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1 Introduction 
The primary goal of the NEESgrid data/metadata effort is to work collaboratively with the NEESgrid 
System Integrator team and the NEES community to help define data requirements and needs for the 
George Brown Jr. Network for Earthquake Engineering Simulation, instigated by the National Science 
Foundation. The NEESgrid promotes NEES as a distributed collaborative laboratory for earthquake 
engineering research and simulation.  The “collaboratory” will allow researchers gain remote, shared 
access to experimental equipment and data.  

Reference data models have been developed for supporting the major activities involved in earthquake 
engineering experiments and simulations. The current data modeling efforts include the development of 
reference data models for shake table experiments [26], centrifuge experiments [30], and computer 
simulations [8].  The development of NEESgrid data models is based on the experience gained from the 
review of the state of practice in data representations, data modeling tools, relevant data models, and the 
suggestions/feedback from the NEESgrid team and the NEES community [23].  Sample data sets have 
been utilized to demonstrate the features of the data models, along with scenarios for their use. 
Preliminary validation and usability tests have been performed on the developed reference data model 
[24]. The usability test has demonstrated that the data model is sufficiently comprehensive to save and 
organize experimental data, such as data from Mini-MOST [21] experiments. 

1.1 Purpose 
In order to facilitate collaboration within the NEES framework, one of the key services that NEESgrid 
needs to support is with respect to the data and metadata for earthquake engineering simulations.  It is 
well known that engineering design and manufacturing activities generally involve a large set of 
independent but interrelated data items [14, 15]. Traditional hierarchical, network, and relational 
database models, which are designed for highly structured commercial applications, do not adequately 
support technical engineering problem domains.  To support the expressive concepts and the semantic 
content of engineering data, object oriented data models are often employed.  Influenced by the field of 
artificial intelligence, semantic relationships such as classification, association, aggregation and 
generalization can be used for organizing and structuring engineering data [16].  Besides the mechanism 
needed to represent and manipulate data, data model development requires some knowledge on the 
intended use of the data [17].  Earthquake engineering experiments also require semantically rich data 
models to facilitate storage and retrieval of experimental data. 

Following the NEESgrid Data and Metadata Advisory Group meeting that was held at the Argonne 
National Laboratory on November 5, 2003, a NEES Data/MetaData Task Group (DMD-TG) was 
formed to actively define and coordinate the data/metadata development tasks. A complete list of 
contributing members involved in this development is given in the Acknowledgements section of this 
report.  The high level objective of this effort is to develop data models for earthquake engineering 
experiments and simulations.  For this purpose sample data sets are being developed that demonstrate 
the features of the data models along with scenarios for the use of the data and models.  Specifications 
for the tools necessary to support entering, importing, storing, searching, and extracting data from the 
repository are being proposed and developed. 
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1.2 Definition 
One major task of the data/metadata effort is to develop a reference data model for supporting the major 
activities involved in earthquake engineering simulations.  There are many existing data modeling 
techniques and tools that are available to help design and structure the data.  A brief review of these 
relevant techniques and approaches has been reported earlier [23].  A data model is in essence a 
representation of the data and their interrelationship and provides a conceptual or implementation view 
of the data.  A data model can be viewed as the “grammar”, “vocabulary” and “content” that represent 
the types of “information” stored in a “system”.  The grammar defines the relationships among the data 
elements in the system; the vocabulary defines the terminology used to describe these elements; the 
content defines what is to be included in the system. The data model should be independent of 
hardware/software platforms so that its implementation can be universal.   

Within the scope of the NEESgrid data/metadata effort, data is defined as all of the project related 
information and encompasses observational (or acquired) data recorded prior to the experiments and 
during the experiments by means of sensors, cameras and the like; computational (or generated) data 
generated as a result of modeling, simulations, post-processing; and literature in the form of reports, 
journal papers, drawings, etc.  Associated descriptive and related data, i.e. metadata (or data about the 
data), are defined and published in a prescribed (by NEESgrid) format and language (as of this writing, 
the metadata is represented in OWL (Web Ontology Language) [20] format).  It is expected that a set of 
functional system-wide services for storage, retrieval, and management of data and metadata associated 
with a project will be available as part of the NEESgrid infrastructure.  These services will be based on 
specialized data models with only limited content populated by elements that are most critical to (1) the 
execution of a project, i.e. conduct and control of experiments and simulations; (2) the equipment, 
collection of sensor and video/image data, visualization; and (3) the storage, retrieval and management 
functions.  However, it should be noted that the so-called limitations on the content and elements will 
not prevent future extensions of the data models and the integration of new project related elements in 
the NEESgrid infrastructure. 

1.3 Scope 
This document starts with a description of the NEESgrid data modeling approach and a brief review of 
several related data models.  The overview and details of the developed reference NEESgrid data model 
are then presented.  A brief summary is also provided to discuss the approach and findings in 
developing the reference data model for NEES experiments.  This report serves to outline current tasks 
and approaches to define data models for supporting the activities involved in earthquake engineering 
experiments.  The data model for supporting computer simulations has been described elsewhere in Ref 
[8].  Although the NEESgrid reference data model is intended to focus on the data requirements for 
shake table and centrifuge experiments, a large portion of the model should be of sufficient generality to 
be used for other types of experiments, such as pseudo-dynamic, Tsunami, or field tests.  

2 Data Modeling Tool and Approach 
There are many existing data modeling techniques and tools that are available to help design and 
structure the data.  A review of data modeling formats, approaches, tools, and a few existing data 
models has been presented in Ref [23].  This section briefly discusses the tool selected for developing 
the NEESgrid data model and the basic concepts of object-oriented data modeling. 

2.1 Protégé – Data Modeling Tool 
There are many data modeling or software design tools that can be used to facilitate the design of a data 
model for a specific application.  To facilitate the development of the NEESgrid data model, we selected 
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Protégé (http://protege.stanford.edu), which is an open-source software package designed to help 
develop ontology for knowledge-based systems [10].  Ontology represents explicit formal specifications 
of the terms in the domain and the relations among them [22].  As open source software, Protégé has 
attracted a wide variety of plug-ins from around the world to enhance its capabilities.  Some of these 
software plug-ins allow a model developed in Protégé to be exported in many standard formats, 
including UML (Unified Modeling Language [3]), XML Schema (http://www.w3.org/XML/Schema), 
RDF (Resource Description Framework, http://www.w3.org/RDF/), OWL (Web Ontology Language, 
http://www.w3.org/2001/sw/WebOnt/), and others. 

In Protégé, a graphical user interface (GUI) is provided to facilitate ontology development.  The 
interface enables the modeling of an ontology of classes to describe a particular subject with a set of 
concepts and their relationships.  The interface also allows direct entering of specific instances of data 
and the creation of a knowledge base.   shows an example of the GUI, with the view of classes 
shown in the left window, and the view of detailed attributes of a class (e.g. Project class) shown in the 
lower right window. 

Figure 1

 Figure 1 – Protégé Interface with OWL Pulgin 

 

2.2 Object-Oriented Data Modeling 
Object-oriented data modeling approach is employed in the development of NEESgrid data model.  In 
an object-oriented data model, information is modeled as objects, which can be any sort of entities [27].  
The general representation of a certain type of objects is called a class, which represents an explicit 
description of concepts in a domain. The creation of an object of a certain class is called instantiation. 
The relationship between an object and a class can be viewed analogically in a procedural language in 
that a variable is a particular instance of a pre-defined type such as an integer.  For example, a Project is 
modeled as a class, and a MOST experiment [1] is an object instance of the Project class. 

An object encapsulates certain related data as slots, which are also called attributes or properties.  
Slots can have different facets describing the value type, allowed values, the number of values 

Peng and Law www.neesgrid.org 9/16/2004 

http://protege.stanford.edu/
http://www.w3.org/XML/Schema
http://www.w3.org/RDF/
http://www.w3.org/2001/sw/WebOnt/


NEESgrid TR-2004-40  Page 7 

(cardinality), and other features of the values the slot can take.  A value-type facet describes what types 
of values can fill in the slot.  Some common value types are string, number, Boolean, enumerator, and 
object instance.  Allowed objects and the variety of values (e.g. minimum number, maximum number) 
of a slot are often referred to as the range of a slot.  Slot cardinality defines how many values a slot can 
have, such as single (at most one value) or multiple (more than one value).  For example, “minute” is a 
slot of class Time, with data type defined as integer, cardinality one and range from 0 to 59. 

