions related to NEESgrid developments. The authors would also like
to thank Professor Gokhan Peckan and Dr. Patrick Laplace of University of Nevada, Reno; Professors
Steve Mahin, Bozidar Stojadinovic, Greg Fenves, and Dr. Frank McKenna of University of California,
Berkeley; Professor Andrei Reihorn of SUNY-Buffalo; and Professors Jerome Hajjar and Catherine
French of University of Minnesota for their time to discuss the data and metadata issues related to
earthquake engineering experiments and simulations. Any opinions, findings, and conclusions or
recommendations expressed in this material are, however, those of the authors and do not necessarily
reflect the views of others and the National Science Foundation.

References
[1] NEESgrid Team. Multi-site Online Simulation Test (MOST), 2003.

(http://www.neesgrid.org/most/index.html)

[2] Oregon State University and Network Alliance for Computational Science and Engineering.
NEES Database and Metadata Structure, Version 1.3, white paper, Network for Earthquake
Engineering Simulation, 2003.

[3] J. Arlow and I. Neustadt. UML and the Unified Process: Practical Object-Oriented Analysis
and Design, Addison-Wesley Pub Co., Boston, MA, 2001.

[4] R. Benjamins, D. Fensel, and A. G. Perez. "Knowledge Management through Ontologies,"
Proceedings of the 2nd International Conference on Practical Aspects of Knowledge
Management, Basel, Switzerland, 1998.

[5] M. Botts. Sensor Model Language (SensorML) for In-situ and Remote Sensors, OpenGIS
Interoperability Program Report, OGC 02-026, Open GIS Consortium Inc, 2002.
(http://vast.uah.edu/SensorML/OGC-02-026_SensorML_0.07.doc)

[6] M. L. Brodie. "Association: A Database Abstraction for Semantic Modeling," Proceedings of
2nd International Entity-Relationship Conference, Washington, DC, 1981.

[7] C. M. Eastman. Building Product Models: Computer Environments, Supporting Design and
Construction, CRC Press, 1999.

[8] G. L. Fenves and F. McKenna. Data Model for Simulation, Technical Report NEESgrid-2004-
46, 2004. (http://www.neesgrid.org/documents/TR_2004_46.pdf)

[9] D. Fischer, A. Filiatrault, B. Folz, C.-M. Uang, and F. Seible. CUREE-Caltech Woodframe
Project: Shake Table Tests of a Two-Story Woodframe House, Consortium of Universities for
Research in Earthquake Engineering, 2001.

Peng and Law www.neesgrid.org 9/16/2004

http://www.neesgrid.org/most/index.html
http://vast.uah.edu/SensorML/OGC-02-026_SensorML_0.07.doc
http://www.neesgrid.org/documents/TR_2004_46.pdf

NEESgrid TR-2004-40 Page 40

[10] J. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso, M. Crubézy, H. Eriksson, N. F. Noy,
and S. W. Tu. The Evolution of Protégé: An Environment for Knowledge-Based Systems
Development, Stanford Medical Informatics, Stanford University, 2002.
(http://smi.stanford.edu/pubs/SMI_Abstracts/SMI-2002-0943.html)

[11] IAI. Industry Foundation Classes, Specification Volumes 1-4, International Alliance for
Interoperability, Washington, DC, 1997.

[12] ISO. Product Data Representation and Exchange, Part 1: Overview and Fundamental
Principles, No. 10303-1, International Organization for Standardization, 1994.

[13] B. L. Kutter, D. W. Wilson, C. Pancake, and S. Haerer. Introduction to the Site Specifications
Database (SSDB), Network for Earthquake Engineering Simulation, 2004.
(http://nees.orst.edu/IT/site.specs.db/cohorts/Introduction.pdf)

[14] K. H. Law and M. K. Jouaneh. "Data Modeling for Building Design," Proceedings of the 4th
Computing Conference in Civil Engineering, Boston, MA, 1986.

[15] K. H. Law, M. K. Jouaneh, and D. L. Spooner. "Abstraction Database Concept for Engineering
Modeling," Engineering with Computers, 2:79-94, 1987.

[16] K. H. Law. "Conceptual Database Design for Engineering Modeling," Proceedings of The
ASME International Computers in Engineering Conference and Exhibition, Managing
Engineering Data: Emerging Issues, San Francisco, CA, 1988.

[17] K. H. Law, G. Wiederhold, N. Siambela, W. Sujansky, D. Zingmond, H. Singh, and T.
Barsalou. "Architecture for Managing Design Objects in a Sharable Relational Framework,"
International Journal of Systems Automation: Research and Applications (SARA), 1:47-65,
1991.

