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ABSTRACT 
A structural health monitoring problem is often cast in the context of a statistical pattern recognition paradigm, 
where damage is inferred by comparing test signals with previously recorded baseline signals. However, 
operational and environmental variations of a system after the collection of the baseline signals can often mask 
signal changes caused by damage when the statistical pattern comparison is performed. To address this issue for 
continuous online monitoring, a damage detection technique, which does not rely on any past baseline signals, is 
proposed to assess damage in composite structures such as wings of an unmanned combat aerial vehicle 
Predator. A time reversal concept of modern acoustics has been adapted to guided-wave propagation to improve 
the detectability of local defects in composite structures. It is demonstrated that the original input waveform could 
be successfully reconstructed in a composite plate through the enhanced time reversal method. However, this 
time reversibility of Lamb waves is violated when wave distortion due to wave scattering is caused by a defect 
along a wave propagation path. Examining the deviation of the reconstructed signal from the known initial input 
signal allows instantaneous identification of damage without requiring the baseline signal for comparison. 
 
INTRODUCTION  
A structural health monitoring problem can often be cast in the context of a statistical pattern recognition 
paradigm, in which a damage state of the system is inferred by comparing test data measured at a questionable 
state of the system with baseline data obtained from the initial condition of the system [15]. It has been reported 
that in-service structures experience large variation of their dynamic characteristics due to their continuously 
changing operational and environmental conditions [14]. When a damage state of the system is inferred from the 
pattern comparison of the baseline and test data, it is critical to differentiate the signal changes due to damage 
from those caused by the undesired operational and environmental variation of the system. This procedure is 
referred to as data normalization [14]. In this paper, the issue of data normalization is addressed by developing an 
instantaneous damage detection system that does not require any past baseline signals. By removing the 
dependency on the prior baseline data, the proposed damage detection system becomes less vulnerable to 
operational and environmental variation that might occur throughout the lifespan of the system. In stead of 
comparing the baseline and test signals, a damage-sensitive feature is extracted by applying a known local 
excitation and comparing the known input with the response signal. This process is based on the concept of time 
reversal acoustics. Then, a statistical damage classifier is constructed based on a consecutive outlier analysis to 
identify the location and area of delamination without relying on any knowledge of prior data. 

This paper is organized as follows. The experimental setup for detecting delamination in a composite plate is 
described. Then, the time reversal process used for extracting a damage-sensitive feature is introduced, and a 
statistical damage classifier is developed based on the concept of the consecutive outlier analysis. The 
experimental results are presented, and this paper concludes with discussions and summary. 
 
EXPERIMENTAL SETUP 
The overall test configuration of this study is shown in Figure 1 (a). The test setup consists of a composite plate 
with a surface mounted sensor layer, a personal computer with a built-in data acquisition system, and an external 



signal amplifier. The dimension of the composite plates is 60.96 cm x 60.96 cm x 0.6350 cm (24 in x 24 in x 1/4 
in). The layup of this composite laminate contains 48 plies stacked according to the sequence [6(0/45/-45/90)]s, 
consisting of Toray T300 Graphite fibers and a 934 Epoxy matrix. A commercially available thin film with 
embedded Lead Zirconate Titanate (PZT) sensors was mounted on one surface of the composite plate as shown 
in Figure 1 (b). A total of 16 PZT patches were used as both sensors and actuators to form an “active” local 
sensing system. Because the PZTs produce an electrical charge when deformed, the PZT patches can be used 
as dynamic strain gauges. Conversely, the same PZT patches can also be used as actuators, because elastic 
waves are produced when an electrical field is applied to the patches [18]. In this study, one PZT patch was 
designated as an actuator, exerting a predefined waveform into the structure. Then, the adjacent PZTs became 
strain sensors and measure the response signals. This actuator-sensor sensing scheme is graphically shown in 
Figure 1 (b). This process of the Lamb wave propagation was repeated for different combinations of actuator-
sensor pairs. A total of 66 different path combinations were investigated in this study. Actual delamination was 
seeded to the composite plate by shooting a 185 gram steel projectile into the composite plate. Cables were 
attached to one side of the plate so that the plate could hang from the test frame in a free-free condition. Several 
impact tests were repeated varying the impact speed of the steel projectile around 31 m/s to 46 m/s. The data 
collection using the active sensing system was performed before and after the impact test.  
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(a) Testing configuration 