An object connects with other related objects via some relationships.  The relationship types commonly 
used include classification, association, aggregation and generalization [6, 28, 29].  These relationships 
types may in turn impose certain “object-oriented” features and integrity constraints to help maintain 
consistency and correctness of the data in the model.  One important feature of object-oriented modeling 
is the concept of class hierarchies, with slots of a superclass being inherited by its subclasses.  This 
inheritance feature allows us to define the common slots used by several classes at the highest possible 
level in the hierarchy, which avoids the duplication of slots at the lower levels.  A class can have 
subclasses that represent concepts that are more specific than the superclass.  For example, we can 
divide the class Activity into Project, SingleSiteActivity, and MultiSiteActivity.  The class 
SingleSiteActivity in turn can be divided into Task, EventGroup, and Event.  The common slots for all 
these Activity classes are name, description, start Time and end Time. 

In object-oriented data models, a class can be abstract or concrete [22].  A concrete (or physical) class 
can have direct instances, as in the case that a MOST experiment is an instance of the class Project.  On 
the other hand, abstract class cannot have any direct instances.  For example, the Activity class is 
defined as the general abstraction of action or process, and thus a direct instance cannot be created. 

3 Relevant Data Models 
There have been several relevant developments that can potentially benefit the development of the data 
model for NEES experiments.  The following discussion focuses on reviewing some of these models 
and their applicability for the NEESgrid data/metadata efforts. 

3.1 Oregon State Model 
Oregon State University and the Northwest Alliance for Computational Science and Engineering 
(NACSE) have developed a data model for describing laboratory tsunami experiments 
(http://nees.orst.edu/IT/data.model/) [2]. The model contains relationships among projects, experiments, 
researchers, equipment, experimental results, etc.  The model is designed for storing the experimental 
data in a relational database.  Figure 2 shows a high-level E-R diagram for the data model [2].  The 
diagram shows that a project may have multiple experiments, an experiment may have multiple 
configurations, a configuration may have multiple trials, etc.  The model consists of a relatively small 
number of entities to make the structure of the model simple and to keep the number of tables 
manageable.  A flexible scheme is used to assign attributes to entities.  For instance, the Equipment 
table may include entries for any number of pieces of physical equipment used in an experiment – from 
strain gauges to wave basins – rather than requiring the assignment of each sensor or gauge to a 
particular slot.  Another feature of the model is its extendibility; for instance, the model has the ability to 
incorporate new types of measurement instruments. Presently, the model is designed primarily for a 
tsunami wave basin experiment.  The current model lacks details on some common elements, such as 
time, location, unit, and ground motion.  However, the Oregon State model does provide many insights 
that are valuable for the development of other NEESgrid data models. 
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Figure 2 – E-R Diagram of the Oregon State Model [2] 

3.2 Ontology of Science 
There have been similar efforts in the Science community to develop standard models for science 
projects.  An Ontology of Science, which is modified from the KA² ontology developed earlier by 
Knowledge Annotation Initiative of the Knowledge Acquisition Community [4], is available at 
http://protege.stanford.edu/ontologies/ontologyOfScience/ontology_of_science.htm. 

The Ontology of Science is designed for modeling scientific events and educational events, such as a 
scientific conference, a research project, or a software development project.  The ontology has a high-
level project entity.  As shown in Figure 3, the project has relationship with other entities, including 
people, organization, product and events.  The project also has a start date and an end date, which can be 
used to calculate the duration of the project.  Besides the high-level modeling, the Ontology of Science 
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also provides detailed modeling of several common elements, such as people, scientific documents, 
location, and time. The ontology provides a good organizational view that could be used to organize a 
collection of experimental projects. 

 

Figure 3 – Project Model of the Science Ontology 

3.3 Berkeley CUREE/ Kajima 
In the structural engineering domain, Prof. Bozidar Stojadinovic of University of California, Berkeley 
and his collaborators have created a framework for the integration and visualization of structural state 
data (see http://www.ce.berkeley.edu/~boza/research/Curee-Kajima/). The goal of this project is to 
conceptualize, develop and implement a framework for gathering, classifying and integrating structural 
data collected in and around a structure, and to enable effective visualization and fusion of such data to 
define the state of a structure. 

Presently, the model focuses on the collection of observed data and comprehensive modeling of 
collector and data type.  An abstract class, Collector, is a general object that collects or generates data 
about a structure.  A Collector can be any type of sensor, a camera, numerical analysis, or even a person.  
Each type of collector is capable of collecting different types of data and handling different types of 
input and output data.  The observed or generated data may include numerical data, descriptive textual 
data, or visual and graphical data (such as visual imagery from a camera, hand sketch, drawings, etc.).   

The sensor model of Berkeley CUREE/Kajima provides a good representative class of different types of 
sensors commonly used for structural monitoring.  Individual models of sensors are defined as separate 
objects to allow special calibration information and permits creation of separate instances of each sensor 
with individual serial numbers or characteristics.  As shown in , different types of sensors, such 
as accelerometers, strain gages, and thermocouples, are modeled as subclasses of Sensor.  The model 
has been developed using Protégé and can produce different representation formats.  

Figure 4
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Figure 4 – Sensor Model of the Berkeley CUREE/Kajima 

3.4 SensorML 
Sponsored by the OpenGIS Consortium, SensorML (http://vast.uah.edu/SensorML/) is predisposed 
toward preserving part of the vital sensor data required for both real-time and archival observations [5].  
The purpose of SensorML is to provide general sensor information, to support the processing and 
analysis of sensor measurements, to describe performance characteristics, and to archive properties and 
assumptions regarding the sensors. 

SensorML provides an XML schema for defining the geometric, dynamic, and observational 
characteristics of a sensor.  The root for all SensorML documents is Sensor, which represents a device 
for the measurement of physical quantities.  Key components of a sensor model includes sensor 
identification, sensor location, constraints, platform attached by the sensor, coordinate reference system, 
sensor description, and measurement characteristics. 

An important concept of SensorML is SensorGroup.  A SensorGroup can be of two types, sensor 
package and sensor array.  A sensor package is composed of multiple sensors that operate together to 
provide a collective observation or related group of observations.  For example, a collection of sensors 
can be used in a combined fashion to create a sensor that measures, for example, temperature, strain, 
wave velocity and direction.  A sensor array is a set of sensors of the same type at different locations.  
These locations may be within a single sensor frame, a different location on a single mount, or on 
different platforms.  A sensor array produces observations that are used to build a spatial coverage.   

SensorML provides a good prototype and a rich model for describing sensor information.  It is 
particularly useful for in-situ experimental applications involving spatially distributed information.   

3.5 Specimen Models 
There have been many attempts to construct universal data (product) models to capture detailed 
descriptive information about building structures.  The purpose of most of the existing models is to 
develop data exchange and sharing standards for CAD systems. 

The CIMSteel Integration Standard (CIS/2) (http://cic.nist.gov/vrml/cis2.html) is the logical product 
model and electronic data exchange format for structural steel project information [7]. The CIS/2 
standard is based on STEP (STandard for the Exchange of Product Data [12]) and is proposed to 
describe structures and engineering information, testing procedures and industry specific information. 
CIS/2 has been implemented for describing steel framed structures, from nuts and bolts to materials, 
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loads to frames and assemblies.  Adopted by the American Institute for Steel Construction, many steel 
structure software packages now provide CIS/2 import and/or export capabilities. 