[18] K. H. Law. Summary Report on NEESgrid's Data Curation Summit, Technical Report
NEESgrid-2004-43, 2004. (http://www.neesgrid.org/documents/TR_2004_43.pdf)

[19] B. McBride, D. Boothby, and C. Dollin. An Introduction to RDF and the Jena RDF API, 2004.
(http://jena.sourceforge.net/tutorial/RDF_API/index.html)

[20] D. L. McGuinness and F. v. Harmelen. OWL Web Ontology Language Overview, W3C
Recommendation 10 February 2004, http://www.w3.org/TR/owl-features/, 2004.

[21] N. Nakata, G. Yang, and B. F. Spencer. System Requirements for Mini-MOST Experiment,
NEESgrid Technical Report, 2004. (http://www.neesgrid.org/mini-
most/Mini_MOST_requirements_revised3.pdf)

[22] N. F. Noy and D. L. McGuinness. Ontology Development 101: A Guide to Creating Your First
Ontology, Stanford University, Stanford, CA, 2002.
(http://protege.stanford.edu/publications/ontology_development/ontology101.html)

[23] J. Peng and K. H. Law. A Brief Review of Data Models for NEESgrid, Technical Report
NEESgrid-2004-01, 2004. (http://www.neesgrid.org/documents/TR_2004_01.pdf)

[24] J. Peng and K. H. Law. Validity and Usability of the NEESgrid Reference Data Model,
Technical Report NEESgrid-2004-44, 2004.
(http://www.neesgrid.org/documents/TR_2004_44.pdf)

[25] J. Peng and K. H. Law. "A Reference Data Model for NEESgrid Shake Table Experiments,"
Proceedings of the International Symposium on Earthquake Engineering in the Past and Future
Fifty Years, Harbin, China, 2004.

Peng and Law www.neesgrid.org 9/16/2004

http://smi.stanford.edu/pubs/SMI_Abstracts/SMI-2002-0943.html
http://nees.orst.edu/IT/site.specs.db/cohorts/Introduction.pdf
http://www.neesgrid.org/documents/TR_2004_43.pdf
http://jena.sourceforge.net/tutorial/RDF_API/index.html
http://www.w3.org/TR/owl-features/
http://www.neesgrid.org/mini-most/Mini_MOST_requirements_revised3.pdf
http://www.neesgrid.org/mini-most/Mini_MOST_requirements_revised3.pdf
http://protege.stanford.edu/publications/ontology_development/ontology101.html
http://www.neesgrid.org/documents/TR_2004_01.pdf
http://www.neesgrid.org/documents/TR_2004_44.pdf

NEESgrid TR-2004-40 Page 41

Peng and Law www.neesgrid.org 9/16/2004

[26] J. Peng, K. H. Law, and G. Pekcan. Reference NEESgrid Data Model for Shake Table
Experiment, NEESgrid Technical Report, 2004.

[27] J. R. Rumbaugh, M. R. Blaha, W. Lorensen, F. Eddy, and W. Premerlani. Object-Oriented
Modeling and Design, Prentice Hall, 1990.

[28] J. M. Smith and D. C. P. Smith. "Database Abstractions: Aggregation and Generation," ACM
Transaction on Database Systems, 2(2):105-133, 1977.

[29] J. Sowa. Conceptual Structures: Information Processing in Minds and Machines, Addison-
Wesley, Reading, MA, 1984.

[30] J. Swift, J.-P. Bardet, and G. Pekcan. Reference NEESgrid Data Model for Centrifuge
Experiments, NEESgrid Technical Report, 2004.

	Introduction
	Purpose
	Definition
	Scope

	Data Modeling Tool and Approach
	Protégé – Data Modeling Tool
	Object-Oriented Data Modeling

	Relevant Data Models
	Oregon State Model
	Ontology of Science
	Berkeley CUREE/ Kajima
	SensorML
	Specimen Models

	Overview of the Reference Data Model
	SiteInformation
	Organization
	Person
	Site

	Activity
	Project
	Task
	EventGroup
	Event
	MultiSiteActivity
	Layout of Activity Classes

	Apparatus
	PrimaryEquipment
	SecondaryEquipment
	TertiaryEquipment
	Specimen

	ApparatusSetup
	PhysicalSetup
	DAQSetup
	InputDataSetup

	DataElement
	Publication
	File
	InputData

	ComplexDataType
	Folder
	RolePerson
	Unit
	Measurement
	DateTime
	Angle
	Location
	ApparatusLocation

	Validation and Usability Test
	Mini-MOST Experiment
	Inputting Experimental Data
	Browsing Experimental Data

	Summary and Discussions
	Acknowledgements
	References