Actuator

Sensor
Sensor

Sensor

1 5 12 16

2 6 11 15

3 7 10 14

4 8 9 ActuatorActuator

SensorSensor
SensorSensor

SensorSensor

1 5 12 161 5 12 16

2 6 11 152 6 11 15

3 7 10 143 7 10 14

4 8 94 8 9

 
(b) A layout of the PZT sensors/actuators 

Figure 1: An active sensing system for detecting delamination on a composite plate 
 
EXPERIMENTAL SETUP 
The origin of the time reversal method traces back to the time reversal acoustics [6]. According to the time 
reversal concept, an input signal can be reconstructed at an excitation point (point A) if an output signal recorded 
at another point (point B) is reemitted to the original source point (point A) after being reversed in a time domain 
as shown in Figure 2 (a). This process is referred to as the time reversibility of waves. This time reversibility is 
based on the spatial reciprocity and time-reversal invariance of linear wave equations [5]. Damage detection 
using the time reversal process is based on the premise that if there is any nonlinear defect along the wave 
propagation path, the time reversibility breaks down. By examining the deviation of the reconstructed signal from 
the known input signal as shown in Figure 1(b), certain types of damage can be identified without requiring any 
past baseline signals. This time reversibility of body waves has found applications in lithotripsy, ultrasonic brain 
surgery, nondestructive evaluation, and acoustic communications [7]. Unlike body waves, the propagation of 
Lamb waves is, however, complicated due to two unique features: dispersion and multimode [20], which has 
limited the use of Lamb waves for damage detection applications [9]. To alleviate the multimode and dispersion 
issues of Lamb waves for the time reversal process, a combination of a specific narrowband input waveform 
design and a multi-resolution signal processing is employed so that the time reversibility of Lamb waves could be 
preserved within an acceptable tolerance in the presence of background noise [12].  

Once the time reversibility of Lamb waves is achieved, damage classification is based on the comparison 
between the original input waveform and the reconstructed signal:  
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where the )(tI  and )(tV  denote the known input and reconstructed signals. to and t1 represent the starting and 
ending time points of the baseline signal’s first Ao mode. The value of DI becomes zero when the time reversibility 
of Lamb waves is preserved. Note that the root square term in Equation (1) becomes 1.0 if and only if )()( tItV β=  
for all t where t0 ≤ t ≤ t1 and β  is a nonzero constant. Therefore, a simple linear attenuation of a signal will not 
alter the damage index value. If the reconstructed signal deviates from the input signal, the damage index value 
increases and approaches 1.0, indicating the existence of damage along the direct wave path.  

Once the damage index value exceeds a threshold value, the corresponding signal is defined as damaged in 
a conventional approach. Here, the critical question is how to set the threshold value so that misclassification of 
damage can be minimized. The common practice has been to collect the damage index values from the baseline 
condition of the system and to characterize the distribution of the damage index values. Once the distribution of 
the damage index value is properly estimated, a threshold value can be established for a user-specified 
confidence level. A challenge for the proposed method comes from the fact that the decision-making for damage 
classification needs to be set up without using prior baseline data. To accomplish this task, a consecutive outliner 
analysis is employed to identify damage without relying on the past baseline data. 
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Figure 2: A damage detection method based on a time reversal process is developed for online continuous 
monitoring of in-service structures as an unmanned aerial vehicle predator. 