Another industry standard related to building structure is the Industry Foundation Classes (IFC) 
(http://www.eccnet.com/step/) developed by a consortium, the International Alliance for Interoperability 
(IAI), to provide data exchange and sharing capabilities for the building and construction industry [11].  
The IFC is a data representation standard and file format for defining architectural and constructional 
CAD graphic data.  The IFC uses text-based structures for storing the definitions of objects encountered 
in the building industry.   

While various domain models have been developed for the building industry, they are either too specific 
(CIS/2 for steel, for example) or too general (IFC for all phases of a building project) to be useful for 
describing a specimen or a test model typically used in earthquake engineering experiment and 
simulation.  Although these models could share many insights to describe a structural component, they 
may not be useful for experimental test applications. 

4 Overview of the Reference Data Model 
As depicted in Figure 5, the NEESgrid data/metadata task group is working towards producing end-to-
end solutions that integrate the site specifications database, the project level model, domain specific data 
models, and common elements. To capture all these data, the reference data model is designed to 
include six base classes, namely SiteInformation, Activity, Apparatus, ApparatusSetup, DataElement, 
and ComplexDataType [25].  The high-level class diagram of the reference data model is presented in 

, which shows the association relationship among classes.  (The ComplexDataType class, which 
is employed to support other base classes, is not shown in the figure.)  The association relationship 
exists between classes when an object of one class knows/contains an object of another class.  For 
example, a Project object knows about its Tasks objects, a Project also contains Organizations, Sites, 
and RolePersons.  RolePerson is in turn defined as the combination of a Person and his/her role in a 
Project.  The arrow in  denotes the direction of the relationship contains; i.e., A  B indicates 
that class A knows/contains class B. 

Figure 6

Figure 6

This section presents details of the six defined groups of base classes and some of their subclasses.  In 
the discussions below, each class is described with a table that has the following four columns: 

 Slot Name: which is the name associated with a slot of a class.  Slot of a class is defined as the 
property describing a feature and/or an attribute.   

 Type: which defines what type of values can fill in the slot.  Slot type can be primitive (such as 
String, Integer, Float, and Boolean) or instance-type.  The instance-type slots allow definition of 
relationships between individuals.  Slots of instance-type must also define a list of allowed classes 
(started with a colon ‘:’ sign in the tables) from which the instances can come.  For example, a slot 
hasTasks for the class Project may have instances of the class ‘:Task’ as its values.  

 Cardinality, which defines how many values a slot can have.  There are three types of cardinality 
used in the data model, including key value (must have one value, normally used to identify an 
object, denoted as ‘1’), single cardinality (allowing at most one value, denoted as ‘0:1’), and 
multiple cardinality (allowing any number of values, denoted as ‘0:*’).   

 Description: which is documentation that describes the definition, meaning, and usage of a 
particular slot. 

Due to the object-oriented feature of inheritance, all the slots of a superclass are inherited by its 
subclasses.  For the sake of simplicity, the inherited slots are not listed for a subclass, but rather only the 
slots specific to the subclasses are presented.  In the following, we will use the convention that class 
names are started with capital letters and the slots names are started with lower-case letters. 
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Figure 5 – Overall Data Model for NEESgrid (Courtesy of Chuck Severance) 

Project

Task

EventGroup

Event

1 SensorSetup

DAQCableWaveFormSetup

OutputData

Sensor

Publication

Person

Organization

InfrastructureSetup

SepcimenSetup

PrimaryEquipment

Site

File

SoftwareSetup

DAQSystem

SetupFile

DAQSetup

Specimen

DAQChannel

RolePerson

WaveForm Software

 

Activity

ApparatusSetup Apparatus

DataElement

SiteInformation

Figure 6 – High-level Class Diagram of the Reference Data Model 

Peng and Law www.neesgrid.org 9/16/2004 



NEESgrid TR-2004-40  Page 13 

4.1 SiteInformation 
A typical experiment site is hosted by certain Organization, and the site has personnel playing different 
roles, facilities, equipments and other information.  The class hierarchy of SiteInformation is shown in 
Figure 7.  This group of classes is intended to be associated with the site specifications database [13] 
that is currently under development by the NEES community. There are no properties (slots) defined for 
the base SiteInformation class. 

 

Figure 7 – Class Hierarchy of SiteInformation (generated by Protégé) 

4.1.1 Organization 
The Organization is defined as an administrative and functional unit, including the personnel of such a 
unit.  Detailed description of the Organization class is shown in the following table. 

Slot Name Type Cardinality Description 
name String 1 The name of this particular Organization.  
NEESCode String 1 A unique reference code assigned by the NEES Consortium. 
address String 0:1 A place where an organization resides. 
description String 0:1 A simple description of the object. 
homePage String 0:1 Official web site of the Organization. 

The subclasses of the Organization, namely Committee, ResearchLab, SponsorAgent, Company, 
University, and Department, share the same slots and properties as the Organization class.  These 
subclasses are introduced in the reference data model to differentiate different types of Organizations. 

4.1.2 Person 
The Person class represents all of the personnel who participate in projects and experiments.  Detailed 
description of the Person class is shown in the following table. 

Slot Name Type Cardinality Description 
firstName String 1 A given name or the name that occurs first in a given name. 

lastName String 1 Surname; a name shared in common to identify the members 
of a family. 

title String 0:1 A description or role of a person. 
personID String 1 Unique identification number assigned for a person. 
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phoneType String 0:* The type of phone or fax number of the Person. 
phoneNumber String 0:* Digital telephone number or fax number. 
address String 0:* Places where a Person works at or lives in. 

email String  0:* 
Email addresses such as "name@location.org", used within a 
system for sending and receiving messages electronically over 
a computer network. 

homepage String 0:* The URL of the homepage of the Person. 

affiliation :Organization 0:* 
The Organization with which the Person is associated. If the 
Person is an employee, this would be the company that 
employs the Person. 

otherInfo String 0:* Other information about the Person, such as his/her 
responsibilities to a Project. 

4.1.3 Site 
The Site class is modeled to represent large-scale facilities, such as the site that hosts shake table or 
centrifuge equipment.  A Site is defined as having an inventory of devices, equipments, and personnel.  
The relationships of the Site class with other classes are shown in Figure 8.  Detailed description of the 
Site class is shown in the following table. 

 

Figure 8 – Relationship of Site with Other Classes (generated by Protégé) 

Slot Name Type Cardinality Description 
name String 1 The name of a unique Site. 
shortDescription String 0:1 A short description of a Site. 
longDescription String 0:1 More detailed description of a Site. 
hasPrimary 
Equipments 

:Primary 
Equipment 0:* A list of PrimaryEquipment belonged to the Site. 

hasSecondary 
Equipments 

:Secondary 
Equipment 0:* A list of SecondaryEquipment belonged to the Site. 

hasTertiary 
Equipments 

:Tertiary 
Equipment 0:* A list of TertiaryEquipment belonged to the Site. 

hasRole 
Persons 

:Role 
Person 0:* A Site has a list of RolePersons, which represent Persons 

who play different roles for the Site. 
hostedBy :Organization 0:1 The organization where a Site is hosted by. 
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4.2 Activity 
The Activity class is designed to support project level modeling.  Common properties of Activity classes 
include objective, description, startDatetime, endDatetime, and others.  The duration of an Activity can 
be calculated by using the startDateTime together with the endDateTime of an Activity.  The 
startDateTime of an Activity can also be used to identify which Activity happens first, i.e. to sort out the 
sequence of several Activities.  There are four basic types of Activities, including Project, Task, 
EventGroup, and Event.  As shown in the class hierarchy of the Activity class (Figure 9), direct 
subclasses of the Activity class include Project, SingleSiteActivity, and MultiSiteActivity.  Detailed 
description of the Activity class is shown in the following table.    

Slot Name  Type Cardinality Description 
name String 1 The name of an Activity. 
shortDescription String 0:1 A short description of an Activity. 
longDescripton String 0:1 More detailed description of an Activity. 
local 
TimeZone String 0:1 Local time zone in effect at the time the activity started. 

startDateTime DateTime 0:1 The beginning time of an Activity. 
endDateTime DateTime 0:1 The ending time of an Activity. 

 

Figure 9 – Class Hierarchy of Activity (generated by Protégé) 

4.2.1 Project 
A Project is a collection (organized group) of related tasks carried out by certain organizations and 
designed to achieve specific goals.  A Project can be sponsored by one or more funding sources.  A 
Project includes one or more related Tasks.  For example, the CUREE-Caltech Woodframe project was 
sponsored by CUREE (Consortium of Universities for Research in Earthquake Engineering), had many 
tasks/activities to study the performance of woodframe structures, and with the objective to reduce 
earthquake losses to woodframe construction (http://www.curee.org/projects/woodframe/index.html).  
Detailed description of the Project class is shown in the following table.  
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Slot Name Type Cardinality Description 
objectives String 0:* The objectives of a project. 

contractID String 0:1 NSF sponsorship number or other identification number 
for a NEES project contract. 

NEESCode String 1 A unique reference code assigned by the NEES 
Consortium for the Project. 

keyWords String 0:* Key words and references for finding information. 

Acknowledge 
ments String 0:* 

Acknowledgements represent financial support, 
contributions of special instrumentations, or other types of 
sponsorship associated with the Project. 

executedBy :Organization 0:* A list of organization(s) that execute the Project. 
hasTasks :Task 0:* A collection of Tasks that associated with the Project. 
has 
MultiSiteTasks :MultiSiteTask 0:* A list of MultiSiteTasks that associated with the Project. 

hasSites :Site 0:* A list of Sites at which the project executed. 
has 
Sponsors :Organization 0:* A Project has sponsors identified as Organizations. 

has 
RolePersons :RolePerson 0:* A Project has identified RolePerson, which represents a 

Person plays a particular role in an Activity 
has 
Publications :Publication 0:* A Project has Publications identified with them, and/or 

produced through the Project. 

4.2.2 Task 
A Task belongs to a particular Project and contains one or more EventGroups.  Each Task typically 
serves a specific role in a Project.  In case of an experiment, each Task has a distinct 
InfrastructureSetup.  In other words, any changes to the InfrastructureSetup would initiate a new Task.  
For example, Task 1.1.1 of the CUREE-Caltech Woodframe project refers to the shake table test of a 
simplified two-story single-family house [9].  Detailed description of the Task class is shown in the 
following table.  

Slot Name Type Cardinality Description 
keyWords String 0:* Key words and references for finding information. 
has 
RolePersons :RolePerson 0:* A Task has several identified RolePersons. 

has 
Publications :Publication 0:* A Task has Publications identified with them, and/or 

produced through the Task. 
has 
EventGroups :EventGroup 0:* A Task has a list of EventGroups, which is defined as a 

collection of Events. 

hasInfrastructure 
Setups 

:Infrastructure 
Setup 0:* 

A Task has a list of InfrastructureSetups.  Any major 
changes to the InfrastructureSetup would initiate a new 
Task. 
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4.2.3 EventGroup 
An EventGroup is defined as a collection of Events.  Any change to the data acquisition setup, sensor 
setup or the specimen setup would initiate a new EventGroup.  The sequence of EventGroups in a Task 
is determined by their startDateTime.  For example, Test Phase 6 of Task 1.1.1 of the CUREE-Caltech 
Woodframe project is identified as an EventGroup because the test structure (specimen) has been 
modified after Test Phase 5 [9].  Detailed description of the EventGroup class is shown in the following 
table. 

Slot Name Type Cardinality Description 
hasEvents :Event 0:* An EventGroup has a list of associated Events. 

hasDAQSetups :DAQSetup 0:* 
An EventGroup has a list of DAQSetups, which represent 
the setup of electronic devices whose primary purpose is to 
acquire data. 

hasSensor 
Setups 

:Sensor 
Setup 0:* 

An EventGroup has a list of SensorSetups, which define 
the setup of Sensors, and the setup of Sensors with respect 
to Specimen. 

hasSpecimen 
Setups 

:Specimen 
Setup 0:* An EventGroup has a list of SpecimenSetups, which define 

the setup of Specimen with respect to PrimaryEquipment. 

4.2.4 Event 
An Event, which is the atomic level of Activity, refers to each single run of an experiment or a 
simulation.  Events within an EventGroup may have different input motions, loading protocols, etc.  For 
each Event, certain outputs, such as sensor readings or simulation results, are generated and recorded.   
The sequence of Events in an EventGroup is determined by their startDateTime.  Three types of Event 
are defined in the model, namely ExperimentEvent, ProcessedEvent and SimulationEvent.  An example 
ExperimentEvent is a particular test within Test Phase 6 of Task 1.1.1 of the CUREE-Caltech 
Woodframe Project [9].  Detailed description of the Event class is shown in the following table. 

Slot Name Type Cardinality Description 

testType String 0:1 Types of tests such as shake table, centrifuge, tsunami, 
reaction wall, various field tests, and etc. 

hasWave 
FormSetups 

:WaveForm 
Setup 0:* An Event has a list of WaveFormSetups, which are 

essentially the input. 
hasOutput 
Data :Folder 0:* An Event has output data, which includes raw or processed 

data.  The output can be organized in Folders. 

4.2.5 MultiSiteActivity 
MultiSiteActivity is a collection of Tasks, EventGroups and Events that may be carried out at more than 
one Site.  MultiSiteActivity is used to establish the link among related Activities, which may be carried 
out at different Site but serve to achieve a common goal.  MultiSiteActivity class has several subclasses, 
including MultiSiteTask, MultiSiteEventGroup, and MultiSiteEvent.  The details of MultiSiteActivity 
class and its subclasses are shown in the following table.  
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Slot Name Type Cardinality Description 

MutiSiteActivity 

hasSite :Site 1:* A list of Sites where all the MultiSiteActivities are 
carried out. 

MultiSiteTask is defined as a collection of Tasks, which are related and may be carried out at 
different Sites.  MultiSiteTask contains one or more MultiSiteEventGroups. 
hasTasks :Task 0:* A MultiSiteTask has a list of Tasks associated with it. 
hasMultiSite 
EventGroups 

:MultiSite 
EventGroup 0:* A MultiSiteTask has a list of MultiSiteEventGroups. 

MultiSiteEventGroup is defined as a collection of EventGroups which are related and may be carried 
out at different Sites.  MultiSiteEventGroup contains one or more MultiSiteEvents. 
has 
EventGroups :EventGroup 0:* A MultiSiteEventGroup has a list of EventGroups. 

EventGroup is defined as a collection of Events. 
hasMultiSite 
Events 

:MultiSite 
Event 0:* A MultiSiteEventGroup has a list of MultiSiteEvents. 

MultiSiteEvent is defined as a collection of Events which are related and may be carried out at 
different Sites.  The Event can be an experiment or a simulation. 

hasEvents :Event 0:* A MultiSiteEvent has a list of Events.  Event is defined 
as one run of an experiment or a simulation. 

4.2.6 Layout of Activity Classes 
The reference data model explicitly models certain Activities that are carried out at multiple Sites.  

 shows an example project that has a single site Task (e.g. Task1) and a MultiSiteTask (e.g. 
M_Task1).  The MultiSiteTask M_Task1 has Tasks that are undertaken at both Site1 and Site2.  The 
MultiSiteEvent M_E1 has an Event E2 at Site1 and an Event E4 at Site2, and the MultiSiteEvent M_E2 
has an Event E3 at Site1 and an Event E5 at Site2.  As shown in , although Project does not 
directly contain Task2 that takes place at Site2, Task2 can still be accessed from the Project since 
M_Task1 contains Task2. This design enables the support of the types of experiments (such as the 
MOST experiment [1]) that are carried out either simultaneously or independently at several Sites. 