 
STATISTICAL DAMAGE CLASSIFICATION 
Damage diagnosis is performed by applying an outlier analysis to the damage index values obtained in the 
previous section. In this section, the basic concept of the outlier analysis is briefly reviewed and extended to the 
consecutive outlier analysis for detecting multiple outliers. In particular, the outlier analysis is formulated 
specifically for data from an exponential distribution, and extreme value distribution is introduced for converting 
any extreme distribution to an exponential distribution. Once wave propagation paths affected by delamination are 
detected using the consecutive outlier analysis, the location and area of delamination are also identified based on 
the knowledge of the damaged paths. The algorithms developed for the subsequent damage localization and 
quantification are described in [16]. 

The objective of the outlier analysis is to identify a new pattern that differs from previously obtained patterns 
in some significant respect. The concept of the outlier analysis is not entirely new and applications in other fields 
can be found in literature [21]. For the current specific application, this concept of the outlier analysis is extended 
to a case, in which there can be multiple outliers. Because there can be more than one outlier in the experiment 
described (that is, delamination can affect damage index values corresponding to multiple paths), the possibility of 
multiple outliers in the data needs to be considered.  

The issue of multiple outliers is addressed by employing a consecutive outlier analysis [1]. First, the damage 
index values are instantaneously computed from a questionable state of the system. Second, the damage index 
values from all the paths are sorted in an acceding order. Third, the largest damage index value is tested for 
discordance against the remaining damage index values. Then, this last step is repeated for the second largest 
outlier, the third and so on until all outliers are identified or a predetermined number of damage index values are 
tested for discordance. It should be noted that each damage index value is tested for discordance with respect to 
the other simultaneously obtained damage index values rather than with respect to the damage index values 
obtained from the baseline condition of the structure. Therefore, the damage index values corresponding to the 
damaged paths have been identified without referencing to the baseline damage index values. In this way, the 
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dependence on baseline data has been fully removed both in the feature extraction procedure (using the time 
reversal process) and in the decision-making procedure (using the consecutive outlier analysis).  

Majority of the published work on outlier analysis was in the context of normal distribution. It should be noted 
that a normal distribution weighs the central portion of data rather than the tails of the distribution. In our particular 
damage detection application, we are mainly concerned with the maximum values of the damage index, because 
the outliers corresponding damage will reside near the tails of the distribution. The solution to this problem is to 
use a statistical tool called extreme value statistics (EVS) [3], which is designed to properly model the behavior of 
a distribution in the tails. The pivotal theorem of EVS states that in the limit as the number of vector samples 
tends to infinity, the induced distribution on the maxima of the samples can only take one of three forms: Gumbel, 
Weibull, or Frechet [8]:  
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where λ , δ , and β  are the shape parameters, which should be estimated from the data ( 0>δ , 0>β ). In a 
similar fashion, there are only three types of distribution for the minima of the samples. In this study, the EVS is 
used to convert any extreme value distribution to an exponential distribution so that the following consecutive 
outlier analysis can be used. 
 
CONSECUTIVE OUTLIER ANALYSIS 
First, a consecutive outlier analysis is formulated for exponential samples. Then, data transformation is introduced 
so that the consecutive outlier analysis can be used for extreme value distributions such as Gumbel, Frechet and 
Weibull. An exponential distribution with a scale parameter b and an origin at a has the following probability 
density distribution:  
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There are a wide range of discordant (outlier) tests that can be used with exponential data [1]. In this study, one of 
the most common tests is presented for demonstration rather than exhaustively comparing different types of 
available tests. An outlier test for the single smallest sample in an exponential sample is first formulated. (Later 
on, it becomes clear why the outlier test is conducted for the minimum value rather than the maximum value.) A 
test statistic for the smallest potential outlier is defined as [11]:  
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where samples 1X , 2X , …, nX  are sorted in an ascending order, and n is the size of the samples. Then, it can 
be shown that this test statistic has a probability density function )(tfn : 
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The significance probability associated with an observed value t of a discordance statistic T is denoted by SP(t):  