Figure 10

Figure 10
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Figure 10 – Layout of an Example Project 

4.3 Apparatus 
Apparatus is defined as any equipment, specimen, or computational resource that may be used in an 
Activity.  In the current version of the reference data model, the direct subclasses of Apparatus include 
Specimen, PrimaryEquipment, SecondaryEquipment and TertiaryEquipment.  Explicit modeling of 
Specimen is not considered in the reference model [23].  Instead, only the most basic modeling is 
provided (as a collection of descriptive files, drawings, and/or photos).  This design reflects current 
approach used to describe specimen in earthquake engineering experiments.  However, the Specimen 
class can be extended to support other, more detailed, models.  Detailed description of the Apparatus 
class is shown in the following table.  

Slot Name Type Cardinality Description 
name String 1 The name of an Apparatus. 
shortDescription String 0:1 A short description of an object. 
longDescription String 0:1 More detailed description of an Apparatus. 

hasInfoFolder :Folder 0:* The Folder that contains all the related information (in the 
forms of files) of an Apparatus. 

4.3.1 PrimaryEquipment 
PrimaryEquipment is the major equipment that is used for the execution of an experiment with respect 
to a specific research area.  As shown in , direct subclasses of PrimaryEquipment are 
ShakeTableEquipment, CentrifugeEquipment, WaveBasinEquipment, FieldTestEquipment, and 
LargeScaleTestEquipment.  Detailed description of individual PrimaryEquipment will be contained in 
the site specifications database [7].  Other types of PrimaryEquipment can be added to the data model as 
needed.  

Figure 11

The current description of the PrimaryEquipment class is shown in the following table.  These 
properties are shared by all its subclasses.  More sophisticated modeling of different types of 
PrimaryEquipment can be added to the data model if necessary. 

Slot Name Type Cardinality Description 
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manufacturer String 0:1 Entity that manufactured the apparatus. 
operators Person 0:* Persons who operate the PrimaryEquipment 

hasFigures :VisualFile 0:* A PrimaryEquipment has a list of Figures, such as Photos and 
Drawings. 

 

 

Figure 11– Class Hierarchy of PrimaryEquipment (generated by Protégé) 

4.3.2 SecondaryEquipment 
SecondaryEquipment may be a component of the PrimaryEquipment or may be a piece of equipment 
that facilitates the execution of an Event, data collection, and/or observation.  Detailed description of the 
SecondaryEquipment class is shown in the following table.  

Slot Name Type Cardinality Description 
owner :Organization 0:1 The organization that the SecondaryEquipement belongs to. 
manufacturer String 1 The manufacturer of the apparatus. 

serialNumber String 1 Part (serial) number of the apparatus, usually given by the 
manufacturer. 

manufacturer 
ModelNumber String 1 Model number that uniquely identifies the manufacturer. 

manufacturer 
PartNumber String 1 Part number that identifies apparatus; this number is unique to 

the manufacturer 

hasFigures :VisualFile 0:* A SecondaryEquipment has a list of Figures, such as Photos 
and Drawings. 

The class hierarchy of SecondaryEquipment is shown in .  The direct subclasses of the 
SecondaryEquipment class include Sensor, ControlSystem, TelepresenceDevice, DAQDevice, 
HydraulicActuator, and ShakingSystem.  Other types of SecondaryEquipment can be added to the data 
model as needed. 

Figure 12
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Figure 12 – Class Hierarchy of SecondaryEquipment (generated by Protégé) 

One important type of SecondaryEquipment is the equipment and sensors used for data acquisition.  
Data schemas for describing sensors are available – one example is the SensorML [5] developed by 
OpenGIS Consortium.  The reference data model includes a sensor model that is designed specifically to 
support earthquake engineering experiments.  The data acquisition equipment is modeled as a collection 
of classes, including Sensor, DAQCable, DAQChannel, and DAQSystem. Figure 13 shows the 
relationships and the slots of these classes.  Typically a data acquisition system involves at least three 
main components:  (1) the sensors which respond to a physical stimulus and generate analog voltage 
signals; (2) a DAQchannel (a.k.a. signal conditioner as part of a DAQSystem) which receives the signal 
and uses predefined filter, gain, offset, excitation, sensitivity (calibration) information for Analog-to-
Digital (A/D) and Engineering Unit (EU) conversions; and (3) a PC unit which uses some 
communications link (serial port, phone modem, radio modem, etc.) to retrieve the data.  It is noted that 
A/D hardware can be either external to or part of the signal conditioner. 

DAQChannel

DAQSystemSensor

DAQCable PC and/or
External A/D

Sampling

owner
manufacturer
serialNumber
otherInfo

owner
manufacturer
serialNumber
otherInfo
channelid
filter
samplingRate
gain
offset
excitationVoltage
unit

owner
manufacturer
serialNumber
otherInfo
cableid
length
connectorType

owner
manufacturer
serialNumber
otherInfo
sensorid
type
calibrationInfo
lastCalibrationDate
outputQuantity
minRange
maxRange

 

Figure 13 – Setup and Modeling of DAQ Devices 

 Sensor 

Sensor represents a device for the measurement of physical quantities.  Key components of sensor 
modeling include sensor identification, sensor location, constraints, platform attached by the sensor, 
coordinate reference system, sensor description, and measurement characteristics.  Detailed description 
of the Sensor class is shown in the following table.  
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Slot Name Type Cardinality Description 

sensorType String 0:1 Information sensed by the Sensor, e.g. acceleration, pressure, 
displacement, strain, temperature, and etc. 

minRange :Float 
Measurement 0:1 The minimum measurable quantity. 

maxRange :Float 
Measurement 0:1 The maximum measurable quantity. 

calibrationInfo :File 0:1 A file that contains calibration information, expressed as 
formula, table, etc. 

lastCalibration 
Date DateTime 0:1 The date of last calibration. 

outputQuantity String 0:1 Quantity that sensor puts out in response to the input, it can 
be voltage, current, charge, or human read. 

additional 
Specifications String 0:* Any additional information about the Sensor, e.g. dimension, 

weight, etc. 

 DAQChannel 

A DAQ (Data Acquisition System) channel is a digital computing means that accepts as its input a set of 
digital signals from which it generates as its output a second set of digital signals. DAQChannel collects 
signals from a connected Sensor, processes and transforms the signals, and transfers the signals to a 
DAQSystem for recording.  Detailed description of the DAQChannel class is shown in the following 
table. 

Slot Name Type Cardinality Description 
channel 
Location :DAQSystem 0:1 The DAQ (Data Acquisition System) System that the 

DAQChannel connects to. 
channelFilter String 0:1 Filter type of the DAQChannel, such as Butterworth. 

channelGain Float 0:1 
An increase in signal power, voltage, or current by an 
amplifier, expressed as the ratio of output to input. Also 
called amplification. 

channelUnit :Unit 0:1 A unit of measure of the DAQ (Data Acquisition) channel. 
channel 
Offset 

:Float 
Measurement 0:1 The offset value (measurement) of the DAQChannel. 

excitation 
Voltage 

:Float 
Measurement 0:1 The voltage measurement of the excitation current. 

hasSensor :Sensor 0:1 A Sensor that the DAQChannel is connected to. 

hasDAQCable :DAQCable 0:1 The cable that connects a Sensor to a DAQ (Data 
Acquisition System) Channel. 

samplingRate :Float 
Measurement 0:1 The frequency of sampling per unit time; the number of data 

points per unit time that a DAQ channel records data. 

4.3.3 TertiaryEquipment 
TertiaryEquipment is modeled as other general laboratory infrastructure details.  The class is used for 
certain information requested by the NEES Site Specification Database.  In the current version of the 
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data model, subclasses of TertiaryEquipment include ElectricalPower, HydraulicPower, and LAN.  
More detailed TertiaryEquipment modeling can be added to the data model if needed.  

4.3.4 Specimen 
Specimen is a primary component of the data model. A Specimen is one of many Apparatus used in 
conducting an Activity.  One or more Specimens may be created for a Project.  An Event or EventGroup 
is conducted utilizing the Specimens.  Detailed description of the Specimen class is shown in the 
following table.   

Slot Name Type Cardinality Description 

hasDescriptions :Descriptive 
File 0:* A Specimen has narrative descriptions and notes, which can 

be represented as DescriptiveFiles. 

hasFigures :Visual 
File 0:* A Specimen has a list of Figures, such as Photos and 

Drawings. 

hasSensorSetups :SensorSetup 0:* A specimen has a list of associated SensorSetups, which 
define the setup of Sensors with respect to Specimen.  