)]1/()1[()( )1(2,2 ttnnFtSP n −−< −  (8) 
where ][, xF uv  is a F-cumulative distribution function with v and u degrees of freedom. SP(t) is the probability that 
T takes values more discordant than t. In another word, the probability that there will be other smaller outliers 
more discordant than t. That means when the SP(t) is small for an observed value of t, the smallest value 1X  
associated with t is most likely an outlier. Therefore, we define an outlier probability OP(t) as:  

)]1/()1[(1)( )1(2,2 ttnnFtOP n −−−> −  (9) 

This outlier analysis is consecutively conducted starting from the smallest value to the second smallest value, the 
third and so on until all outliers are identified or the maximum number of samples specified by a user is reached. 

Now, if X is a sample from the Gumbel maximum distribution, then the following transformed sample Y has an 
exponential distribution with origin 0 and mean ]exp[ δλ− : 
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Thus, if the parameter δ  defined in Equation (2) is known (λ  does not necessary have to be known), an outlier in 
the Gumbel samples can be tested by applying to the transformed samples the consecutive outlier analysis for an 
exponential sample. Note that the largest value nX  in the original Gumbel sample is converted to the smallest 
value 1Y  in the transformed sample. Therefore, the test on the Y values must be chosen accordingly. This is why 
the consecutive outlier test is previously formulated for the minimum value of the exponential distribution. 

Similar transformations exist for the Weibull and Frechet distributions. If the values of λ  and β  defined in 
Equations (4) and (3) are known, the following transformations convert a Weibull sample or a Frechet sample into 
an exponential sample with mean βδ  or βδ − , respectively.  

βλ−= XY  or βλ −
−= XY  (11) 

Once extreme value samples are transformed to exponential samples, the rest of the consecutive outlier analysis 
is identical to that of the exponential samples.  

Note that for the outlier test of a sample iX , the best-fit extreme value distribution and the associated δ , λ , 
and β  parameters need to be estimated for the remaining data set { 1X , 2X ,…, 1−iX }. In addition, the procedure 
is repeated in a consecutive manner for i= n, n–1,…, n–k. Here, k is the maximum number of possible outliers that 
will be tested for discordance, and the issue of determining the upper limit of possible outliers has been studies by 
various researchers [19]. Because the selection of the extreme value distribution and the associated parameter 
estimation need to be sequentially performed multiple times, algorithms have been developed to automate this 
procedure [17].  
 
EXPERIMENTAL RESULTS 
In this study, typical results only from one of impact tests are presented due to the space limitation. The active 
sensing system and the proposed damage identification algorithms were employed to identify internal 
delamination. Figure 3 (a) shows the actual impact location. The identification of the damaged paths shown in 
Figure 3 (b) is based on the premise that if there is any defect along the wave propagation path, the time 
reversibility of Lamb waves breaks down. Therefore, by examining the deviation of the reconstructed signal from 
the known original input signal for each path damaged paths can be identified. The final goal is to pinpoint the 
location of delamination and to estimate its size based on the damaged paths identified in Figure 3 (b). To identify 
the location and area of the delamination, a damage localization algorithm is also developed in [16]. The 
delamination location and size estimated by the active sensing system was presented in Figure 3 (c), and the 
estimate from the proposed damage identification matched well with the result of ultrasonic scan. 

Based on the time reversibility, the damage index defined in Equation (1) was first computed for all 66 paths 
when there was no delamination on the plate. Following the consecutive outlier analysis previously described, the 
damage index values after the impact were first arranged in an ascending order as shown in Figure 4 (a). Then, 
the outlier probability defined in Equation (9) is computed in Figure 4 (b) for the first 15 largest damage index 
values. Here, the maximum possible number of outliers is set to 15 (k=15) based on the assumption that damage 
is localized and only a few wave propagation paths are affected by the delamination.  

The outlier probabilities for the first 15 largest damage index values in Figure 4 (b) also are listed in Table 1 
The outlier probability for the largest damage index values is about 49.4%, and the outlier probability reaches its 
maximum value at the fifth largest damage index value (OP(t) = 0.99999900891873 for the fifth largest damage 
index value). For a given confident level of 99.9%, the fifth largest damage index value is classified to be an 
outlier, and this automatically implies that the larger values damage index values X63, X64, X65, and X66 are outliers 



as well. It should be noted that the outlier probabilities for the first three largest damage index values were 
relatively low due to the masking effect. The masking effect is the insensitivity of an outlier analysis to identify an 
outlier in the presence of several suspected outliers closer to each other than to the bulk of the remaining 
observations [22]. For example, with the damage index values shown in Table 2, the outlier probability of 

nX =0.9147 was low because of the proximity of 1−nX =0.9120, 2−nX =0.9013, 3−nX =0.8446, 4−nX =0.8054. Here 
1−nX , 2−nX , …, 4−nX  are said to have a masking-effect on the identification of nX . Similar masking effects were 

observed for 1−nX , 2−nX , …, 4−nX . However, the masking effect were alleviated as the consecutive outlier analysis 
moved inward, and it was fully removed at 562 −=nX .  

Once the number of actual outliers was identified, the automated procedure for the selection of the best-fit 
extreme distribution and parameter estimationwas applied to the remaining damage index values iX  (i=1, 2, …, 
n–6). The Weibull distribution was chosen as the best-fit extreme distribution, and the associated λ , β , and δ  
parameters were estimated to be 0.627, 14.992, and 0.596, respectively. From the estimated Weibull distribution, 
a threshold corresponding to a 99.9% confidence level turned out to be 0.251 as shown in Figure 4 (d). It should 
be noted that the correct outliers were already identified using the consecutive outlier analysis described in Figure 
4 (b), and this additional step of establishing the threshold value in Figure 4 (c) and (d) was simply taken to 
substantiate the findings of the consecutive outlier analysis.  
 

 
(a) Actual impact location 
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Figure 3: Damage localization and quantification based on a time reversal process 

 
CONCLUSION 
In this study, a combination of a time reversal process and a consecutive outlier analysis is adopted to identify 
delamination in a composite plate without relying on prior baseline data. Surface mounted PZT materials are used 
to apply local excitations to the composite plate and to measure dynamic strain time response signals. Then, a 
damage-sensitive feature is extracted based on the time reversal concept, and a statistical damage classifier is 
developed via the consecutive outlier analysis. The effectiveness of the proposed method is demonstrated using 
experimental data obtained from impact tests of composite plates, and the location and area of the delamination 
is successful identified. 
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(c) After excluding the 5 outliers identified in Figure 4 
(b), a Weibull distribution is fitted to the remaining 63 
DI values to estimate a new threshold value (=0.251). 

(d) The use of the threshold value (0.251) confirms that 
the 5 largest DI values are outliers and the associated 
paths are influenced by internal delamination 

Figure 4: Threshold establishment and instantaneous damage identification without using prior baseline data 
 

Table 1: The outlier probabilities for the first 12 largest damage index values shown in Figure 4 (b) 
# Outlier Probability # Outlier Probability # Outlier Probability 
1 0.49443100201884 5 0.99999900891873 9 0.63736975495153 
2 0.65388841395516 6 0.80118097717756 10 0.48095139238444 
3 0.92056208261950 7 0.69331542635726 11 0.52869657681871 
4 0.99960175642805 8 0.43415729821632 12 0.62566554445656 

 

Table 2: The first 12 largest damage index values shown in Figure 4 (a) 
# Damage Index Values # Damage Index Values # Damage Index Values 
1 0.9147 5 0.8054 9 0.1419 
2 0.9120 6 0.1888 10 0.1319 
3 0.9013 7 0.1628 11 0.1280 
4 0.8446 8 0.1470 12 0.1258 
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