4.4 ApparatusSetup 
Universal modeling of the arrangement and setup of apparatus for all experiments is very difficult if not 
impossible.  Not only are there different types of experiments (such as shake table, pseudo-dynamic 
tests, centrifuge, and tsunami) and different materials (such as concrete, steel, wood, etc.), but also the 
geometry of the specimen, the arrangement of sensors, and the configuration of PrimaryEquipment may 
be too complicated and cumbersome to model.  For example, the “as-built” locations of sensors may be 
different from the prescribed “design” locations, and the precise physical locations (i.e., the coordinate 
x, y, z values) of sensors are often difficult to record.  Therefore, it is recommended that the 
development of ApparatusSetup model be focused on tools and methodologies that can capture and 
organize CAD drawings, sketched drawings and notes, photos, narrative descriptions, electronic notes, 
etc. 

The class hierarchy of AppartusSetup in the current reference data model is shown in Figure 14.  The 
InfrastructureSetup models the assembly and arrangement of the PrimaryEquipment used for a specific 
Task; any changes in InfrastructureSetup would trigger the launch of a new Task.  The SpecimenSetup 
deals with the information on how the specimen is set up with respect to PrimaryEquipment. The 
SensorSetup includes the arrangement (location, orientation, etc.) of Sensors used in an experiment.  
The DAQSetup models the physical and electrical setup of one or more devices whose primary purpose 
is to acquire data.  Any major change to SpecimenSetup, SensorSetup, or DAQSetup initiates a new 
EventGroup.  The InputDataSetup deals with the choice and organization of input data to an Event.  
Any change to a new InputDataSetup indicates the beginning of a new Event.  

 
Figure 14 – Class Hierarchy of ApparatusSetup (generated by Protégé) 
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The ApparatusSetup class defines three slots, which are shown in the following table.  

Slot Name  Type Cardinality Description 
name String 1 The name of the ApparatusSetup. 
shortDescription String 0:1 A short description of the ApparatusSetup. 
longDescripton String 0:1 More detailed description of the ApparatusSetup. 

4.4.1 PhysicalSetup 
The PhysicalSetup models the physical setup of Apparatus, including related infrastructure, 
specimen(s), and sensor(s).  The following table presents the detailed description of the PhysicalSetup 
class and its subclasses, including InfrastructureSetup, SensorSetup, and SpecimenSetup. 

Slot Name Type Cardinality Description 

PhysicalSetup: The physical setup of the related Apparatus, including related infrastructure, 
specimen(s), and sensor(s). 
setup 
Descriptions 

:Descriptive 
File 0:* The text descriptions or notes that describe the setup.   

setupFigures :VisualFile 0:* The figures and drawings that illustrate the setup.  
Locations (URI) to these image files need to be provided. 

InfrastructureSetup: The assembly and arrangement of the PrimaryEquipment and certain 
SecondaryEquipment used for a specific Task. General laboratory infrastructure is described under 
TertiaryEquipment and will not be modeled in InfrastructureSetup. 
hasPrimary 
Equipments 

:Primary 
Equipment 0:* Defines the PrimaryEquipments that are associated with 

the InfrastureSetup. 
hasSecondary 
Equipments 

:Secondary 
Equipment 0:* Defines the SecondaryEquipments that are associated with 

the InfrastureSetup 

SensorSetup: The arrangement (location, direction, etc.) of Sensors used in an EventGroup. 
hasSensors :Sensor 0:* A SensorSetup sets up multiple Sensors. 

hasSensor 
Locations 

:Apparatus 
Location 0:* 

Indicates the sensor and its associated location.  The 
location is represented in a coordinate system, which can 
be either global or local.  

SpecimenSetup: The setup of specimen is modeled by this class.  It is focused on how the specimen is 
set up with respect to PrimaryEquipment. 
hasPrimary 
Equipments 

:Primary 
Equipment 0:* A list of PrimaryEquipments that are used for the setup of 

Specimens.  
hasSpecimens :Specimen 0:* A SpecimenSetup defines the setup of a list of Specimens. 

4.4.2 DAQSetup 
DAQSetup represents the setup of one or more electronic devices whose primary purpose is to acquire 
data. It can be simple or complex, depending upon the needs. Typically a data acquisition system 
involves at least three main components. First, sensors respond to a physical stimulus and transmit 
signals or change electrical property such as resistance. Second, a datalogger measures the electrical 
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signal, converts it to a number and stores either that value or some statistics on that value (average, 
maximum, minimum, standard deviation, etc.). Third, a PC uses some communications link (serial port, 
phone modem, radio modem, etc.) to retrieve the data from the datalogger.  Detailed description of the 
DAQSetup class is shown in the following table. 

Slot Name Type Cardinality Description 

hasDAQ 
Channels 

:DAQ 
Channel 0:* 

DAQSetup has a list of DAQChannels, which collect signals 
from a connected Sensor, process and transform the signals, 
and transfer the signals to a DAQSystem for recording. 

hasFigures :VisualFile 0:* DAQSetup has a list of Figures, such as Photos and Drawings. 

hasSetupFiles :Numerical 
File 0:* DAQSetup has a list of NumericalFiles that define the setup of 

DAQ Devices. 

4.4.3 InputDataSetup 
The InputDataSetup models the input signals to an ExperimentEvent.  One type of input signal is 
waveform, which may be the record of a previous earthquake event or synthetic signals.  A subclass of 
the InputDataSetup class is WaveFormSetup, which models the setup of a waveForm for specified 
Event(s). Detailed description of the WaveFormSetup class is shown in the following table. 

Slot Name Type Cardinality Description 

hasDirection :Location 1 

WaveFormSetup has a defined direction from which the Wave 
was generated. The direction may be relative (to some part of 
the experiment apparatus) or measured using a coordinate 
system. 

hasWaveForm :WaveForm 1 A WaveFormSetup has a specified WaveForm. 

scaleFactor Float 1 A real number that is used to modify the original value of a 
quantity. 

4.5 DataElement 
DataElement represents all types of data that may serve as the input or be generated/processed during an 
Activity.  The DataElement normally serves as Input/Output to an Activity.  Types of DataElement 
include text document, publication, earthquake record, photo, CAD drawing, movie, etc. In the 
NEESgrid data/metadata effort, it is assumed that the data is saved in or translated into computer-
readable format. Therefore, a DataElement object is represented in the format (such as a file) that can be 
saved in computer memory, on disks, or in some kind of data storage repository.  Figure 15 presents part 
of the class hierarchy of the DataElement class.  Several subclasses of the Publication class are not 
shown in  for the purpose of keeping the figure readable.  There are no properties (slots) 
defined for the DataElement class.  

Figure 15
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Publication 

Figure 15 -- Class Hierarchy of DataElement (generated by Protégé) 

4.5.1 Publication 
Subclasses within this class relate to any scientific document published in a conference or by a research 
institution, such as Book, Journal, Proceedings, TechnicalReport, Thesis, and etc. More types of 
Publications can be added later if needed.  Detailed description of the Publication class is shown in the 
following table. 

Slot Name Type Cardinality Description 

title String 1 A descriptive or general heading (as of a chapter in a book) of a 
Publication 

authors :Person 0:* The Persons that originate, write, and/or create the Publication. 
year String 1 The year when the Publication was published. 

keyWords String 0:* Words used as a reference point for finding other words or 
information. 

URI String 0:1 Indicates the location or identifier of a file object at which the 
Publication resides. 

4.5.2 File 
This class represents an object that can be saved in memory, on disks, or in the repository.  A file can be 
saved in any computer-readable format.  Subclasses of the File class include NumericalFile, VisualFile, 
InputFile, DataFile, and DescriptiveFile.  Detailed description of the File class is shown in the following 
table. 

Slot Name Type Cardinality Description 
name String 1 The name of the File. 
description String 0:1 A simple description of the object. 
URI String 1 Indicates the location or identifier of a file object. 
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4.5.3 InputData 
InputData is defined as the control signals to the Apparatus.  A wavelet or waveform is built up of many 
sinusoidal waves of varying frequency and amplitude. The variation in frequency and amplitude of a 
particular wavelet can be shown as a frequency spectrum. By assuming a waveform in a model for the 
earth, an artificial seismic reflection record can be manufactured. A one-dimensional synthetic 
seismogram is formed by simply convolving a waveform with a reflection coefficient.   

StrongMotion is a subclass of the InputData class.  The StrongMotion class represents input strong 
ground motions.  For future implementation, it can be linked to the existing strong ground motion 
databases.  Detailed description of the StrongMotion class is shown in the following table. 

Slot Name Type Cardinality Description 
name String 1 The name of the InputData. 
description String 0:1 A simple description of the InputData. 

motionRecord :Numerical 
File 1 The strong motion record, usually organized as columns of 

real numbers. 
recordUnit :Unit 0:1 The Unit in which a time series record is presented. 

samplingRate :Float 
Measurement 0:1 The frequency of sampling per unit time; the number of data 

points per unit time that records StrongMotion data. 

scaleFactor Float 0:1 A real number that is used to modify the original value of a 
quantity. 

peak 
Acceleration 

:Float 
Measurement 0:1 

Maximum absolute value of acceleration that is recorded or 
that can be achieved by an apparatus. The peak acceleration or 
rate of change of velocity with respect to time in a specified 
time series record. 

peak 
Velocity 

:Float 
Measurement 0:1 Maximum absolute value of velocity that is recorded or that 

can be achieved by an apparatus. 
peak 
Displacement 

:Float 
Measurement 0:1 Maximum absolute value of displacement that is recorded or 

that can be achieved by an apparatus. 

4.6 ComplexDataType 
ComplexDataType is defined in the reference data model to represent any data type that is not a simple 
data type such as integer, float, boolean, or character string.  There are no properties (slots) defined for 
the ComplexDataType class. In the current version of the reference data model, the following 
ComplexDataType are provided. 

4.6.1 Folder 
This class represents a named or designated location where an object (DataElements, including Files, 
InputData, and Publications) can be saved in memory, on disks, or in the repository, in any computer-
readable format.  Detailed description of the Folder class is shown in the following table. 

Slot Name Type Cardinality Description 
name String 1 The name of the Folder. 
description String 0:1 A simple description of the Folder. 

hasFiles :DataElement 0:* A Folder has a list of DataElements, which can be File, 
InutData, Parameter or Publication. 
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4.6.2 RolePerson 
This ComplexDataType is defined to represent a particular role that a person plays in an Activity.  
Possible roles include principle investigator, co-investigator, research associate, postdoctoral assistant, 
graduate assistant, undergraduate student, technician, and etc.  Detailed description of the RolePerson 
class is shown in the following table. 

Slot Name Type Cardinality Description 
hasPerson :Person 1 A RolePerson has a Person. 

hasRole String 1 

RolePerson has a role within a project, such as principle 
investigator, co-investigator, research associate, postdoctoral 
assistant, graduate assistant, undergraduate student, technician, 
and etc. 

isActive Boolean 0:1 Indicator as to whether a Person is active or inactive, related to a 
specified project. 

4.6.3 Unit 
A precisely specified quantity in terms of which the magnitudes of other quantities of the same kind can 
be stated. (Note: A good way to model unit is yet to be determined.)  A detailed description of the Unit 
class is shown in the following table. 

Slot Name Type Cardinality Description 
name String 1 The name of the Unit. 
description String 0:1 A simple description of the Unit. 

conversion Float 0:1 The conversion rate from one Unit to another.  For instance, a foot 
equals to 12 inches. 

relativeTo :Unit 0:1 A way to describe a value, as relative to another particular Unit. 

4.6.4 Measurement 
The Measurement class represents the dimensions, capacity, or amount of something ascertained by 
measuring a measured quantity.  A subclass of the Measurement class is FloatMeasurement, which is 
the Measurement described using real number(s), single-precision floating point.  Float is a primitive 
data type (size/format: 32-bit IEEE 754).  A detailed description of the FloatMeasurement class is 
shown in the following table. 

Slot Name Type Cardinality Description 

value Float 1 A numerical quantity that is assigned or is determined by 
calculation or measurement. 

hasUnit :Unit 1 Defines a specified Unit of measure. 

4.6.5 DateTime 
The time at which an event occurs, recorded as required.  DateTime is externally represented as year, 
month, day, hour, minute, second, millisecond, etc., and is internally saved as a long integer.  A detailed 
description of the DateTime class is shown in the following table. 
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Slot Name Type Cardinality Description 
year Integer 1 A period of approximately the duration of a calendar year. 

month Integer 1 
A measure of time corresponding nearly to the period of the 
moon's revolution and amounting to approximately 4 weeks or 30 
days or 1/12 of a year. 

day Integer 1 The 24-hour period during which the earth completes one rotation 
on its axis. 

hour Integer 1 The time of day determined on a 24-hour basis. 
minute Integer 1 A unit of time equal to one sixtieth of an hour, or 60 seconds.  
second Integer 1 The 60th part of a minute of time. 
millisecond Integer 1 One thousandth of a second. 

4.6.6 Angle 
The Angle is the measurement of an angle or of the amount of turning necessary to bring one line or 
plane into coincidence with or parallel to another.  A detailed description of the Angle class is shown in 
the following table. 

Slot Name Type Cardinality Description 

degreeType String 1 
The hemisphere (N, E, S, W) is attached to the degrees as an 
attribute. Note: the values of '+' for N and E, and '-' for S and W 
are also permitted. 

degree Integer 1 A unit of latitude or longitude, equal to 1/360 of a great circle. 

minute Integer 1 A unit of angular measurement equal to one sixtieth of a degree, 
or 60 seconds. 

second Integer 1 The 60th part of an angular measurement. 

4.6.7 Location 
The geometry/location is needed for finding sensor location, representing a specimen model, etc.  The 
spatial location is currently modeled as the values in a coordinate system (i.e., x, y, z values).  It should 
be noted that, very often, geometry/location information are specified within CAD drawings or text 
documents, etc.  Referencing scheme may be added to relate an entity to the source that defines the 
location. 

In the reference NEESgrid data model, Location is defined as an abstract class to represent a place 
where some objects, equipment or sensors are located or positioned.  There are no slots defined for the 
Location class.  A subclass of the base Location class is SpatialLocation, which is given in terms of 
spatial coordinates.  The coordinate system can be either global or local, depending on if the 
relativeToLocation is specified.  Detailed description of the SpatialLocation class is shown in the 
following table. 

Slot Name Type Cardinality Description 

name String 1 A word or set of alphanumeric characters by which any entity is 
identified or distinguished from others. 

description String 0:1 A simple description of the object. 
coordX Float 0:1 The X location given in terms of spatial coordinates. 
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coordY Float 0:1 The Y location given in terms of spatial coordinates. 
coordZ Float 0:1 The Z location given in terms of spatial coordinates. 
coordUom :Unit 0:1 The unit of measurement for the defined coordinate system. 
location 
Method String 0:1 A description of the method by which the location reference point 

coordinates was obtained. 

location 
Accuracy String 0:1 

An estimate of the accuracy of the location reference point. As this 
may be subjective, the description may be quantitative or 
qualitative. 

relativeTo 
Location :Location 0:1 The origin of the local coordinate system.  If it is specified, the 

coordinate system will be local. 

4.6.8 ApparatusLocation 
The ApparatusLocation represents the particular location of an Apparatus.  It is especially used for 
indicating the location of sensors.  Detailed description of the ApparatusLocation class is shown in the 
following table. 

Slot Name Type Cardinality Description 
hasApparatus :Apparatus 1 The Apparatus (e.g. Sensor) that needs a location value. 
theLocation :Location 1 The physical location where the Apparatus resides. 

5 Validation and Usability Test 
The usability of the reference data model has been tested with legacy experimental data.  At the time of 
the validation tests, Project Browser and data ingestion tools were under development and were not 
available.  Therefore, Protégé [10] was employed as the interface to input experimental data and local 
file system was used as the storage medium.  For illustration purpose, this report focuses on the data set 
obtained from a Mini-MOST experiment [21]. 

5.1 Mini-MOST Experiment 
The main purpose of the Mini-MOST experiment is to show the capability of the various NEESgrid 
service components using a small-scale physical experimental setup [21]. The Mini-MOST 
experimental hardware, as implied by its name, is small in size and can be easily packed and shipped to 
experimental sites.  The Mini-MOST experiment provides a platform for students and researchers to 
become familiar with the NEESgrid software and to gain first-hand experience in using the NEESgrid 
services.  The Mini-MOST experiment can also be utilized for educational demonstration and software 
installation debugging.  For the validation test of the reference data model, the data were generated from 
a particular Mini-MOST test on February 28, 2004, at the University of Illinois at Urbana-Champaign. 

5.2 Inputting Experimental Data 
Experimental data from the Mini-MOST experiment was ingested using Protégé [10] and saved as files 
in a local file system.   shows loading an example project named miniMOST-1 into the 
system.  Data are inputted using the slots (properties) as defined in the reference data model.  If a slot is 
defined as primitive type, such as Integer, Real Number, Time, or String, etc., we can simply type in the 
value.  If a slot is defined as Objects, then we can either choose a previously created object or create a 
new one.  If a slot is defined as type “URI” (which would normally refer to a file), we can save the 

Figure 16

Peng and Law www.neesgrid.org 9/16/2004 



NEESgrid TR-2004-40  Page 31 

particular file by entering the URI for the file location. Other types of objects, such as Task, 
EventGroups, Event, SensorSetup, InfrastructureSetup, Sensor, Specimen, and etc., can be created and 
input through an interface similar to the one shown in Figure 16.  All the objects related to Mini-MOST 
experiment have been created and saved; the metadata and information about the data are saved as an 
OWL (Web Ontology Language) (http://www.w3.org/2001/sw/WebOnt/) file.  Other experimental data, 
such as specimen photos and sensor readings, can be stored in a file on a web server with its URI saved 
in the OWL file.   

5.3 Browsing Experimental Data 
For validation purpose, we implemented a project viewer to retrieve the saved data and to view the data 
on a web browser according to the data model.  The program is implemented using Java Servlet 
technology (http://java.sun.com/products/servlet/), and the parsing of the OWL file is handled by using 
Jena [19].  Figure 17 shows the front page of the project viewer with a list of saved projects.  When we 
click on a particular project, say miniMOST-1, the details of the project will be shown on the browser, 
as illustrated in Figure 18. 

 

Figure 16 – Using Protégé to Input Mini-MOST Experiment Data 
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Figure 17 – The Front Page of the Project Viewer 

 

Figure 18 – Detailed Display of the Project MiniMOST-1 
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As defined in the reference data model, a Project is a collection (organized group) of Tasks designed to 
achieve specific goals and objectives.  Following the model, we can navigate and access all the Tasks 
that belong to the Project.  Figure 19 shows the details of a particular Task named 
miniMOST_at_UIUC.  One property (or a slot) of a Task object is InfrastructureSetup, which models 
the assembly and arrangement of the PrimaryEquipment used for a specific Task.  We can access the 
details of the InfrastructureSetup object by clicking on the highlighted button as shown in .   Figure 19

Figure 19 – Detailed Display of the Task miniMOST_at_UIUC 

Figure 20 presents the details of the InfrastructureSetup, which essentially is a collection of texts, 
documents (in the format of Word, PDF, Excel, etc.), figures and drawings stored as files.  Files are 
saved in a web server and their URIs are saved as metadata.  The files can be dynamically downloaded 
and shown on a web browser, as illustrated in . Figure 21

Each Task in a project may contain one or more EventGroups.  The EventGroup object can be accessed 
by clicking on the highlighted button shown in .  The details of a particular EventGroup object 
named miniMOST_UIUC_EventGroup_2004 are presented in Figure 23. 

Figure 22
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Figure 20 – Detailed Display of the InfrastructureSetup 

(a) MiniMostWiring.pdf 
 

(b) Mini_MOST_overall.jpg 

Figure 21 – Access of Files Representing the InfrastructureSetup 
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Figure 22 – Detailed Display of the Task miniMOST_at_UIUC 

 

Figure 23 – Detailed Display of the EventGroup 
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An EventGroup is defined as a collection of Events, each of which can be accessed from the 
EventGroup object.  The details of an example Event named miniMOST_test_0228 are shown in 

.  An Event, which is the atomic level of Activity, refers to each single run of an experiment or a 
simulation.  Experimental results, such as SensorReading, can be accessed from an Event object, as 
shown in . 

Figure 
24

Figure 24 – Detailed Display of the Event miniMOST_test_0228 

Figure 25

Figure 25 – Access of SensorReading for the Event miniMOST_test_0228 
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The EventGroup object also contains the objects of SpecimenSetup, SensorSetup, and DAQSetup.  
 shows the details of the SensorSetup object, which belongs to the EventGroup named 

miniMOST_UIUC_EventGroup_2004.  Again, the setup is described in texts, documents, drawings and 
picture files.  Each file can be accessed by simply following the URI for the file.  For example, 

 shows a photo for the setup of a LVDT sensor. 

Figure 26

Figure 26 – Detailed Display of the SensorSetup 

Figure 
27

Figure 27 – Access of Photo for the LVDT 
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6 Summary and Discussions 
In this report, details of a reference NEESgrid data model have been presented.  The intention of this 
document is to give a description of the data model and to solicit feedback and comments from the 
NEES community.  Although the reference data model described in this report focuses on shake table 
experiments, many of the features can be applied or extended to centrifuge, field tests, tsunami, pseudo-
dynamic and other types of experiments.  Six base classes and their subclasses are presented, and the 
relationships among these classes are defined.  These classes represent the essential elements to support 
the end-to-end solution of NEESgrid data efforts. We believe the proposed reference data model is 
flexible and extendible: (1) new classes can easily be introduced; (2) the slots of a particular class can be 
added, deleted, or modified; and (3) the relationships among the classes can be altered.  Other models, 
such as specimen model, unit model, geometry/location model, and Site model, can be appended to (or 
even replace certain parts of) the reference data model.   

To validate the reference data model, we have populated the model with the mini-MOST experimental 
data provided by UIUC. This validation process helps evaluate the completeness, flexibility and 
usability of the data model. The usability test has demonstrated that the data model is sufficiently 
comprehensive to save and organize all the mini-MOST data.  In addition, as the experimental data are 
organized according to the data model, browsing and accessing them are fairly intuitive and 
straightforward. Efforts will continue to validate, evaluate and refine the reference data model using 
other experimental projects and data.  In addtion, a general Project Browser for the ingestion and 
browsing of NEESgrid data is currently under development by the NEES System Integrator team. 

We would like to emphasize that data model development is a community effort.  Suggestions and 
feedback from the NEES community and stakeholders are important in the development process.  The 
reference data model described in this document is based on version 1.0, which has been released for the 
review of the NEES community at the beginning of July 2004.  Data model development is an iterative 
and evolving process, and the reference data model will continue to be tested, validated, modified and 
revised, even beyond the current development effort.  We look forward to receiving and to incorporating 
any valuable suggestions from the NEES community. 

The development of NEESgrid data models, together with the current efforts of developing data 
ingestion tools, the data repository, and tools that directly support experimental activities, all serve as 
initial steps towards data sharing, archival and curation.  Data curation implies well-planned active 
management of information and involves the production, conservation, preservation and access of the 
data [18].  The active management of data must ensure that the people to whom the data is relevant can 
find the data.  Furthermore, data curation needs to ensure supports of data/information reuse and 
facilitate generation of new information and knowledge from the saved data.  Continuing developments 
in data curation effort are recommended. 
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